
FULLY CONVOLUTIONAL FRACTIONAL SCALING

Michael Soloveitchik & Michael Werman

Computer Science
The Hebrew University of Jerusalem

ABSTRACT

We introduce a fully convolutional fractional scaling com-
ponent, FCFS. Fully convolutional networks can be applied
to any size input and previously did not support non-integer
scaling. Our architecture is simple with an efficient single
layer implementation. Examples and code implementations
of three common scaling methods are published.

Index Terms— FCN, Fully convolutional network, scal-
ing, fully convolutional layer, pixelshuffle, fractional scaling,
fully convolutional scaling

1. INTRODUCTION

Image scaling is a ubiquitous image processing operation.
Neural networks based only on convolutions have the nice
property that they can be applied to any size object. This
family of architectures is named FCN, Fully Convolutional
Networks. Many FCN models consist of up/down-sampling
layers, albeit with integer factors. Here we present a fully
convolutional fractional scaling component for CNNs, FCFS.

Various tasks, such as instance\semantic segmentation
[1] and [2], style transfer [3], super-resolution [4], image
compression [5], satellite image segmentation [6], general
object detection [7], etc. have state-of-the-art solutions based
on integer scale up/down-sampling layers embedded in FCN
architectures.

Up/down scaling architectures are extensive in computer
vision fields. Zhang et al. [8] used the well known Lapla-
cian Pyramids, together with a deep neural network to train
a super-resolution model. Luo et al. [9] the authors used an
up-sampling sequence of layers to find the optical-flow of an
image. Various super-resolution models as [10], [11] and [12]
tried to find the proper HR-counterpart of an LR-image when
it’s acquisition isn’t predetermined. Maeda et al. [13] imple-
mented an unpaired super resolution model based on cycle-
consistency and up/down scaling layers. Saeedan et al.[14]
succeeded to preserve important image details during down
scaling with average-pooling layers. In addition [15] reported
success on using using the pixelshuffle component to up-
scale an input image by any integer scaling integer factor.

Thanks to DFG for funding.

Audio processing also uses scaling methods, [16] studied
the appearance of artifacts on audio signals after applying up-
sampling methods.

Works like [17] and [18] used scaling layers and FCN to
detect anomalies in medical images and brain 3D reconstruc-
tion respectively.

In this paper, we suggest a fully convolutional fractional,
generalizing the integer, scaling component. Our architec-
ture has an elegant and simple single layer implementation
that allows easy integration in any FCN. Implementations of
three common scaling methods: ”nearest-neighbour”, ”bilin-
ear” and ”bicubic” interpolation can be found in Project Page

2. PREVIOUS WORK

The fractional convolutional scaling was proposed, first time,
in [19], and later have been exceeded by [20]. It has stochas-
tic implementations. Their works randomly pools the input
with overlapping patches to achieve the desired fraction. Af-
terwards [21] suggested bilinear average pooling, their work
is applicable only for scaling factors (denoted by f) in range
1 ≤ f ≤ 2. All the former mentioned work aimed only for
down-scaling tasks.

Another work is [22], their motivation was compressing
video and they suggested an architecture with fixed input and
output shapes.

Our solution is not restricted to fixed sizes and doesn’t
use stochastic sampling, providing a clean fully convolutional
component to perform fractional down/up scaling.

3. APPROACH

For simplicity, we develop the theory for 1D tensor convo-
lutions. Then we present the generalization for the higher
dimensional cases.

1D discrete tensor convolution: Given an array x and a
convolution kernel h of size 2K + 1, the convolution of x and
h is:

(x ∗ h)[i] =

K∑
k=−K

x[i− k] · h[k]

ar
X

iv
:2

20
3.

10
67

0v
1

 [
cs

.N
E

]
 2

0
M

ar
 2

02
2

https://github.com/Michael-Soloveitchik/FCFS

3.0.1. Stride, Padding & Pixelshuffle

Our algorithm is based on three operations: stride, padding,
and pixelshuffle.

Padding: Given an array x. Padding by 2p is the concate-
nation cp|x|cp. There are other padding methods including
reflection, zeros, and repetition of edge pixels.

Fig. 1. Padding an array of length 5 by 2.

Stride: Given an array x and a convolution kernel h, the
convolution of x and h with stride s is

(x ∗s h)[i] = (x ∗ h)[s · i]

Fig. 2. 1D Tensor convolution with padding=3, stride=4
out channels=3 on a length 5 array.

Pixel Shuffling: Let the pixelshuffle be r, given a tensor
of shape r ×N pixelshuffle [23] reshapes and rearranges it’s
elements in a tensor of shape rN .

Fig. 3. Pixelshuffle of 3×1 tensor returning a tensor of shape
3.

3.1. Fully Convolutional Fractional Scaling

The architecture we purpose, FCFS, carries out fractional
scaling. Fully Convolutional Fractional Scaling: Given a
real array x and a scaling factor r

s , we define the following
algorithm.

FCFS(input: Tensor)→ Tensor:
x = pad(x, padding=2K)
x = conv(x, out channels=r, stride=s,

kernel shape=2K+1, kernel weights=W)
return pixelshuffle(x, factors=r)

3.1.1. Description

The scaling is relative to the padded tensor of shape N . The
architecture contains only a single hidden layer, whose shape
is r × N

s . Given a scale factor r
s we apply a convolution

with stride = s. Each of the r convolution kernels produces
an interpolation for offset i + j−1

r s.t. j ∈ [1, .., r]. Thus
the hidden layer is of shape r × N

s . Applying pixelshuffle
results in an array with the desired shape of r

sN
The parameters K, kernel shape, and kernel weights

depend on the interpolation method see examples section 5.
The hidden layer’s shape is bilinearly dependent on output
shape and r, which is the space and time complexity of the
component.

4. 2D & ND EXTENSIONS

The adaptations needed for 2D and ND are straightforward.
Special attention needs to be paid to Pixelshuffle.

4.1. ND Pixelshuffle

Here we propose a slight generalization of Pixelshuffle.
PixelShuffle: For n ≥ 2 and a tensor of shape (r1 · ... · ri · ... ·
rn) × N1 × ... × Ni × ... × Nn, Pixelshuffle rearranges the
elements to a new tensor of shape r1N1 × ... × riNi × ... ×
rnNn

Out[i1, ..., ii, ..., in] = x[r, b i1
r1
c, ..., b ii

ri
c, ..., b in

rn
c]

r =

n−1∑
t=0

(

n−t−1∏
j=1

rj)((in−t − 1) mod rn−t)

Figure 4 illustrates the formula.

Fig. 4. Pixelshuffle of a 32 × 7 × 7 tensor to a 3 · 7 × 3 · 7
matrix.

4.2. ND Fully Convolutional Fractional Scaling

To scale an ND input signal by scaling factors: r1
s1
, ..., rn

sn
for

the different dimensions.
FCFS(input: Tensor)→ Tensor:

x = pad(x, padding=2K1, · · · , 2Kn)
x = conv2d(x, out channels=

∏
i ri,

stride=[s1, ..., sn],
kernel shape=[2K1 + 1, ..., 2Kn + 1],

kernel weights=W
return pixelshuffle(x, factors=[r1, ..., rn])

5. EXAMPLES

5.1. Illustration of FCFS

Figure 5 illustrates FCFS on a 5× 5 image with a 3
2 up-sacle

factor. The output image is a 9× 9 image,

9× 9 =
3

2
· (5 + 1)× (5 + 1) =⇒ output =

3

2
· input

as expected.

Fig. 5. Illustration of 2D 3
2 Fully Convolutional Fractional

Scaling.

5.2. Convolution’s kernel weights

FCFS supports various scaling-methods through the param-
eters. In this section, we present kernel weights for various
image scaling-methods.

Consider f = 3
2 = r

s scaling. According to the offsets
described in 3.1.1, we have 32 = 9(= r2) different kernels.
We present the kernel of offsets (1, 1) and (1, 3) denoted by
W1,1 and W1,3.

5.2.1. Nearest neighbour interpolation

From [24] nearest neighbour:

W1,1 :=

[
1. 0.0
0.0 0.0

]
W1,3 :=

[
0.0 1.0
0.0 0.0

]
5.2.2. Bilinear interpolation

From [24], bilinear interpolation which is based on the 4 near-
est pixels around the point of interpolation:

W1,1 :=

[
0.44 0.22
0.22 0.11

]
W1,3 :=

[
0.22 0.44
0.11 0.22

]
5.2.3. Biqubic interpolation

From [24] bicubic interpolation as derived from the formula,
published in [24]:

W (∆) =

1.5|∆|3 − 2.5|∆|2 + 1 for |∆| ≤ 1,

−0.5|∆|3 + 2.5|∆|2 − 4|∆| − 4a for 1 < |∆| < 2,

0 otherwise,

∆ = x − i, y − j. Where the x, y the subpixel point of
interpolation and i, j are the integer coordinates of the input
image.

W1,1 :=

 0.16 0.16 0.07
0.16 0.16 0.07
0.07 0.07 0.03

 W1,3 :=

 0.13 0.13 0.13
0.13 0.13 0.13
0.05 0.05 0.05

6. EXPERIMENTS

To test the time complexity and quality of FCFS we ran the
following experiments:

1. We compared running times of FCFS to torch.resize
[25] for various scaling factors.

2. We computed two commonly used metrics, PSNR [26]
and SSIM [26]. again comparing FCFS to torch.resize
[25], for various scaling factors.

6.1. Empirical methods

6.1.1. Scaling methods

Each experiment was repeated 100 times. We tested for
the three different scaling − methods: ”nearest neigh-
bours”, ”bilinear-interpolation” and ”bicubic-interpolation”
The weights were implemented as described in section 5.
For each method, six up-scaling factors and six down-scaling
factors were tested

6.1.2. Hardware & Datasets

The experiments were carried out on NVIDIA RTX2070
GPU.

The dataset used was Celeb A [27] with more than 200K
celebrity images with 1024x1024 pixel resolution.

6.2. Results

6.2.1. Experiment results

The first experiment’s running time results are presented
in figure 6. No significant difference was found between
torch.resize and FCFS, neither in up-scaling nor in down-
scaling. The FCFS was 0.0003 seconds slower on average.

The second experiment’s visual sameness results are pre-
sented in figures 7 and 8. Zooming in shows the visual arti-
facts that slightly differ between FCFS and torch.resize.

Figures 9 and 10 show distances between the output im-
ages for different scaling − methods. PSNR and SSIM
values above 20 and close to 1.00 respectively support visual
sameness [26]. The experiment shows the consistency of
FCFS with the torch.resize implementation.

Fig. 6. Efficiency graphs for up/down-scaling tasks × differ-
ent scaling −methods

Fig. 7. Down-scaling by factor = 2
11

7. SUMMARY & FUTURE WORK

We introduced a fully convolutional fractional scaling component-
FCFS that is as efficient as the fixed shape scaling component
(torch.resize).

The benefit from a convolution based approach is the ability to
learn weights. FCFS allow to train the kerenel weights and adjust
them both in shape and values to the particular task. We aim to
invest more effort in this direction in future work.

Fig. 8. Up-scaling by factor = 27
11 .

Fig. 9. PSNR & SSIM graphs for down-scaling tasks × dif-
ferent scaling −methods.

Fig. 10. PSNR & SSIM graphs for up-scaling tasks × differ-
ent scaling −methods.

8. REFERENCES

[1] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun,
“Instance-sensitive fully convolutional networks,” in European
Conference on Computer Vision. Springer, 2016, pp. 534–549.

[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully
convolutional networks for semantic segmentation,” in Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, 2015, pp. 3431–3440.

[3] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros,
“Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 2223–2232.

[4] Jin Yamanaka, Shigesumi Kuwashima, and Takio Kurita, “Fast
and accurate image super resolution by deep cnn with skip con-
nection and network in network,” in International Conference
on Neural Information Processing. Springer, 2017, pp. 217–
225.

[5] S Yagnasree, A Subramanyam, and M Anand, “Image
compression using neural networks,” NVEO-NATURAL
VOLATILES & ESSENTIAL OILS Journal— NVEO, pp.
11088–11097, 2021.

[6] Vivien Sainte Fare Garnot and Loic Landrieu, “Panoptic seg-
mentation of satellite image time series with convolutional
temporal attention networks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 4872–
4881.

[7] Wenguan Wang, Jianbing Shen, and Ling Shao, “Video salient
object detection via fully convolutional networks,” IEEE
Transactions on Image Processing, vol. 27, no. 1, pp. 38–49,
2017.

[8] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun
Fu, “Residual dense network for image restoration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 7, pp. 2480–2495, 2020.

[9] Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan,
Jue Wang, and Jian Sun, “Upflow: Upsampling pyramid for
unsupervised optical flow learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2021, pp. 1045–1054.

[10] Assaf Shocher, Nadav Cohen, and Michal Irani, “Zero-shot
super-resolution using deep internal learning,” in Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 2018, pp. 3118–3126.

[11] Jordi Pons, Santiago Pascual, Giulio Cengarle, and Joan
Serrà, “Upsampling artifacts in neural audio synthesis,” in
ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
3005–3009.

[12] Anil Singh Parihar, Ritvik Mittal, Prashuk Jain, et al., “Video
summarization using fully convolutional residual dense net-
work,” in Sentimental Analysis and Deep Learning, pp. 47–58.
Springer, 2022.

[13] Shunta Maeda, “Unpaired image super-resolution using
pseudo-supervision,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp.
291–300.

[14] Faraz Saeedan, Nicolas Weber, Michael Goesele, and Stefan
Roth, “Detail-preserving pooling in deep networks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2018, pp. 9108–9116.

[15] Juncheng Li, Faming Fang, Kangfu Mei, and Guixu Zhang,
“Multi-scale residual network for image super-resolution,” in
Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 517–532.

[16] Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang, Chao
Dong, and Liang Lin, “Unsupervised image super-resolution
using cycle-in-cycle generative adversarial networks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, 2018, pp. 701–710.

[17] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein,
Ursula Schmidt-Erfurth, and Georg Langs, “Unsupervised
anomaly detection with generative adversarial networks to
guide marker discovery,” in International conference on in-
formation processing in medical imaging. Springer, 2017, pp.
146–157.

[18] Lynn Le, Luca Ambrogioni, Katja Seeliger, Yağmur
Güçlütürk, Marcel van Gerven, and Umut Güçlü, “Brain2pix:
Fully convolutional naturalistic video reconstruction from
brain activity,” BioRxiv, 2021.

[19] Benjamin Graham, “Fractional max-pooling,” arXiv preprint
arXiv:1412.6071, 2014.

[20] Shuangfei Zhai, Hui Wu, Abhishek Kumar, Yu Cheng, Yongxi
Lu, Zhongfei Zhang, and Rogerio Feris, “S3pool: Pooling with
stochastic spatial sampling,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[21] Siang Thye Hang and Masaki Aono, “Bi-linearly weighted
fractional max pooling,” Multimedia Tools and Applications,
vol. 76, no. 21, pp. 22095–22117, 2017.

[22] Li-Heng Chen, Christos G Bampis, Zhi Li, Chao Chen, and
Alan C Bovik, “Convolutional block design for learned
fractional downsampling,” arXiv preprint arXiv:2105.09999,
2021.

[23] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang, “Real-time single image and video super-resolution us-
ing an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 1874–1883.

[24] Anton Trusov and Elena Limonova, “The analysis of projective
transformation algorithms for image recognition on mobile de-
vices,” in Twelfth International Conference on Machine Vision
(ICMV 2019). International Society for Optics and Photonics,
2020, vol. 11433, p. 114330Y.

[25] Ronan Collobert, “Torch tutorial,” Institut Dalle Molle
d’Intelligence Artificielle Perceptive Institute, vol. 2, 2002.

[26] Alain Hore and Djemel Ziou, “Image quality metrics: Psnr
vs. ssim,” in 2010 20th international conference on pattern
recognition. IEEE, 2010, pp. 2366–2369.

[27] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang,
“Large-scale celebfaces attributes (celeba) dataset,” Retrieved
August, vol. 15, no. 2018, pp. 11, 2018.

	1 Introduction
	2 Previous Work
	3 Approach
	3.0.1 Stride, Padding & Pixelshuffle
	3.1 Fully Convolutional Fractional Scaling
	3.1.1 Description

	4 2D & ND Extensions
	4.1 ND Pixelshuffle
	4.2 ND Fully Convolutional Fractional Scaling

	5 EXAMPLES
	5.1 Illustration of FCFS
	5.2 Convolution's kernel weights
	5.2.1 Nearest neighbour interpolation
	5.2.2 Bilinear interpolation
	5.2.3 Biqubic interpolation

	6 Experiments
	6.1 Empirical methods
	6.1.1 Scaling methods
	6.1.2 Hardware & Datasets

	6.2 Results
	6.2.1 Experiment results

	7 SUMMARY & FUTURE WORK
	8 References

