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ABSTRACT
A new deconvolution algorithm based on orthogonal projec-
tions onto the epigraph set of a convex cost function is pre-
sented. In this algorithm, the dimension of the minimization
problem is lifted by one and sets corresponding to the cost
function are defined. As the utilized cost function is a con-
vex function in RN , the corresponding epigraph set is also
a convex set in RN+1. The deconvolution algorithm starts
with an arbitrary initial estimate in RN+1. At each step of
the iterative algorithm, first deconvolution projections are
performed onto the epigraphs, later an orthogonal projec-
tion is performed onto one of the constraint sets associated
with the cost function in a sequential manner. The method
provides globally optimal solutions for total-variation, `1,
`2, and entropic cost functions.

Index Terms— Epigraph of a cost function, Deconvolu-
tion, projection onto convex sets, total variation

1. INTRODUCTION

A new deconvolution algorithm based on orthogonal Pro-
jections onto the Epigraph Set of a Convex cost function
(PESC) is introduced. In Bregman’s standard POCS ap-
proach [1, 2], the algorithm converges to the intersection
of convex constraint sets. In this article, it is shown that it
is possible to use a convex cost function in a POCS based
framework using the epigraph set and the new framework is
used in deconvolution.

Bregman also developed iterative methods based on the
so-called Bregman distance to solve convex optimization
problems [3]. In Bregman’s approach, it is necessary to per-
form a Bregman projection at each step of the algorithm,
which may not be easy to compute the Bregman distance in
general [4, 5].

In standard POCS approach, the goal is simply to find
a vector, which is in the intersection of convex constraint
sets [2, 6–27]. In each step of the iterative algorithm an
orthogonal projection is performed onto one of the convex
sets. Bregman showed that successive orthogonal projec-
tions converge to a vector, which is in the intersection of all
the convex sets. If the sets do not intersect iterates oscillate

between members of the sets [28, 29]. Since, there is no
need to compute the Bregman distance in standard POCS, it
found applications in many practical problems. In this arti-
cle, orthogonal projections onto the epigraph set of a convex
cost functions are used to solve convex optimization prob-
lems instead of the Bregman distance approach.

In PESC approach, the dimension of the signal recon-
struction or restoration problem is lifted by one and sets cor-
responding to a given convex cost function are defined. This
approach is graphically illustrated in Fig.1. If the cost func-
tion is a convex function in RN , the corresponding epigraph
set is also a convex set in RN+1. As a result, the convex
minimization problem is reduced to finding the [w∗, f(w∗)]
vector of the epigraph set corresponding to the cost function
as shown in Fig. 1. As in standard POCS approach, the new
iterative optimization method starts with an arbitrary initial
estimate in RN+1 and an orthogonal projection is performed
onto one of the constraint sets. The resulting vector is then
projected onto the epigraph set. This process is continued in
a sequential manner at each step of the optimization prob-
lem. This method provides globally optimal solutions for
convex cost functions such as total-variation [30], filtered
variation [31], `1 [32], and entropic function [8]. The iter-
ation process is shown in Fig. 1. Regardless of the initial
value w0, iterates converge to [w∗, f(w∗)] pair as shown in
Fig. 1.

The article is organized as follows. In Section 2, the
epigraph of a convex cost function is defined and the con-
vex minimization method based on the PESC approach is
introduced. In Section 3, the new deconvolution method is
presented. The new approach does not require a regulariza-
tion parameter as in other TV based methods [7, 18, 30].
In Section 4, the simulation results and some deconvolution
examples, are presented.

2. EPIGRAPH OF A CONVEX COST FUNCTION

Let us consider a convex minimization problem

min
w∈RN

f(w), (1)
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where f : RN → R is a convex function. We increase the
dimension of the problem by one to define the epigraph set
in RN+1 corresponding to the cost function f(w) as fol-
lows:

Cf = {w = [wT y]T : y ≥ f(w)}, (2)

which is the set of N +1 dimensional vectors, whose (N +
1)st component y is greater than f(w). We use bold face
letters for N dimensional vectors and underlined bold face
letters for N + 1 dimensional vectors, respectively. The
second set that is related with the cost function f(w) is the
level set:

Cs = {w = [wT y]T : y ≤ α, w ∈ RN+1}, (3)

where α is a real number. Here it is assumed that f(w) ≥
α for all f(w) ∈ R such that the sets Cf and Cs do not
intersect or the intersection contains a single vector. They
are both closed and convex sets in RN+1. Sets Cf and Cs
are graphically illustrated in Fig. 1.

Figure 1: Two convex sets Cf and Cs corresponding to the
convex cost function f . We sequentially project an initial
vector w0 onto Cs and Cf to find the global minimum,
which is located at w∗ = [w∗ f(w∗)]T .

An important component of the PESC approach is to
perform an orthogonal projection onto the epigraph set. Let
w1 be an arbitrary vector in RN+1. The projection w2 is
determined by minimizing the distance between w1 andCf ,
i.e.,

w2 = arg min
w∈Cf

‖w1 −w‖2. (4)

Equation 4 is the ordinary orthogonal projection operation
onto the set Cf ∈ RN+1. In order to solve the problem in
Eq. (4) we do not need to compute the Bregman’s so-called
D-projection or Bregman projection. Projection onto the set
Cs is trivial. We simply force the last component of the
N + 1 dimensional vector to zero. In the PESC algorithm,
iterates eventually oscillate between the two nearest vectors
of the sets Cs and Cf as shown in Fig. 1. As a result, we
obtain

lim
n→∞

w2n = [w∗ f(w∗)]T , (5)

where w∗ is the N dimensional vector minimizing f(w).
The proof of Eq. (5) follows from Bregman’s POCS the-
orem [1]. It was generalized to non-intersection case by
Gubin et. al [28]. Since the two closed and convex sets
Cs and Cf are closest to each other at the optimal solution
case, iterations oscillate between the vectors [w∗ f(w∗)]T

and [w∗ 0]T in RN+1 as n tends to infinity. It is possible to
increase the speed of convergence by non-orthogonal pro-
jections [19].

If the cost function f is not convex and have more than
one local minimum then the corresponding set Cf is not
convex in RN+1. In this case iterates may converge to one
of the local minima.

In current TV based deconvolution methods [18, 33, 34],
the following cost function is used:

min‖v −w‖2 + λTV(w), (6)

where v is the observed signal. The solution of this problem
can be obtained using the method in an iterative manner, by
performing successive orthogonal projections onto Cf and
Cs , as discussed above. In this case the cost function is
f(w) = ‖v −w‖22 + λTV(w). Therefore,

Cf = {‖v −w‖2 + λTV(w) ≤ y}. (7)

The deconvolution solutions that we obtained are very simi-
lar to the ones found by Combettes in [34, 35] as both meth-
ods use the same cost function. One problem in TV based
cost function is the estimation of the regularization parame-
ter λ. One has to determine the λ in an ad-hoc manner or by
visual inspection. In the next section, a new deconvolution
method with a different TV based cost function is described.
The new method does not require a regularization parame-
ter.

3. DECONVOLUTION USING PESC

In this section, we present a new deconvolution method,
based on the epigraph set of the convex cost function. It
is possible to use TV, FV and `1 norm as the convex cost
function. Let the original signal or image be worig and its
blurred and noisy version be z:

z = worig ∗ h + η, (8)

where h is the blurring matrix and η is the additive Gaussian
noise. In this approach we solve the following problems:

w? = arg min
w∈Cf

‖v −w‖2, (9)

where, v = [vT 0] and Cf is the epigraph set of TV or FV
in RN+1. The TV function, which we used for an M ×M
discrete image w = [wi,j ], 0 ≤ i, j ≤ M − 1 ∈ RM×M
is as follows:

TV (w) =
∑
i,j

(|wi+1,j − wi,j |+ |wi,j+1 − wi,j |). (10)



To estimate this problem we use POCS framework using the
following sets:

Ci = {w ∈ RN+1|zi = (w ∗ h)[i]} i = 1, 2, ..., L,
(11)

where L is the number of pixels and zi is the ith observation;
and the epigraph set:

Cf = {w ∈ RN+1|w = [wT y]T : y ≥ TV (w)}. (12)

Notice that the sets Ci are in RN and Cf is in RN+1. How-
ever, it is straightforward to extend Ci’s to RN+1 and they
are still closed and convex sets in RN+1. Let us describe the
projection operation onto the set Cf = {TV (w) ≤ y}. No-
tice that, this Cf is different from Eq. (7). This means that
we select the nearest vector w? on the set Cf to v. This is
graphically illustrated in Fig. 2. During this orthogonal pro-

Figure 2: Graphical representation of the minimization of
Eq. (9), using projections onto the supporting hyperplanes
of Cf . In this problem the sets Cs and Cf intersect because
TV (w) = 0 for w = [0, 0, ..., 0]T or for a constant vector.

jection operations, we do not require any parameter adjust-
ment as in [30]. The POCS algorithm consists of cyclical
projections onto the sets Ci and Cf .

Projection onto the sets are very easy to compute be-
cause they are hyperplanes:

vr+1 = vr +
zi − (vr ∗ h)[i]

‖h‖2
hT , (13)

where vr is the rth iterate, vr+1 is the projection vector
onto the hyperplane Ci. The pseudo-code of the algorithm
is described in Algorithm 1.

Algorithm 1 The pseudo-code for the deconvolution with
PESC based algorithm

Begin z ∈ RN×N , h ∈ RNh×Nh , K ∈ Z+

v ← z
for k = 1 to K do

for x = 1 to N do
for y = 1 to N do

v(x−bNh/2c to x+bNh/2c, y−bNh/2c to y+
bNh/2c) ← v(x − bNh/2c to x + bNh/2c, y −
bNh/2c to y + bNh/2c) + z(x,y)−v∗h|x,y

‖h‖2 h

end for
end for
while ||w− v|| > ε do

w← Project v onto Cf
w← Project w onto Cs

end while
end for

The sets Ci and Cf may or may not intersect in RN+1.
If they intersect, iterates converge to to a solution in the in-
tersection set. It is also possible to use hyperslabs instead of
Ci,h = {w|zi−εi ≤ (w∗h)[i] ≤ zi+εi} hyperplanes Ci in
this algorithm. In this case it is more likely that the closed
and convex sets of the proposed framework intersect.

Implementation: The sub-gradient projections of vn are
performed as in Eq. 13. Then after a loop of these pro-
jections are terminated, the PESC algorithm will be applied
to the output vn. The projection operation described in Eq.
(9) can not be obtained in one step when the cost function
is TV. The solution is determined by performing successive
orthogonal projections onto supporting hyperplanes of the
epigraph set Cf . In the first step, TV(v0) and the surface
normal at v1 = [vT0 TV(v0)] in RN+1 are calculated. In
this way, the equation of the supporting hyperplane at v1 is
obtained. The vector v0 = [vT0 0] is projected onto this hy-
perplane and w1 is obtained as our first estimate as shown in
Fig. 2. In the second step, w1 is projected onto the setCs by
simply making its last component zero. The TV of this vec-
tor and the surface normal, and the supporting hyperplane
are calculated as in the previous step. Next, v0 is projected
onto the new supporting hyperplane, and w2 is obtained. In
Fig. 2, w2 is very close to the denoising solution w?. In
general iterations continue until ‖wi −wi−1‖ ≤ ε, where ε
is a prescribed number, or iterations can be stopped after a
certain number of iterations.

We calculate the distance between v0 and wi at each
step of the iterative algorithm described in the previous para-
graph. The distance ‖v0 −wi‖

2 does not always decrease
for high i values. This happens around the optimal denois-
ing solution w?. Once we detect an increase in ‖v0 −wi‖

2,
we perform a refinement step to obtain the final solution of
the denoising problem. In refinement step, the supporting



hyperplane at
wi+wi−1

2 is used in the next iteration. A typ-
ical convergence graph is shown in Fig. 3 for the “note”
image.

Figure 3: Euclidian distance from v to the epigraph of TV
at each iteration (‖v − wi‖) with noise standard deviation
of σ = 30.

It is possible to obtain a smoother version of w? by sim-
ply projecting v inside the set Cf instead of the boundary
of Cf .

4. SIMULATION RESULTS

The PESC algorithm is tested with standard images. The
noise standard deviation σ is chosen so that the averaged
blurred signal to noise ratio BSNR reaches a target value:

BSNR = 10× log10(
‖z̃− E[z̃]‖2

Nσ2
η

), (14)

where z̃ is the blurred image without noise z̃ = worig ∗
h, N is the whole number of pixels, and σ is the additive
noise’s standard deviation. In addition to the visual results,
the deblurring algorithm is compared in term of Improved
Signal to Noise Ratio (ISNR) as follows:

ISNR = 10× log10(
‖z− worig‖2

‖wrec − worig‖2
), (15)

which wrec is the reconstructed and deblurred image. The
ISNR as a function of iteration number for the experiment
done over MRI image is given in Fig. 4.

Table 1 and 2 represent the ISNR and SNR values for
five BSNR values for PESC algorithm and FTL algorithm
proposed by Vonesch etal [36]. According to the these ta-
bles, in almost all cases PESC based deconvolution algo-
rithm performs better than FTL [36] in sense of ISNR and
SNR.

In Fig. 5 the original, blurred. and deblurred images
for both algorithms are presented. According to this figure,
PESC algorithm performs better than FTL not only in sense
of SNR, but also the results for PESC are visually better
than FTL.

Figure 4: ISNR as a function of the iteration number for
MRI image.

5. CONCLUSION

A new deconvolution method based on the epigraph of the
TV function is developed. Epigraph sets of other convex
cost functions can be also used in the new deconvolution
approach. The reconstructed signal is obtained by making
an orthogonal projection onto the epigraph set from the cor-
rupted signal in RN+1. The new algorithm does not need
the optimization of the regularization parameter as in stan-
dard TV deconvolution methods. Experimental results indi-
cate that better SNR results are obtained compared to stan-
dard TV based deconvolution in a large range of images.
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