Abstract:
We describe a shape-based method for classification of vehicles from omnidirectional videos. Different from similar approaches, the binary images of vehicles obtained by ...Show MoreMetadata
Abstract:
We describe a shape-based method for classification of vehicles from omnidirectional videos. Different from similar approaches, the binary images of vehicles obtained by background subtraction in a sequence of frames are averaged over time. We show with experiments that using the average shape of the object results in a more accurate classification than using a single frame. The vehicle types we classify are motorcycle, car and van. We created an omnidirectional video dataset and repeated experiments with shuffled train-test sets to ensure randomization.
Date of Conference: 16-19 May 2015
Date Added to IEEE Xplore: 22 June 2015
Electronic ISBN:978-1-4673-7386-9
Print ISSN: 2165-0608