Fabric defect detection methods for circular knitting machines | IEEE Conference Publication | IEEE Xplore

Fabric defect detection methods for circular knitting machines


Abstract:

In this paper, an online fabric defect detection system that can detect fabric defects which may occur during the fabric product in knitting machines is introduced. This ...Show More

Abstract:

In this paper, an online fabric defect detection system that can detect fabric defects which may occur during the fabric product in knitting machines is introduced. This system mainly includes three steps: 1) Construction of a defected/defect-free fabric database; 2) Obtaining and classification of the feature vectors; 3) Online working on embedded system. This study only contains information about the first two stages. In the first stage, 3242 ‘defected’ and ‘5923’ defect-free images were acquired by using a conveyor system which has line scan camera and linear light. In the second stage, filtering, feature extraction (wavelet transform, co-occurrence matrix and CoHOG) and classification (YSA) processes were carried out. As a result, obtaining the feature vectors through wavelet transform has reduced computation cost by 53% and also has successfully provided the classification of the defects by 90%.
Date of Conference: 16-19 May 2015
Date Added to IEEE Xplore: 22 June 2015
Electronic ISBN:978-1-4673-7386-9
Print ISSN: 2165-0608
Conference Location: Malatya, Turkey

Contact IEEE to Subscribe