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Head of Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
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ABSTRACT

HYPERSPECTRAL IMAGERY SUPER-RESOLUTION

Irmak, Hasan

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

Co-Supervisor : Assist. Prof. Dr. Seniha Esen Yüksel

May 2017, 112 pages

Hyperspectral (HS) imagery consists of hundred of narrow contiguous bands extend-

ing beyond the visible spectrum. It is a three dimensional data cube with two di-

mensional spatial information and a spectral dimension. Despite having high spectral

resolution, HS images have lower spatial resolution due to technological restrictions.

This degrades the performance in HS imaging applications. Therefore, increasing the

resolution is a necessity, however the problem is an ill-posed problem. In this thesis,

we address this problem, namely super-resolution reconstruction (SRR) of HS images

from different perspectives and propose robust solutions.

First method proposes a maximum a posteriori (MAP) based SRR technique for HS

images when there is only one HS image and no other source of information. The

novelty of the method is converting ill-posed SRR problem in spectral domain to a

quadratic optimization problem in abundance map domain. Using smoothness prior

and inherent properties of abundance maps in the quadratic optimization, a unique

solution is obtained. Moreover, in order to avoid over smoothing, a post processing is

applied to preserve textures in the abundance maps. Finally, high resolution (HR) HS

image is reconstructed using the extracted endmembers and the enhanced abundances.
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Second proposed method is a fusion based SRR method. This method enhances the

spatial resolution of HS image by fusing with a coinciding HR RGB or multispectral

(MS) image. Again, fusion problem is converted to a quadratic optimization prob-

lem in the abundance map domain. Moreover, proposed MAP based approach is also

merged into the quadratic equation. That is, this method is a superposition of MAP

based and fusion based approaches and closing the gaps of the both methods. Super-

position of two methods leads to more robust and efficient SRR method. Similarly,

after solving quadratic problem, HR HS image reconstructed from HR abundance

maps and endmember signatures.

Experiments are implemented on real HS datasets and compared to state-of-the-art

alternative methods using different quantitative image metrics. Spectral consistency, a

critical issue for HS images, is also analysed in the experiments. Results demonstrate

that proposed methods perform better than competitors based on quantitative metrics

while keeping spectral consistency.

Keywords: Hyperspectral, Super-resolution, Maximum a Posteriori, Fusion, Quadratic

Optimization
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ÖZ

HİPERSPEKTRAL GÖRÜNTÜLERDE SÜPERÇÖZÜNÜRLÜK

Irmak, Hasan

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Seniha Esen Yüksel

Mayıs 2017 , 112 sayfa

Hiperspektral (HS) görüntü, görünür tayfın da dışına uzanan dar ve sürekli yüzlerce

banttan oluşmaktadır. Bu görüntü iki adet uzamsal ve bir adet spektral boyuttan oluşan

üç boyutlu bir veri küpüdür. HS görüntüler, sahip oldukları yüksek spektral çözünür-

lüğe rağmen, teknolojik kısıtlardan dolayı düşük uzamsal çözünürlüğe sahiptirler. Bu

durum HS görüntü uygulamalarında performansı olumsuz etkilemektedir. Bu tezde

farklı süper çözünürlük yapılandırma (SÇY) metotları kullanılarak HS görüntülerin

uzamsal çözünürlüğünün arttırılması amaçlanmaktadır.

İlk metot sadece bir HS görüntü olduğu ve başka bir bilgi kaynağı olmadığı durum-

larda MAP tabanlı SÇY tekniği önermektedir. Metodun yeniliği kötü konumlanmış

SÇY problemini spektral alandan bolluk haritaları alanında ikinci dereceden bir opti-

mizasyon problemine dönüştürmesidir. İkinci dereceden optimizasyonda düzgünlük

önseli ve bolluk haritalarının özünde olan özellikler kullanılarak tek bir çözüm elde

edilmiştir. Buna ek olarak, aşırı düzgünlükten kaçınmak için, görüntüdeki ayrıntıları

koruyan rötuş uygulanmıştır. Son olarak, açığa çıkartılan son elemanlar ve çözünür-

lüğü artırılmış bolluk haritaları kullanılarak yüksek çözünürlüklü (YÇ) HS görüntü

yeniden oluşturulmuştur.
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İkinci önerilen yöntem kaynaştırma tabanlı bir SÇY yöntemidir. Bu metot YÇ RGB

veya multispektral görüntüyü HS görüntü ile kaynaştırarak uzamsal çözünürlüğü iyi-

leştirmektedir. Aynı şekilde kaynaştırma problemi, bolluk haritaları alanındaki ikinci

dereceden bir optimizasyon problemine çevrilmiştir. Buna ek olarak, önerilen MAP

tabanlı yöntem kaynaştırmadaki optimizasyon problemiyle birleştirilmiştir. Yani bu

yöntem kaynaştırma ve MAP tabanlı yöntemlerin birleşiminden oluşmakta ve iki-

sinin de açıklarını kapatmaktadır. İki yöntemin birleşimi daha gürbüz ve etkili bir

yöntem sağlamaktadır. Benzer şekilde, YÇ HS görüntü, YÇ bolluk haritalarından ve

son eleman imzalarından oluşturulmaktadır.

Gerçek HS veri kümelerinde deneyler uygulanmış ve modern metotlar ile nicel gö-

rüntü metrikleri kullanılarak karşılaştırmalar yapılmıştır. HS görüntüler için kritik bir

konu olan spektral tutarlılık açısından da deneyler analiz edilmiştir. Sonuçlar, öne-

rilen yöntemlerin bahsedilen metriklere göre rakiplerine oranla, spektral tutarlığı da

koruyarak, daha iyi performans sergilediği göstermiştir.

Anahtar Kelimeler: Hiperspektral, Süperçözünürlük, MAP, Kaynaştırma, İkinci De-

rece Optimizasyon
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To my little Zeynep..
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CHAPTER 1

INTRODUCTION

Hyperspectral (HS) imaging is the acquisition of images in many narrow spectral

bands of the electromagnetic spectrum ranging from visible, near infra-red, medium

infra-red to thermal infra-red. These images are produced by instruments called imag-

ing spectrometers, which acquire spectrally-resolved image of an object of scene. In

HS imaging, the data is represented as a three dimensional data cube. Two dimensions

are the spatial dimensions and the third dimension is the wavelength. As compared

to multispectral (MS) imaging, HS imaging has much more information to resolve

the observed scene in terms of targets or material substances. Although, targets may

appear mixed with a number of materials in a single pixel, HS data analysis allows

for the detection of them at sub-pixel level using spectral processing techniques. A

good example to understand the difference between MS image and HS image is that

MS image can be used to detect the planted areas in a town, whereas HS image can

detect the wheat-planted areas in the town. Therefore, HS imaging is a powerful tool

for various imaging applications such as environmental monitoring, biotechnology,

medical imaging and remote sensing.

1.1 Statement of the Problem

HS sensors enable to collect a set of images across the electromagnetic spectrum.

Therefore, each individual pixel can be characterized by a complete spectra in the

observed spectrum as shown in Figure 1.1. The spectra of the pixels can be used to

differentiate and identify materials in the scene. Therefore, HS imaging improves the

capability to detect materials in the scene using spectral processing techniques.
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Figure 1.1: Illustration of Hyperspectral Imaging

Despite having high spectral resolution, low spatial resolution is the major limita-

tion of HS sensors. Low spatial resolution results in mixture of different materials

in a single pixel, which degrades the performance in HS image processing applica-

tions. Therefore, enhancement of the spatial resolution of HS images becomes a very

promising research area in image processing. Super resolution reconstruction (SRR)

is a software solution which aims to find high frequency details in the image and es-

timates the high resolution (HR) image using a set of low resolution (LR) images.

SRR has been one of the active research areas from the first formulation of the prob-

lem [2]. It is used in many applications such as surveillance, medical imaging, face

recognition to overcome the limitation of the cameras [3, 4, 5]. Therefore, SRR can

be used as a post processing technique to enhance the resolution of HS images.

Many algorithms are proposed in the literature for the SRR of HS images. SRR

methods for HS images can be categorized into two: single image based SRR and

fusion based SRR. In the former method, SRR is more difficult and severely ill-posed.

SRR of a single HS image is defined as either obtaining HR super resolution maps

(SRM) showing the distributions of the materials in the sub-pixel level or HR HS

image. Total variation (TV) based regularization or dictionary based learning can be

used in the SRR process for single HS image SRR. On the other hand, image fusion

can be used for SRR of HS images when a coinciding auxiliary HR image is available.

In fusion based methods, high spatial resolution with low spectral resolution image is

fused with LR HS image to enhance the spatial resolution of hyperspectral image. A

review on SRR methods for both natural images and HS images is presented in detail

in Chapter 3.
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1.2 Contribution of the Thesis

In this thesis, SRR of HS images are investigated from different perspectives. Firstly,

SRR problem is addressed using single HS image without using any other source

of information. The contribution of the proposed method is converting single frame

HS SRR problem to a maximum a posteriori (MAP) based quadratic optimization

problem in abundance map domain. Since single image HS SRR problem is severely

ill-posed, SRR problem is regularized using a Markov Random Fields (MRF) based

smoothness prior. Moreover, unity constraint (UC) and boundary constraint (BC),

specific constraints for the abundance maps, are used to narrow down solution space.

This convex function with mentioned constraints is jointly minimized using quadratic

programming (QP). In order to cope with over smoothing, a texture preserving post

processing is applied to the HR abundance maps. Using these maps and spectral

signatures of the materials in the scene, HR HS image is reconstructed.

Single image HS SRR is well suited for the applications when obtaining auxiliary

information related to the HS image is difficult or sometimes impossible. However,

performance of these type of methods are limited, especially when zoom factor is

high. If any HR image is available, then it can be fused with the LR HS image to

enhance the spatial resolution of HS image. Second proposed method is a HS SRR

technique when another source of information (i.e. HR image) is available. In this

method, not only HR image but also smoothness prior is used in the reconstruction

of HR HS image. MAP based SRR has limited performance as compared to the

fusion based methods, however, spectral consistency and ease of embedding prior

informations are the stronger properties of MAP based solutions. On the other hand,

fusion based methods have superior performance in the matching bands of the HR

image whereas performance and spectrum consistency are sharply decreased in the

remaining bands of the spectrum. Therefore, joint usage of these two concepts gives

optimal solution for the SRR problem. In other words, MAP based fusion gives

spectrally consistent, robust and high performance results for SRR of HS images.

Proposed approaches are tested on three real hyperspectral datasets and compared to

two other state-of-the-art SRR methods for HS images. First method is a type of sin-

gle image HS SRR and second is a fusion based SRR algorithm. The results show that
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proposed MAP-based algorithm produces better results as compared to its competi-

tor. Moreover, proposed MAP based fusion method has significantly better results in

selected quantitative metrics as compared with the other methods. In addition, upon

observing the individual pixels for spectral consistency, the proposed methods are

closest to the ground truth in all experiments.

1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 provides an introduction to the fundamental concepts on HS imaging.

Moreover, HS unmixing methods are given in this chapter.

Chapter 3 gives a review about SRR methods for both natural and HS images.

In Chapter 4, the methodologies of the proposed methods on SRR of HS images are

described in detail.

In Chapter 5, quantitative experimental results on various HS datasets with different

methods are given.

Conclusions are given in Chapter 6.
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CHAPTER 2

HYPERSPECTRAL IMAGING AND UNMIXING

2.1 Hyperspectral Imaging

A typical HS sensor measures the spectral radiance information emitted or reflected

by the materials in hundreds of very narrow spectral bands throughout the visible,

near-infra-red, and mid-infra-red portions of the electromagnetic spectrum. Atmo-

spheric absorption by water vapor or oxygen and scattering affect the measurements

[6].

In general, a HS camera has three main components; a charge-coupled device (CCD)

camera, a spectrograph to measure the relative amounts of radiation at each wave-

length and an optical lens. In HS imaging, first spatial dimension is obtained by

scanning the scene orthogonally to the camera motion. Second spatial dimension is

obtained in time while camera is moving. Moreover, each pixel has a spectral dimen-

sion. Therefore, HS image is a three dimensional data cube consisting of two spatial

dimensions and a spectral dimension.

There are many advantages of HS imaging. First, since entire spectrum is sampled

for each pixel, it allows to identify the materials in the scene using spectral processing

techniques. Moreover, using the neighbourhood relations of the pixels among all the

spectral bands, more accurate segmentations and classifications can be achieved. On

the other hand, complexity is the primary disadvantage of HS data. Huge data requires

both larger memories and higher processing power. Cost is another disadvantage of

HS imaging. The costs of HS imaging systems are significantly higher than the MS

or RGB cameras. However, with the recent airborne hyperspectral imaging systems,

5



hyperspectral data are commercially available for research purposes.

2.2 Spectral Unmixing

Spatial resolution of a HS camera defines the size of the area on the ground for a

single pixel in the HS image. Since the spatial resolution of HS cameras is low, mul-

tiple materials can occupy the same pixel. Radiance of the pixel is the combination of

radiances of the materials in that pixel. These pixels are called mixed pixels. On the

other hand, if a pixel is occupied by a single material then it is called pure pixel. In a

HS image, both mixed and pure pixels can exist and be found using spectral unmixing

approach. Spectral unmixing is the process of identifying the pure materials and find-

ing the fractions of them in the scene. These pure materials are called endmembers

and their fractions in a given pixel are called abundance maps.

Before performing spectral unmixing, a mixing model should be determined. Mixing

model describes how the endmembers in a single pixel constitute the pixel spectra.

There are two types of mixing models namely linear mixing model (LMM) and non-

linear mixing model (NLMM)[7]. In LMM, the main assumption is that proportions

of the endmembers in each pixel are well-defined with a single reflection of the il-

luminating radiation as shown in Figure 2.1. In other words, spectrum of each pixel

in the HS image is a linear combination of the spectrum of endmembers and can be

rewritten using the endmembers and their abundances linearly. On the contrary, the

NLMM assumes materials are distributed randomly in the mixed pixel in a homoge-

neous manner. Multiple reflections exist and linear proportions does not hold for the

NLMM model.

LMM is widely used instead of NLMM because LMM gives an acceptable first order

approximation to the observed scene whereas NLMM is much more difficult and

complicated to analyse HS image as compared to LMM [8]. Therefore, NLMM is

not mentioned and spectral unmixing is applied using the LMM model. Mathematical

representation of the LMM for a single pixel x is given in (2.1). The dimension of x

is equal to the number of bands in the HS image.
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Figure 2.1: Linear Mixture Model

x = a1s1 + a2s2 + · · ·+ aEsE + n

=
E∑
i=1

aisi + n = Sax + n

(2.1)

where E is the number of endmembers, ax is the abundance vector for pixel x with

size E, S is a p × E matrix showing the spectral signatures of the endmembers, p is

the number of spectral bands and n is the noise term. If matrix X is the image pixels

which are organized in columns in all spectral bands, the expression can be rewritten

in a compact form:

X = SA+G (2.2)

In this matrix notation, A and G are the abundance matrix and noise matrix with sizes

E × N and p × N , respectively. N is the number of pixels in the single band HS

image. Columns of the abundance matrix show the proportions of materials in the

scene. The maps showing the distribution of the material are called abundance maps.

The main aim of the spectral unmixing is to find these abundance maps (i.e. matrix

A).

Linear unmixing consist of three main stages. First, the number of endmembers

should be determined either using a priori information or unsupervised methods. Af-

ter the number of endmembers are found, the spectra of the endmembers are extracted
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using endmember identification algorithms. Finally, abundance maps of the endmem-

bers are estimated using the extracted endmember spectra. Each stage is explained in

detail in the upcoming subsections.

2.2.1 Determination of the Number of Endmembers

A HS scene consists of a few materials (i.e. endmembers) and lack of knowledge

on ground truth makes the estimation of these materials difficult. The number of

endmembers can be estimated through supervised (user-selected) or unsupervised al-

gorithms [9]. In supervised methods, the user selects the pure pixels of the different

materials in the image [10]. Unsupervised methods, on the other hand, use the dimen-

sionality of HS image as the basis for estimating the number of endmembers [11].

Virtual dimensionality (VD) is defined as the minimum number of spectrally distinct

signal sources that characterize the spectral data. VD is analogous to the number

of endmembers in an image. Many criteria are suggested to estimate the VD of HS

image in the literature [12, 13, 14, 15].

A very popular method is principal component analysis (PCA). In PCA, an estimate

for the number of endmembers is given by the number of eigenvectors which contains

a user-defined percentage of image variability [16]. In other words, the number of

endmembers (i.e. e) is the smallest number for which inequality in (2.3) holds. In

(2.3) , λ indicates the eigenvalues of the hyperspectral data, and p shows the number

of spectral bands.

e∑
j=1

λj

p∑
i=1

λi

≥ Threshold (2.3)

A practical problem related to the PCA is the difficulty of determining Threshold

especially when the change between two adjacent eigenvalues is not significant [17].

PCA only utilizes the eigenvalues to find the dimensionality of the HS image. How-

ever, there can be anomalies related to the signal sources that have a little effect on the

eigenvalues. Therefore, eigenvalues may not be enough to determine dimensionality.
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The Harsanyi Farrand Chang (HFC) method uses a Neyman-Pearson detection theory

based thresholding [18] to determine VD. Detection can be achieved using the eigen-

values of correlation and covariance matrices of related spectral band. Let (2.4) show

the eigenvalues of the correlation matrix of HS image and (2.5) show the eigenvalues

of the covariance matrix:

λcor1 ≥ λcor2 ≥ · · ·λcorL (2.4)

λcov1 ≥ λcov2 ≥ · · ·λcovL (2.5)

Assuming noise is white with zero mean and σ2
l variance for the lth spectral band, if

there are N distinct signal sources in HS image, then eigenvalues can be related by:

λcorl ≥ λcovl ≥ σ2
l for l = 1, ..., N (2.6)

λcorl ≥ λcovl = σ2
l for l = N + 1, ..., L (2.7)

In order to determine the VD, HFC method applies a binary hypotheses problem as

follows:

H0 : λcorl − λcovl = 0 and H1 : λcorl − λcovl > 0 (2.8)

H0 and H1 are the null and alternative hypotheses, respectively. On the basis of

Neyman-Pearson detection theory, the number of test failures (i.e. H0 true) is ex-

plored for all spectral bands for a given false-alarm probability, PF . The number of

failures gives the VD of the data. The VD is completely determined by PF .

In HFC method, noise is assumed to be zero mean white Gaussian. However, there

are cases in which this assumption does not hold. Noise Whitening HFC (NWHFC)

is a modified version of HFC to solve that problem and enhance signal detection

performance. NWHFC has a preprocessing noise whitening step to remove the second
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order statistical correlation [17]. In this case, noise estimation is required for the

NWHFC method.

Hyperspectral signal subspace identification by minimum error (HySime) is another

approach to determine the number of endmembers by estimating the signal and noise

correlation matrices [19]. In HySime, a signal subspace is represented using a cer-

tain amount of eigenvectors of the signal correlation matrix. The dimension of the

subspace is checked by comparing the sum of the projection error power with noise

power. If the latter is dominant, then the subspace dimension is overestimated. How-

ever, if the projection error power is dominant, then subspace dimension is underesti-

mated.

2.2.2 Endmember Selection

Endmember selection is the hardest part of the spectral unmixing problem [7]. For

a better subpixel composition, the determination of the endmembers in the image

should be performed accurately. Early approaches of endmember determination is

based on the laboratory analysis of the part of the terrain. The prior knowledge about

the contents of the part of the image terrain is used for the whole endmembers in the

image [9]. However, this approach is not feasible when trying to analyze large quan-

tities of data. Therefore, for the last two decades efficient unsupervised endmember

selection methods have been developed in the literature and majority of them rely on

the convex geometry model based on the expression in (2.1)[11, 6].

Extraction algorithms can be divided into two groups: with or without the assumption

that pure pixels are present in the image for each endmember.

Pixel Purity Index (PPI) is a popular technique widely used in endmember extraction

[20]. It uses orthogonal projection to determine the endmembers in the image. The

main idea of the PPI is that the orthogonal projection of an endmember to a vector

in a p-dimensional spectral space is either minimum or maximum. Using this idea,

PPI algorithm is developed. In PPI, first, random unit vectors are generated in p-

dimensional space which are called skewers. Then, all the data pixels are projected

onto these skewers and the maximal and minimal projections are selected as extreme
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pixels which are potential endmembers for each skewer. In Figure 2.2, the skewers

and extreme pixels are shown clearly. Finally, the endmembers are selected from

these extreme pixels using a voting procedure. In other words, the endmembers are

the extreme pixels which are more frequently selected in projections on skewers than

other extreme pixels.

Figure 2.2: Illustration of PPI

One of the major issues in PPI is determining the number of skewers and endmembers

in the algorithm. These parameters directly affect the PPI performance and there is

no criteria how to select appropriate values of these two parameters [21].

The Automatic Target Generation Process (ATGP) was proposed by [22]. The basic

idea is to search most distinctive pixels whose projections in the orthogonal subspace

of other pixels are the most dissimilar. First, an initial signature is selected which

is the brightest pixel in the image. Then, iteratively other endmembers which have

the maximum orthogonal projection to the existing endmembers are extracted. The

iteration stops when the desired number of endmembers are estimated.

Minimum Volume Transform (MVT) is a non-orthogonal linear transformation that

transforms the data to set of new coordinates. Since every pixel is a linear combina-

tion of the materials (pure spectral signatures) in LMM, pixel scatter diagram should

be a simplex. Moreover, the vertices of the simplex is the sought endmembers in the

image. In MVT, the minimal volume data simplex will be found in the image which

gives the set of endmembers. On the contrary, maximum simplex volume based algo-

11



rithms also exist. N-FINDR and Vertex Component Analysis (VCA) are two exam-

ples of automated approaches that find the set of pixels which define the simplex with

the maximum volume [23, 24]. The idea is that for p spectral bands, p-dimensional

simplex volume formed by pure pixels is the largest volume. To exemplify, scatter

plot of three endmembers and two spectral bands is shown in Figure 2.3. The volume

of the red triangle is larger than any other volume defined by any other combination

of pixels.

Figure 2.3: Illustration scatterplot and maximum volume simplex

N-FINDR is a selection algorithm that starts with a random selection of pixels as

candidate endmembers[23]. In each iteration, remaining image pixels are replaced

with candidate if volume of the simplex increases. The process is exhausted when no

replacement increases the volume. The vertices show the endmembers in the hyper-

spectral data.

VCA is another algorithm that searches the maximum volume simplex [24]. It uses

two facts. First, if pure endmembers in the scene exist then they should be the vertices

of a simplex. Secondly, the affine transformation of a simplex is also a simplex.
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The algorithm iteratively projects data onto a direction orthogonal to the subspace

spanned by the endmembers, which are already determined. The new endmember

signature corresponds to the extreme of the projection. The algorithm iterates until

all endmembers are exhausted.

In [24], VCA is compared with PPI and N-FINDR. The conclusion is that VCA per-

forms better than PPI and has a closer performance to N-FINDR. However, the main

contribution of VCA is the computational complexity. VCA is between one and two

orders of magnitude faster than N-FINDR and PPI.

PPI, ATGP, MVT, VCA and N-FINDR are the algorithms that assume at least one

pure pixel exists in the image for each endmember. However, hyperspectral data

generally dominated by mixed pixels and some of the endmembers has not pure pixel

in the image. Therefore, using an algorithm without pure pixel assumption is more

suitable in many applications. However, unmixing without pure pixel assumption is

more challenging as compared to the pure pixel assumption based algorithms. There

are number of studies that extract the endmembers without pure pixel assumption.

The simplex identification via split augmented Lagrangian (SISAL) algorithm is used

to unmix hyperspectral data in which the pure pixel assumption is violated [25]. In

SISAL, the abundance matrix (A) and spectral signature matrix (S) given in (2.9)

fit a minimum volume simplex to the data subject to non-negativity and sum to one

constraints. The volume defined by columns of A is proportional to its determinant.

Therefore, finding the minimum point of the determinant of A subject to the con-

straints gives endmembers in the HS image as given in (2.10).

X = SA (2.9)

Â = arg minA|det(A)| subject to A−1X ≥ 0 and 1T
pA

−1X = 1T
N

(2.10)

Where N shows the number of pixels, p is the number of spectral bands, 1N and 1p

are the N and p dimensional column vector of all 1s. Using (2.11), (2.12) and (2.13),
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the problem simplifies to (2.14).

Q = A−1 (2.11)

det(Q) =
1

det(A)
(2.12)

aT ≡ XT (XXT )−1 (2.13)

Q̂ = arg minQ− log|det(Q)| subject to QX ≥ 0 and 1T
pQ = aT (2.14)

Non-negativity constraints can be replaced by a soft constraint whose strength is con-

trolled by a regularization parameter. The following modified version is obtained:

Q̂ = arg minM − log|det(Q)|+ λ‖QX‖h subject to 1T
pQ = aT (2.15)

where,

‖X‖h ≡
∑
ij

h([X]ij) (2.16)

h(x) ≡ max(−x, 0) (2.17)

The function h(x) is the hinge function and penalizes the negative solutions. Using

non-negativity as a regularizer yields solutions that are robust to outliers, noise, and

poor initialization. The amount of regularization is controlled by a positive regular-

ization parameter λ. Finally, minimization problem given in (2.15) is solved by a

sequence of variable splitting augmented Lagrangian optimizations to find the end-

members in the HS image.
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Iterated Constrained Endmembers (ICE) is a statistical approach to identify the end-

members without pure pixel assumption [26]. It suggests a least squares (LS) min-

imization based on LMM. The expression that needs to be minimized is called the

residual sum of squares (RSS) given in (2.18):

RSS =
N∑
i=1

(Xi −
E∑

k=1

pikEk)T (Xi −
E∑

k=1

pikEk) (2.18)

where Xi is the ith pixel value, E is the number of endmembers, pik is the propor-

tion of kth endmember for ith pixel and N is the number of pixels in the image. It

can be shown that minimizer for (2.18) is not unique. Therefore, it needs to be con-

strained by additional terms to RSS. In ICE, sum of squared distances (SSD) between

endmembers is used to constrain the solution space. SSD is given in (2.19).

RSS =
N∑
i=1

(Xi −
E∑

k=1

pikEk)T (Xi −
E∑

k=1

pikEk) (2.19)

It is also shown that SSD is equivalent to (2.20):

SSD = E(E − 1)V (2.20)

where V is the sum of variances (over the bands) of the simplex vertices.

Using RSS and SSD, the objective function called regularized RSS (Rreg) that needs

to be minimized is given in (2.21):

RSSreg = (1− µ)
RSS

N
+ µV (2.21)

where µ is the regularization parameter.

An extension of ICE algorithm that incorporates sparsity-promoting priors to find the

correct number of endmembers is sparsity-promoting ICE (SPICE) [27]. SPICE has

an automated mechanism to determine the correct number of endmembers. In order

15



to do so, SPICE algorithm adds a sparsity-promoting term (SPT) to the regularized

RSS. The form of SPT term is given in (2.22):

SPT =
E∑

k=1

Γ
N∑
i=1

ρik

N∑
i=1

ρik (2.22)

where Γ is a constant. The advantage of ρk is that if a proportion of a particular

endmember becomes small, then ρk for that endmember becomes larger. This weight

change accelerates the minimization. In order to minimize the objective function of

SPICE, the iterative minimization can be used as in ICE.

ICE and SPICE may not generate physically possible endmember spectra. To solve

this problem an extension of SPICE (SPICEE) can be used to estimate the endmem-

bers having values between zero and unity [28]. In [28], instead of taking pseudo-

inverse as in SPICE, a quadratic optimization is applied with the boundary constraint

to estimate the endmembers and physically meaningful results are obtained.

Minimum volume constrained nonnegative matrix factorization (MVC-NMF) is an-

other unsupervised endmember extraction algorithm from highly mixed hyperspec-

tral data [29]. MVC-NMF algorithm combines minimum approximation error with

the minimum simplex volume determined by the estimated endmembers. This is

achieved by solving the optimization problem given in (2.23).

minimize f(A, S) =
1

2
‖X − AS‖22 + λJ(A)

subject to A ≥ 0, S ≥ 0 and 1T
CS = 1T

N

(2.23)

where 1C and 1N are theC andN dimensional column vector of all 1s and J(A) is the

regularizer. It forces the simplex volume to be small. Using the volume constraint as a

regularizer makes the algorithm more robust to the noisy pixels, since the simplex can

be made without including all the data points. Compared to ICE or SPICE, instead of

solving a quadratic optimization problem, in MVC-NMF algorithm, the minimization

is treated as a LS problem and solved iteratively in an analytical way.

SPICE and MVC-MNF algorithms give not only spectral signatures of endmembers
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but also their abundances. Therefore, there is no need to use any abundance estimation

method. However, for the other endmember extraction algorithms, the abundances

should be estimated.

2.2.3 Abundance Estimation

Estimation of abundances is the final output of linear unmixing. This step aims to find

the fractions of the determined endmembers. In other words, it gives the percentage

of the materials in each pixel. Using this information, sub-pixel analysis can be made

in the HS image. In the previous section, the endmembers are extracted and spectral

signature matrix S is obtained. By knowing the S matrix, abundance map matrix A

in equation (2.2) can be found using LS analysis. The LS solution is given in (2.24):

ALS = (STS)−1STX (2.24)

Equation 2.2 is valid when the system is overdetermined. In other words, LS solution

exists when number of bands is greater than the number of endmembers in the image.

This is a reasonable assumption since spectral bands are generally much greater than

the number of endmembers for HS image. The main drawback of LS solution is that

LS estimate have no physical constraints related to the abundance maps. LS solution

is a mathematical point of view to the abundance estimate which can converge a

solution which is unrealizable (e.g. negative fractions). The only advantage of LS

solution is being a quick way to extract the abundance maps from the image.

Since LS solution has no physical restrictions onto abundance maps, some constraints

can be added to the LS solution in order to obtain physically meaningful solutions.

Abundance maps are imposed to two constraints namely non negativity constraint and

sum to one constraint. These constraints state that abundances of the endmembers are

non-negative and sum of abundances of a single pixel is unity. Considering the former

constraint, a non-negative abundance restriction should be added to the equation in

order to get more accurate results. In other words, the elements of matrix A should

be non-negative. LS solution with this constraint is called Non Negative Least Square

(NNLS) solution. The NNLS problem is given in 2.25.
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ANNLS = (STS)−1STX subject to ai ≥ 0, i = 1, ...., E (2.25)

In [30], abundance maps are estimated by enforcing the abundances of each pixel

to sum one. LS solution including the sum to one constraint is called sum to one

constraint LS (SCLS) and the formulation is given in 2.26.

ASCLS = (STS)−1STX subject to

E∑
i=1

ai = 1 (2.26)

NNLS and SCLS solutions are more accurate then the LS solution and they are simple

to implement. However, there are still problems with resulting abundances. NNLS

solution could violate the sum to one constraint and SCLS solution could have neg-

ative abundances. Therefore, these two constraints should restrict the solution space

together. This solution is called Fully Constrained Least Squares (FCLS) solution

which has both non-negativity and sum to one constraints. The formulation of the

FCLS is given in 2.27.

AFCLS = (STS)−1STX subject to ai ≥ 0, i = 1, ...., E and
E∑
i=1

ai = 1

(2.27)

The main drawback of FCLS solution is the higher computational complexity. How-

ever, it gives the most accurate and reliable way of the abundance map estimation

[30].
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CHAPTER 3

SUPERRESOLUTION RECONSTRUCTION

Spatial resolution of an image is determined by the imaging sensor. Sensor size and

optics of the camera limit the spatial resolution of the image. The cost of reducing

sensor size and manufacturing high precision optical devices are not practical in real

life applications. Therefore, using image processing techniques to increase the res-

olution of images is an essential research area. In image processing, SRR refers to

obtaining HR image from set of LR images and single image enhancement is often

referred as image interpolation. However, in recent years, both methods are called

SRR [31]. In the literature, there are substantial amount of studies related to SRR

for RGB and MS images in the last two decades. In recent years, with the recent

advances in HS imaging systems and the ease of access to the HS data, great efforts

have also been made to the SRR of HS images.

3.1 Observation Model and SRR Problem

The goal of multi-frame SRR is to reconstruct a HR image from a set of LR images.

The first step to examine the SRR problem, except learning based methods, is to

define an image observation model which relates the HR image with the LR images.

Optical blur, motion of sensor and aliasing effects should be in the observation model.

A typical observation model for an imaging system is shown in Figure 3.1.

In this observation model, firstly band limited continuous scene is sampled above

the Nyquist rate and discrete HR image is obtained. Then, multiple HR images are

formed because of camera motion. These HR images are affected by sensor and opti-

cal blur. Blurred observations are sub-sampled with aliasing. Finally, these observa-
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Figure 3.1: Observation model for Multi-frame SRR

tions are corrupted by additive noise and LR images are formed. In other words, the

observed LR images result from warping, blurring, and down-sampling operations

performed on the HR image. The mathematical representation of the observation

model is given in (3.1).

yk = DBkVkz + nk (3.1)

In (3.1), z is the HR image and yk is the kth LR image. z and yk are used in lexi-

cographical representation in which the rows of are concatenated to form a column

vector. In this way, yk is an MN size vector and z is a vector of size l1Ml2N , where

LR single band image size is M ×N , l1 and l2 are down sampling factors in vertical

and horizontal directions respectively. D is anMN×l1Ml2N matrix representing the

down sampling operation, B and V are the l1Ml2N × l1Ml2N matrices representing

the blurring and warping, respectively and nk is additive noise vector of size MN .

Equation (3.1) can be rearranged to cover all the LR images into a single linear equa-

tion as given in (3.2) or equivalently in (3.3).


y1

y2
...

yK

 =


DB1V1

DB2V2
...

DBKVK

 z +


n1

n2

...

nK

 (3.2)

y = Wz + n (3.3)

In (3.3), decimation, blur and motion matrices are very sparse which makes the in-
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Figure 3.2: Super-resolution Concept

verse problem severely ill-posed. Equation (3.3) can be made overdetermined using

more LR images having different sub-pixel shifts. If these shifts are known or esti-

mated within sub-pixel accuracy, then multi-frame SRR is possible.

Initial study of SRR started with [2] in frequency domain. Their solution based on

shifting and aliasing properties of Continuous and Discrete Fourier Transform (CFT

and DFT). However, frequency domain SRR theory did not go beyond and later works

have been almost in spatial domain [32].

Figure 3.2 shows a simplified diagram of the multi-frame SRR in the spatial domain.

First, LR image pixels are registered on HR image grid using image registration al-

gorithms [33, 34]. Secondly, unknown pixels are found using restoration methods

[35, 36]. Finally, non-uniform interpolated image deblurred and removed from noise

to obtaining the HR image.

SRR problem is more challenging when there is only one LR image. The goal of

single image SRR methods is to generate HR image from a single LR image. Since

there is no motion in single image, the observation model is simplified to Figure 3.3.

This observation model can also be used for SRR of HS images.

3.2 SRR Methods

In HS imaging, SRR can be obtained either using single image or using an auxiliary

HR image for fusion. Therefore, single image SRR methods can also be used for SRR
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Figure 3.3: Observation model for Single Image SRR

of HS images. In this section, SRR methods are introduced assuming K different

LR images exist, however, they can be easily adapted for the single LR image (i.e.

K = 1).

3.2.1 Bayesian Methods

Bayesian approaches insert probabilistic information to the SRR problem. In this

approach, a Bayesian framework is established using HR image and noise probability

density functions (pdfs) to estimate the HR image [37]. Since the SRR problem is

ill-posed and there is no unique solution, HR image pdf regularizes the solution and

narrows down the solution space.

Let z is HR image and yk is the kth LR image generated from z. Essentially, the most

probable estimate of z given set of K LR images is:

Ẑ = argmaxzPr(z|y1, y2, ..., yK) (3.4)

Equation in (3.4) is the maximum a posteriori (MAP) solution which maximizes a

posteriori pdf with respect to z. Bayes’ law converts prior information about the HR

image into a posterior probability. According to Bayes’ law, (3.4) is equivalent to:

Pr(z|y1, y2, ..., yK) =
Pr(y1, y2, ..., yK |z)Pr(z)

Pr(y1, y2, ..., yK)
(3.5)

Thus, using Bayes’ law, the maximum a-posteriori (MAP) estimate of z is defined as:
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ẑMAP = argmaxz(Pr(y1, y2, ..., yK |z)Pr(z)) (3.6)

Pr(y1, y2, ..., yK) has no effect on maximization; thus, it is not included in the esti-

mate in (3.6).

Taking the logarithm of (3.6), the MAP estimate becomes:

ẑMAP = argmaxz(ln[Pr(y1, y2, ..., yK |Z)] + ln[Pr(z)]) (3.7)

In (3.7), ln[Pr(y1, y2, ..., yK |z)] is the data log-likelihood term and ln[Pr(z)] is the

prior information related to the HR image. MAP estimation gives regularized solu-

tions for the SRR problem using this prior knowledge about HR image. Bayesian

approaches vary according to the assumption about prior knowledge. If there is no

information about the HR image, pdf of HR image can be considered as uniformly

distributed. In this case, SRR problem is reduced and called as the Maximum Likeli-

hood (ML) solution given in (3.8) for the independent LR observations.

ẑML = argmaxzln[Pr(y1|z)] + ln[Pr(y2|z)] + ...+ ln[Pr(yK |z)]] (3.8)

Using the equation of the obervation model in (3.1) with assuming Gaussian noise

with N(0, σ2) as given in (3.9), (3.9) is obtained for the conditional probabilities.

Pr(n) =
1

(2πr)N/2
e

−nTn

2σ2 (3.9)

Pr(yk | z) =
1

(2πr)N/2
e

−(yk −DBkVkz)T (yk −DBkVkz)

2σ2 (3.10)

Using (3.8) with (3.10), ML estimation becomes:

ẑML = argminz(
K∑
k=1

1

2σ2
(yk−DBkVkz)T (yk−DBkVkz) + ln(

K

(2πr)N/2
)) (3.11)
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The terms which has no effect on the minimization can be removed from (3.11) and

ML solution is reduced to:

ẑML = argminz(
K∑
k=1

‖yk −DBkVkz‖2) (3.12)

ML solution relies on the observations and seeks the most likely solution. However,

ML solution is ill-posed when the number of LR observations are limited and zoom

factor is large. Therefore, ML solution requires a regularization term to find the

solution in a stable manner. MAP estimation regularizes the solution using the image

priors and different kinds of priors are suggested in the literature [38, 39, 40].

Markov Random Field (MRF) model is a common image prior model which assumes

that there is a statistical correlation between neighbouring pixels [41]. In other words,

the configuration of a pixel is given the configuration of the rest of the image is same

as the configuration of a pixel given the configuration of the neighbouring pixels.

Therefore, MRF models neighbouring relations of the pixels in the image. Gaussian

MRF (GMRF) [42] is a widely used MRF prior. Despite the simplicity of GMRF,

over smoothing is the main disadvantage of GMRFs. In order to preserve edges,

more complex priors such as Huber MRF (HMRF) are suggested in the literature

[38]. HMRFs preserve the edges while keeping the smoothness in the image. In [1],

another approach is proposed for edge preserving. In this study, two SRR with differ-

ent regularization parameters (λ1, λ2) are used. First regularization parameter is very

close to zero (i.e. λ1 ≈ 0) and it creates a noisy estimate of the image with preserving

textures. It is called as the MAP1 estimate. However, second regularization param-

eter is much greater than the first one (λ1 � λ2) and creates an over-smoothed SRR

estimate. Similarly, it is called as theMAP2 estimate. The pixel difference of first es-

timate and second estimate gives the high frequency (HF) image composed of edges

and textures. After HF image is extracted, Gabor Filter is applied to the HF Image to

detect textures. Finally, textures andMAP2 estimate are combined to obtain a texture

preserved MAP estimate. This method can be easily integrated to MAP solutions as

a post-processing technique for texture preserving. The block diagram of the method

is given in Figure 3.4.

24



Figure 3.4: Texture preserving SRR method, Adapted from [1]

3.2.2 Iterative Back Projection Method

Iterative Back Projection (IBP) method for SRR is formulated in [43] which is adapted

from back projection used in tomography. IBP is an iterative process, in each iteration

new HR image is estimated by back projecting the difference between the simulated

LR image and real LR image. Simulated LR image is obtained using the observa-

tion model and estimated HR image in the previous iteration using the expression in

(3.13).The iterative process is repeated to minimize the error as given in (3.14).

ŷnk (m1,m2) = Wk(m1,m2;n1, n2) · ẑn(n1, n2) (3.13)

ẑn+1(n1, n2) = ẑn(n1, n2) +
∑

m1,m2

HBP (m1,m2;n1, n2)[y(m1,m2)− ŷnk (m1,m2)]

(3.14)

In (3.14), HBP is the projection kernel and various kernels can be used for regulariz-

ing the process and they affect the characteristics of the solution [43]. In the literature,

there are improved methods based on IBP. In [44], IBP extended to consider multi-

ple motion models. In [45], IBP method combined with the Canny edge detection

to recover high frequency information. The method is much faster and more robust

to noise. Simplicity and lower complexity are the advantages of IBP. However, the

solution space of IBP is not unique and adding prior constraints is hard to apply.

Moreover, choosing correct projection kernel is generally difficult [46].
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3.2.3 Projection onto Convex Sets Method

Projection Onto Convex Sets (POCS) method is first formulated in [47] for SRR. It

is an iterative method using a priori information of HR image as constraints. Each

constraint is a convex set for the solution space. LR images, smoothness etc. can be a

constraint. Solution of SRR is the intersection of these convex sets. The intersection

is found using (3.15):

zn+1 = PiPi−1...P2P1z
n (3.15)

Where Pi is the projection operator of the convex set Ci for the ith constraint and zn

shows the HR image at the nth iteration.

Different constraints can be used in POCS method. The basic constraint is the data

constraint and can be modelled as [48]:

CD = {z[n1, n2] : y[m1,m2] =
∑
n1,n2

Wk[m1,m2;n1, n2]z[n1, n2]} (3.16)

Where Wk[m1,m2;n1, n2] is the weight matrix determined by the observation model.

Smoothness [49] and amplitude [48] constraints are the other common constraints

given in (3.17) and (3.18) respectively.

CS = {z : ‖Sz(n1, n2) ≤ Threshold‖} (3.17)

CA = {z(n1, n2) : a ≤ z(n1, n2) ≤ b} (3.18)

In (3.17), Sz shows the high pass filtered version of z.

After defining convex sets, the optimal solution (i.e. HR image) lies in the intersection

of these convex sets.
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3.2.4 Learning Based Methods

In general, learning based methods aim to find the HR image from a single LR image

with the help of a pre-trained database. Database stores the HR patches of the corre-

sponding LR patches. For each LR patch in the LR image, first, the most similar LR

patch in the database is found, then the corresponding HR patch is used to increase the

resolution. There are also studies that store mid-frequency and high frequency image

patches in the database obtained from training LR and HR images [50, 51, 52]. Since

the functional mapping of LR patch to HR patch is ill-posed, the performance strictly

depends on the selection of the corresponding HR patch of the LR patch. In other

words, for a single LR patch, there can be more matching than a single HR patch.

Different matching metrics can be used to select the HR patch [53, 52]. False map-

ping leads to unwanted outliers or blurring in the superresolved images. Therefore,

additional constraints should be added to eliminate the possible selection of wrong

HR patches in the database. One simple way of that is using overlapping patches in

the image, and applying smoothness constraint in the decision of the correct HR patch

[54].

In learning based methods, patch size is a critical parameter on the performance of

the method. Small patch sizes result in wrong estimation of HR patch whereas higher

patch sizes make the training set enormous. Moreover, performance strictly depends

on the correlation of the training dataset and the LR input image.

3.3 SRR Methods for HS Images

Adapting SRR methods to HS images becomes one of the active research area in

image processing. However, there is a conceptual difference in SRR for HS images.

In RGB or MS images, a general SRR problem is to reconstruct HR image given a set

of LR images. On the contrary, it is hard to find real HS images which have sub-pixel

shifts between them. Although there are few studies in SRR for HS images using

sub-pixel shifts across bands [55, 56], they are either synthetically generated from the

original HS images or using Chris/Proba images, taken from different angles. [57].

Therefore, these type of methods are not included in this study and SRR methods
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for HS is categorized in two, namely single image based and fusion based. In single

image SRR, main aim is either to increase the spatial resolution of landcovers to

provide more accurate representation of land covers or spatially enhanced HS image

as compared to original image [58]. Second method is the fusion based reconstructing

HR HS image by combining LR HS image with a high spatial resolution auxiliary

image.

3.3.1 Single Image SRR

SRR problem is more challenging when the observed data is single frame in which

there is only one LR HS image and not any other source of data. Since LR HS image

has fewer measurements than the number of unknown pixels in the HR image, SRR

problem is severely ill-posed. In general, SRR methods using auxiliary data such as

sub-pixel shifted LR images or HR RGB or MS image generates better results [58].

However, single image SRR for HS images are taking considerable attention since

sometimes supplementary data may not exist for the HS image. The output of single

SRR can be either super-resolution maps (SRM) [59, 60, 61], a map to describe the

most likely distribution of mixed pixels, or HR HS image [58, 62, 63].

Single SRR problem can be divided into two groups. In the first category, original

HS image is transformed to a finer resolution by dividing pixels to sub-pixels and

assigning pixel values according to prior assumptions (spatial correlation, low rank,

etc.). This is the regularization based method. In addition, learning based method

is the other category using the pre-trained dictionaries in the resolution enhancement

process.

3.3.1.1 Spatial Optimization Based Methods

Spatial correlation of the endmembers is a widely used prior in the literature [64, 59].

According to the desired zoom factor, each endmember is initially assigned a pixel

according to the fractional abundances. In the SRR step, a spatial regularization is

applied to find the final positions of the endmembers using the tendency of spatial

correlation of endmembers. A typical example of neighbouring relation is given in
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Figure 3.5: Neighbouring relation of endmembers

Figure 3.5 for four endmembers and 2x2 LR image is interpolated to 4x4 HR image.

In this example, locations of the materials in the interpolated image are assigned ac-

cording to the fractions of the materials in corresponding LR pixel and its neighbours.

Different techniques are developed for SRR based on the spatial optimization.

In [59], the endmember pixels are repositioned to minimize the perimeter of the area

belonging the same endmember. Simulated annealing is used in the minimization

procedure. In [65], a similar approach is applied without using any minimization

method, each sub-pixel is assigned according to the highest contribution endmember

in the neighbouring pixel. This process is repeated for all of the sub-pixels within all

the pixels and HR classification maps are obtained.

In [60], spatial regularization is achieved by a modified version of binary particle

swarm optimization (BPSO). To do so, first, abundance maps are found using unmix-

ing and pure pixels are determined via applying a threshold to abundances. Then for

the remaining pixels, endmembers are assigned for each sub-pixel according to its

fraction. Finally, spatial distributions are found using modified BPSO.

In [61], an adaptive sub-pixel mapping algorithm is proposed. After finding the abun-

dance maps, each pixel is divided along columns into smaller units and fractions are

duplicated in the divided pixels. Fractions of these pixels are re-predicted according

to the neighbour pixels. The pixel division is repeated for the rows of the image and
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fractions are recalculated. The output of the method is a land cover map with higher

spatial resolution than the original HS image.

In [58], a joint spectral-spatial sub-pixel mapping is proposed. Integrating the sub-

pixel mapping model with linear mixture model, a joint sub-pixel model is obtained

with sum-to-one and non-negativity constraints as given in (3.19).

Y = BZprobD +N s.t. Zprob ≥ 0 1T
pZprob = 1T

ns (3.19)

Where B and D show the blur and down-sampling operators. Y is the LR HS image

and Zprob is sub-pixel probability map of HR HS image. In order to regularize the

solution the isotropic total variation (TV) model is used which is represented as:

TV (Zprob) =

√
|∇xZprob|2 + |∇yZprob|2 (3.20)

Where ∇x and ∇y are the first order differences operators. Finally, the expression

given in (3.21) is minimized using the gradient descent algorithm to obtain the optimal

sub-pixel probability map Zprob. HR HS image is generated using Zprob and spectral

signature matrix.

Ẑprob = argminZprob
(‖Y −MZprobD‖22 + ‖1T

pZprob − 1T
ns‖22 + λTV (Zprob) (3.21)

In [62], SRR is achieved regularizing the ill-posed data fidelity term via minimizing

l2 norm of the gradient summed over all pixels and all bands. Moreover, two models

are proposed with different additional regularization using the spectral unmixing in-

formation. In the first model, endmember based TV model, additional regularization

is a soft constraint and penalizes the mixed pixels producing HR HS images. Second

model, quantum TV, forces the mixed pixels to be pure producing HR classification

maps.

In [63], 3D TV (3DTV) regularization and low rank are combined for regulariza-

tion of the ill-posed data term. In TV, local spatial consistency is preserved as in

(3.20) whereas in 3DTV a local spatial-spectral consistency is considered. 3D TV is
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expressed in (3.22). Observation model consists of blurring and downsampling oper-

ators with observation noise and the regularization model is given in (3.23). Model is

minimized using the alternating direction method of multipliers (ADMM) [66].

3DTV (Z) =
∑
ijk

|Zijk − Zij,k−1|+ |Zijk − Zi,j−1,k|+ |Zijk − Zi−1,j,k| (3.22)

Ẑ = argminZ‖DBZ − Y ‖22 + λ13DTV (Z) + λ2Rank(Z) (3.23)

Where D and B are the down-sampling and blurring matrices, respectively. Rank()

is the rank function penalizing the higher rank matrices.

In [67], using abundance maps, a joint energy function is constructed using different

regularizers for the SRR of HS images. Smoothness, edge preserving and sum-to-one

constraints are used together to regularize the ill-posed data constraint. Moreover,

graph cut expansion algorithm is used to minimize the energy function. Finally, using

HR abundances, HR HS image is reconstructed. A similar concept is introduced in

[68], in this work, smoothness and sum-to-one property of abundances are used for

regularization. However, gradient descent is used for the energy minimization which

is a time efficient way of minimization. The main problem related to energy mini-

mization problems is the difficulty in finding the unique solution. Instead of finding

global minima, graph cut expansion and gradient descent can be stuck at local min-

ima. However, using quadratic programming techniques gives better results as com-

pared the other minimization methods. In [69], quadratic programming is used for

the minimization of the SRR problem which significantly increases the performance

as compared to other minimization methods.

3.3.1.2 Learning Based Methods

Learning based algorithms for SRR of RGB images can be adapted to SRR of HS

images. In [70], a back propagation neural network (BPNN) is proposed for SRM.

In order to train the BPNN, LR fractional images and downsampled LR fractional

images are used. After training BPNN, HR SR maps are found using LR fractional
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images. Self training and low computational cost are the main advantages of this

method, however, there is limited metric comparison to analyse the performance of

the method. In [71], SRM is achieved by a Hopfield Neural Network (HNN). The

method converts SRM to a optimization problem according to spatial dependence.

Minimizing the energy function gives the SRM of the LR HS image.

In [72], transfer learning is used for SRR. In this paper, it is assumed that the rela-

tionship between LR-HR RGB image is the same as LR-HR HS images. Instead of

using LR-HR HS dictionary, end to end mapping is learned by convolutional neural

network on the natural images and using pre-trained dictionary each HS band image

is enhanced individually. In order to enforce the extracted endmembers to be same

both LR and HR HS image, collaborative non matrix factorization is used.

In [73], a compressive sensing (CS) based SRR over a learned dictionary is proposed.

According to the CS theory, images or signals can be well-approximated by a suitable

basis and fewer measurements or samples can be sufficient to recover them [74].

In this method, first LR HS image is interpolated using bicubic interpolation and

called pre-HR HS image. Moreover, using the similarity of spectral curves of the

neighbouring pixels,the pre-HR HS image is regularized. Using the samples of pre-

HR image, a sparse dictionary is learned. Finally, using the dictionary and sparse

coefficients of the regularized pre-HR HS image, HR HS image is obtained. Since

sparse representation is capable of expressing the HS images as a linear combination

of a few atoms from a predefined dictionary, dimensionality is efficiently reduced

in this method. Different sparse representation methods such as K-SVD, ODL and

Bayesian can be used in dictionary learning of HS SRR [75].

3.3.2 Fusion Based Methods

Image fusion, also called pan-sharpening, is the process of combining spatial infor-

mation of HR panchromatic image with the spectral information of LR MS image

[76] to obtain a HR MS image. It has been used in many applications such as remote

sensing, astronomy, medical imaging, military, security, and surveillance areas [77].

In HS imaging, pan-sharpening is a special case of image fusion problem since the
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image with high spatial resolution can also be MS image or RGB image. In HS

image fusion, the aim is to enhance the resolution of HS image using a MS, RGB

or panchromatic (PAN) image. HS images have low spatial resolution with high

spectral resolution whereas MS, RGB or PAN images have low spectral with high

spatial resolution. Therefore, obtaining an image with both high spectral and spatial

resolution using HS image and MS image or RGB image is an attractive research

area in HS image processing. However, as compared to MS image fusion, HS image

fusion is more challenging task since the spectral range of HS image much wider and

number of spectral bands are much higher than MS image.

In the literature, although there are studies which are adapted from the MS fusion

methods, more sophisticated methods are also developed for the HS fusion problem

[78]. HS fusion problem can be roughly categorized into two classes: Pan-sharpening

Based Methods and Subspace Based Methods. It is important to say that image fu-

sion require a good registration, however, in remote sensing images are generally

geo-referenced using GPS and IMU data [79]. Therefore, there is no need to apply

registration unless more precise registration is required. If so, different image pro-

cessing techniques can be employed [80].

3.3.2.1 Pan-sharpening Based Methods

Pansharpening based methods are originally developed for pansharpening of MS im-

ages [81]. However, they can be extended for fusing HS data [82]. Component Sub-

stitution (CS) and Multi resolution analysis (MRA) are widely used pan-sharpening

methods used in HS imaging.

CS projects LR HS to another space to separate spatial and spectral information [83].

To do so, first HS image is interpolated to the sizes of PAN image, then sharpened

by substituting from the PAN image. The formulation of the method for the panchro-

matic image P is given in :

Ẑk = Ŷk + gk × (P −OL) (3.24)
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where gk is the gain coefficients and OL is defined as:

OL =

p∑
k=1

wkYk (3.25)

Where weights w measure the spectral overlap among spectral bands and the HR

image, Zk and Yk are the kth band HR and LR images respectively.

CS based pansharpening method can be extended to solve HS-MS fusion problems

using the expression in (3.24) for multiple image sets. In [78], an improved CS based

fusion approach for MS-PAN fusion in [84] is adapted for HS-MS fusion problems.

In general, CS based fusion is simple to implement and computationally cheap. It

renders the spatial details well. On the contrary, spectral distortion caused by dis-

crepancy between HS-MS pair is a critical problem in this method.

Another pansharpening method, MRA, injects the details of the MS image to the in-

terpolated HS image. Details in the MS image are high frequency components of the

image. In order to obtain the high pass version of the MS image, original MS image is

subtracted from the low pass version of MS image. High passed MS image is multi-

plied by the gain coefficients to adjust the degree of the injection. According selection

of the gain coefficients, injection scheme can differ [81]. The MRA formulation is

given in (3.26). MLPF is the low pass filtered version of multispectral image M and

Gk is the gain coefficients for the kth band. Different low pass filters can be used to

find the details in the MS image [85]. Although MRA based methods have spectral

consistency and robustness to aliasing, computational complexity and complicated

implementation are the major concerns related to MRA. SFIM-HS and GLP-HS are

two extensions of MRA to the HS-MS fusion problem. MRA have better spectral

consistency than CS whereas complicated implementation and complexity make the

method not preferable [78]. Hybrid methods are also developed using CS and MRA

together [86].

Ẑk = Ŷk +Gk × (M −MLPF ) (3.26)
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3.3.2.2 Subspace Based Methods

Subspace based methods apply a subspace transformation in the fusion process. Both

HS and MS data are represented as a set of basis vectors and coefficients in a lower

dimensional space. Subspace methods can be further sub-divided into two categories,

namely unmixing based and Bayesian based [78]. In the former type, basis vectors

are the endmembers in the scene whereas first few principal components of the HS

image are used in the latter type.

Coupled Nonnegative Matrix Factorization (CNMF) uses unmixing in the fusion pro-

cess [87]. HS image is unmixed using VCA and endmembers are initialized. Relating

the HS-MS images using the sensor characteristics, HS and MS images alternately

unmixed using the NMF according to the cost functions promoting the data fidelity.

However, no physical constraint is used in the alternating unmixing process. Con-

vergence condition of the method is reaching the change ratio of the cost functions

below a given threshold. HR HS image is reconstructed using spectral signatures and

final abundance maps.

In [88], HR image and HR abundances are jointly solved using spectral unmixing

and image fusion concepts together. It is stated that LR HS image is a spatially down-

sampled version of HS image; and HR RGB image is a spectrally down-sampled

version of HR HS image. Firstly, endmembers of HS image are initialized using

SISAL. Then, a joint projected gradient based minimization is used to alternately

unmix the data and update the endmembers and corresponding HR abundance maps.

In the minimization, the physical constraints are also included.

Bayesian approach combines MAP estimation with the fusion process in order to ob-

tain HR HS image [89, 90]. Since the fusion problem is ill-posed, Bayesian approach

regularizes the solution by defining prior distributions related to the scene. The ob-

servation model relates HR HS image with LR HS image and HR MS image is given

in (3.27), (3.28) respectively. According to that model, LR HS image is the blurred

and spatially down-sampled version of HR HS image and HR MS is the spectrally

down-sampled version of HR HS image.
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Y = DBZ +NH (3.27)

M = RZ +NM (3.28)

Where D and B are the down-sampling and blur operators and R is the spectral

response function of the MS camera.Bayesian approaches are using (3.27) and (3.28)

as the basic data constraint, they regularize the solution with prior informations.

HySure (hyperspectral superresolution) combines Bayesian and unmixing approaches

together suggested by [91]. Different from the previously mentioned fusion methods,

HySure imports a vector total variation regularizer (VTV) to the fusion process. Un-

like TV, VTV promotes the edges and other details in the scene. Convex optimization

problem consists of two data terms; one for the HS measurement and one for the MS

measurement. It is minimized by split augmented Lagrangian shrinkage algorithm

(SALSA). Moreover, relative spectral and spatial responses of the sensors are also

estimated in this study.

Subspace methods are more robust to noise as compared the pansharpening based

methods. However, determining the subspace dimension is a critical parameter on

the performance of subspace based methods. Moreover, accuracy of the fusion pro-

cess strictly depends on the reconstruction error of the subspace transformation. In

general, data and spectrum consistency on non-overlapping bands of the MS-HS im-

ages are two significant metrics showing the actual performance of the fusion method

[78].
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CHAPTER 4

PROPOSED METHODS

This chapter gives the proposed methods for SRR of HS images. Although there is

a large menu of SRR methods using the spectral unmixing concept and abundances

for regularization or dictionary learning, there is no attempt to use completely abun-

dances in the SRR process except the SRM methods. However, SRM methods have

a different concept and aim to find HR land cover maps instead of HR HS image. To

do so, SRM methods assign the sub-pixels to pure endmembers.

It is proposed two approaches for SRR of HS images. First proposed method suggests

a MAP based SRR technique for HS images without using any secondary image in-

formation. Instead of spectral domain, method uses the abundance map domain in

the resolution enhancement process. Since there is no auxiliary information, the SRR

problem is severely ill-posed. However, using the correlation of abundances between

neighbouring pixels, a smoothness constraint is used to regularize the solution. More-

over, boundary and unity constraints are used to jointly solve the SRR problem. Over

smoothing problem is handled using a texture preserved post processing technique.

MAP based method has satisfactory performance when there is no other source of

information. However, if an auxiliary HR image is available, it can significantly in-

crease the performance of the SRR. Second method proposes a fusion based SRR

method when there exists a secondary HR image. The method also uses abundance

map domain in SRR process. Similar to the MAP based approach, quadratic expres-

sion is obtained for the SRR problem. The proposed method is the combination of

MAP and fusion based approaches. Using MAP approach with fusion concept in

a single optimization problem gives the ability to overcome the limitations of both

methods. Therefore, the second method gives the optimal solution for the SRR of HS
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Figure 4.1: Observation model used in SRR of HS image

images in terms of performance, spectrum consistency and robustness.

4.1 A MAP based Approach

In this section, a MAP based SRR for HS image is proposed, where properties of

HS image is used to improve the performance. Moreover, post processing is applied

to preserve edges and textures for further improvement. As mentioned in Chapter

3, in SRR, a real imaging system relating an HR HS image Z to the LR observa-

tion scene Y is defined as the observation model. The proposed approach is based

on the observation model given in Figure 4.1. Since there exists single HS image,

warping operation is not in the observation model. The corresponding mathematical

representation of Figure 4.1 is given in (4.1). In this observation model, Z and Y are

used in lexicographical representation in which the rows of each spectral image band

is concatenated to construct HR HS image and LR HS image matrices as given in

(4.2) and (4.3). In this way, LR HS image Y with p spectral bands is represented as

an MNxp size matrix and HR HS image Z is a matrix of size l1Ml2N×p, where LR

single band image size is MxN, l1 and l2 are down sampling factors in vertical and

horizontal directions respectively.

Y = DBZ + n (4.1)

where

Z ,
[
Z(1) Z(2) · · · Z(p)

]
(4.2)
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Y ,
[
Y (1) Y (2) · · · Y (p)

]
(4.3)

Y (p) corresponding to the pth band of LR HS image is of length MN and Z(p)

corresponding to the pth band of HR HS image is of length l1Ml2N . D is of size

MN × l1Ml2N , B is l1Ml2N × l1Ml2N and n is of size MN × p.

Using this observation model, the HR HS image estimate can be found by minimizing

l-norm of the difference between the observed LR HS image and the blurred and

down-sampled HR HS image as below:

Ẑ = arg minZ ||DBZ − Y ||ll (4.4)

In this study, Frobenius norm is chosen (i.e. l=2) to estimate the HR HS image. From

LMM, HR and LR HS image can be written using the HR and LR abundance map

matrices (Az and Ay) multiplied by the spectral signature matrix of P; as given in

(4.5) and (4.6):

Z = AzP (4.5)

Y = AyP (4.6)

Az ,
[
Az(1) Az(2) · · · Az(E)

]
(4.7)

Ay ,
[
Ay(1) Ay(2) · · · Ay(E)

]
(4.8)

where E shows the number of endmembers in the scene and P is a matrix of sizeE×p
and each row of P shows the spectral signature of an endmember. Az(i) and Ay(i)

are the ith column of the matrix Az and Ay respectively.

Plugging (4.5) and (4.6) into the minimization problem given in (4.4), the expression

can be written in terms of spectral signatures and abundances of the scene:
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ÂzP (i) = argminAzP (i)||DBAzP (i)− AyP (i)||22 (4.9)

where P (i) shows the ith column of the matrix P. In (4.9), matrix P has no effect on

minimization and can be removed. Hence, (4.9) can be written using summation:

Âz = argminAz

E∑
e=1

||DBAz(e)− Ay(e)||22 (4.10)

Thus, in the proposed approach, (4.10) is minimized. In doing so, the SRR minimiza-

tion problem can be solved in the abundance map domain, as opposed to the spectral

domain. However, since the SRR is an ill-posed inverse problem, the data constraint

(DC) term in (4.10) should be regularized with additional constraints. It is utilized

the smoothness constraint (SC) that promotes smooth HR abundances, the unity con-

straint (UC) that guarantees the sum of abundances for each pixel in a HS image to

be equal to one and the bounding constraint (BC) that abundances are between zero

and one. Using these constraints, the total energy function is minimized and solved

for the HR abundances of endmembers. The block diagram of whole process is given

in Figure 4.2.
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Figure 4.2: Block diagram of the proposed method

4.1.1 Spectral Unmixing

Hyperspectral images are typically low resolution, as a result each pixel may con-

tain more than one endmember in a single pixel. However, it is known that there is

a spatial correlation of endmembers between neighborhood pixels [92]. Moreover,

there is a dependency between endmembers in each pixel which can be used as an

information in SRR. Therefore, using the abundance domain instead of the spectral

domain gives the ability to use the information that is present across the spectral

bands since separate band SRR does not make use of the inherent low dimensionality

of the spectral data which which can effectively improve the robustness against noise.

Therefore, in the proposed approach, first step is to apply spectral unmixing to find

the abundances in the observed scene. Since the proposed approach has sequential

stages, an error in any stage is forwarded to the next stage. In other words, error is

41



accumulating between stages. Therefore, spectral unmixing becomes the most crucial

part of the proposed method. Small errors in spectral unmixing could result in critical

performance decrease in the proposed approach.

As mentioned in Chapter 2, unmixing consists of three main steps, namely determina-

tion of number of endmembers, endmember extraction and estimation of abundances.

VD concept is introduced in Chapter 2. In [18], the VD of HS image is determined

by HFC method, which uses a Neyman-Pearson detection theory based threshold-

ing. A modified version, noise whitened HFC (NWHFC) has a preprocessing noise

whitening step to remove the second order statistical correlation [17]. In proposed

approach, after comparing various methods suggested in Chapter 2, NWHFC-based

thresholding VD is selected for its better performance.

After the number of endmembers in the scene is determined, the endmembers are

extracted from HS data. Since the pure pixel assumption is a hard constraint for

LR images, an endmember detection algorithm without the pure pixel assumption is

more suitable. In [93], the endmember extraction algorithms without pure pixel as-

sumption were compared and Splitted Augmented Lagrangian (SISAL) was found to

perform better than the competing algorithms in the literature. Thus, in this study,

SISAL algorithm is used for endmember extraction. In SISAL, unmixing is achieved

by finding the minimum volume simplex containing the HS data. This optimization

problem is solved by a sequence of variable splitting augmented Lagrangian opti-

mizations [25]. Finally using FCLS, abundance maps of the extracted endmembers

are estimated. These abundance maps, called as LR abundance maps, are used in the

SRR process.

4.1.2 SRR using Joint Energy Minimization

Once the LR abundance maps are known, (4.10) is the basic data cost function for the

estimation of the HR abundance maps. However, this is an ill-posed inverse problem

(i.e. there is no unique solution and the solutions are not stable). Additional informa-

tion is needed to compensate the missing solution. Regularization is the process of

introducing additional information in order to solve ill-posed inverse problems [94].

In other words, regularization is implemented as a penalty factor in the cost function.
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In image processing, smoothness prior has been one of the most popular prior as-

sumptions [95]. It assumes that a particular point in an image, there are no sharp

changes. There is a coherency between neighbouring pixels. In the proposed ap-

proach, smoothness prior used as the regularizer and the cost function is constructed

as in (4.11). Here, CD is the data cost function and CS is the smoothness cost func-

tion used as regularizer. CMAP is the total cost function and λ adjusts the degree of

the smoothness. Higher λ values give smoother solution whereas lower λ results in a

rough image.

CMAP = CD + λCS (4.11)

The equation in (4.10) is a quadratic function for each endmember. Concatenating

these equations with defining new matrices gives a single quadratic function for the

data cost function which is given in (4.12). This gives the ability to solve a single

quadratic cost function.

CD = zTDT
DBDDBz − zTDT

DBy − yTDDBz + yTy (4.12)

where

z ,


Az(1)

Az(2)
...

Az(E)

 (4.13)

y ,


Ay(1)

Ay(2)
...

Ay(E)

 (4.14)
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DDB ,


DB 0 · · · 0

0 DB · · · 0
...

... . . . ...

0 0 · · · DB

 (4.15)

In (4.12), zTDT
DBy and yTDDBz are scalar terms. As seen from (4.16), they are equal

to each other.

(zTDT
DBy)T = yTDDBz (4.16)

Moreover, yTy is a constant term and has no effect on the minimization of (4.12).

Therefore, it can removed; and the final form of CD is given in (4.17):

CD = zTD
T
DBDDBz − 2yTDDBz (4.17)

After obtaining the data cost function, the regularization term should be determined.

In this study, it is used an MRF-based smoothness prior as our regularizer, which

assumes that the physical properties in a neighborhood present a coherency and do

not change abruptly [96]. An MRF model constructs the global joint distribution from

local neighbourhood relations. It is an undirected graph in which the nodes represent

the random variables. A node is independent of all other nodes except the neighbour

nodes, which are called as cliques.

For a HR abundance map Az(e) of endmember e, the MRF based smoothness regu-

larizer, CSe, is given in (4.18):

CSe =
4∑

j=1

||Az(e)− Ãzclique(e)(j)||22 (4.18)

where Ãzclique(e)(j) is the 4-neighbourhood pixel vector for endmember e. Extending

the MRF regularizer, equation (4.18) becomes:

44



CSe = [||Az(e)− S1
xAz(e)||22 + ||Az(e)− S−1

x Az(e)||22+

||Az(e)− S1
yAz(e)||22 + ||Az(e)− S−1

y Az(e)||22]
(4.19)

In (4.19), Sn
x and Sn

y show the n pixel shift operations in horizontal and vertical di-

rections respectively. Analysing the first term in (4.19), it can be rewritten as:

||Az(e)− S1
xAz(e)||22 = ||(I − S1

x)Az(e)||22
= Az(e)

T (I − Sx
1)T (I − Sx

1)Az(e)
(4.20)

Using (4.20), equation (4.19) can be expressed as:

CSe = Az(e)
T (I − Sx

1)T (I − Sx
1)Az(e)

+ Az(e)
T (I − Sx

−1)T (I − Sx
−1)Az(e)

+ Az(e)
T (I − Sy

1)T (I − Sy
1)Az(e)

+ Az(e)
T (I − Sy

−1)T (I − Sy
−1)Az(e)

(4.21)

Equation (4.21) is the smoothness regularizer for each endmember. Similar to the data

cost function, (4.21) can be extended to cover all endmembers in a single quadratic

smoothness function. Defining new matrices, the final quadratic regularizer is given

in (4.22).

CS = zT [(I −D1
Sx

)T (I −D1
Sx

) + (I −D−1
Sx

)T (I −D−1
Sx

)

+ (I −D1
Sy

)T (I −D1
Sy

) + (I −D−1
Sy

)T (I −D−1
Sy

)]z
(4.22)

where

DSx ,


Sx 0 · · · 0

0 Sx · · · 0
...

... . . . ...

0 0 · · · Sx

 (4.23)
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DSy ,


Sy 0 · · · 0

0 Sy · · · 0
...

... . . . ...

0 0 · · · Sy

 (4.24)

After finding the data and smoothness quadratic functions, the total quadratic cost

function, CMAP , can be reconstructed combining the cost functions given in (4.17)

and in (4.22) with a regularizer coefficient λ and (4.11) is obtained.

To find the local minimum, solution space can be narrowed using the constraints

specific to abundance maps. First constraint is the unity constraint (UC) in which

the sum of the abundances in hyperspectral data for a single pixel should be unity

and mathematical formulation is given in (4.25). Second constraint is the bounding

constraint (BC) that restricts range of the values of Az(e) between zero and unity.

UC =
E∑

e=1

Az(e) = 1 (4.25)

In (4.25), 1 is a column vector of size l1Ml2N in which every element is one. To

convert the problem into a form of quadratic minimization problem, (4.25) can be

written as (4.26), using the definitions in (4.27) and (4.28):

Aeqz = beq (4.26)

where

Aeq ,
[
I1 I2 · · · IE

]
(4.27)

beq , 1 (4.28)

I1, ..., IE are the identity matrices of size l1Ml2Nxl1Ml2N and E shows the number of

endmembers.
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Minimizing the cost function CMAP given in (4.11) with the UC given in (4.25) and

BC estimates the HR abundance maps. Using a single quadratic function gives a joint

minimization. Moreover, since minimization problem is quadratic, local minimum

point can be found using quadratic programming (QP) methods.

4.1.3 Quadratic Programming

A quadratic program is an optimization problem in which a quadratic objective func-

tion is either minimized with respect to finite number of variables subject to inequality

and/or equality constraints [97]. A general quadratic function of finite number of vari-

ables z = (z1, z2..., zn)T with both equality and inequality constraints is in the form

given in (4.29). Equality and inequality constraints are given in (4.30) and (4.31)

respectively.

minimize g(z) =
1

2
zTHz + fT z (4.29)

subject to Aeqz = beq (4.30)

l ≤ z ≤ h (4.31)

When the objective function g(z) is strictly convex for all points then the problem has

a unique local minimum which is also the global minimum [97]. To guarantee strictly

convexity of objective function necessary and sufficient condition is that H should be

positive definite.

In the proposed approach, the cost function CMAP can be rewritten in quadratic form

given in (4.29) by defining HMAP , fMAP , l and h as:

HMAP , 2DT
DBDDB + 2λ.[(I −D1

Sx)T (I −D1
Sx) + (I −D−1

Sx)T (I −D−1
Sx)

+ (I −D1
Sy)

T (I −D1
Sy) + (I −D−1

Sy )T (I −D−1
Sy )]

(4.32)

fMAP , (−2yTDDB)T (4.33)
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0 ≤ z ≤ 1 (l = 0 and h = 1) (4.34)

After these rearrangements, the problem can be solved using QP solving techniques

such as the interior point method which has been proven to work well in practice [98].

In this study, QP problem is also minimized using the interior point method; and the

global minimum point gives the HR abundance maps of the HR HS image.

4.1.4 Post Processing to Solve Oversmoothness

In the cost function, the value of λ is very critical. Higher λ values over smooth

the image whereas lower λ values preserve the textures but lead energy minimiza-

tion into an ill-posed inverse problem. Therefore, finding the optimum λ value is a

hard problem and instead of using a constant λ, the method suggested by [1] is used

to preserve edges and textures. In this method, cost function is minimized with two

times with two different regularization parameters; λ1 and λ2 as shown in Figure 4.3.

First regularization parameter is chosen to be very close to zero (i.e. λ1 ≈ 0) and

it creates a noisy estimate of the image while preserving textures. This solution can

be called as the Maximum Likelihood (ML) estimate. On the other hand, the second

regularization parameter is chosen to be much greater than the first one (λ1 � λ2)

and creates an over smoothed SRR estimate. Similarly, it can be called as the MAP

estimate. The difference of the first estimate and the second estimate gives the high

frequency (HF) image that is composed of edges and textures. Then, Gabor filter is

applied to this HF image to detect textures. General form of a Gabor filter with direc-

tion of filter θ is given in (4.35). They are family of filters with different orientations.

HF image is filtered using these filters separately and for each filter output, the pix-

els below a predefined threshold are masked. Then, these masked filter outputs are

summed to obtain the restored HF image. Eight directions are used between 0 and

180 degree which is sufficient due to the symmetry of the cosine function. In (4.35),

λ is inversely proportional to the frequency of the carrier and σ is related to the spread

of the Gaussian envelope. After Gabor filtering operation, the restored HF image is

summed with the MAP estimate to obtain texture preserved final image as shown in

Figure 4.3.
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G(x, y) = e

x2 + y2

σ2 cos(
2π

λ
(x cos θ + y sin θ)) (4.35)

Figure 4.3: Block diagram of the texture preservation

This procedure is applied to each abundance map; so texture preserved HR abundance

maps are obtained for all endmembers. Texture preserving operation does not violate

the UC since both the ML and the MAP estimates of the abundances satisfy the UC.

Hence, summing the unity gain filtered difference of them with MAP estimate also

satisfies the UC. Using these HR abundances and spectral signature matrix P , the

final HR HS image is constructed.

4.2 A MAP based Fusion Approach

MAP based approaches use image priors to increase the resolution of images. How-

ever, if an additional coinciding source of information (i.e. MS or RGB image) with

LR HS image is available, then it can be used in the SRR process. In this section,

a fusion based method is proposed for the SRR of HS images. The novelty of the

method is using the only abundance domain in the resolution enhancement process.

Moreover, problem is regularized using a MAP framework. Similar to the previous

section, the inverse problem is converted to a joint quadratic energy minimization

problem in the abundance domain. The block diagram of the proposed fusion based

approach is given in Figure 4.4. Throughout the section, it is assumed that a HR RGB

image is available with LR HS image. First, a fusion based approach is introduced,

then it is regularized using the proposed MAP method.

In the previous section, the inverse problem is defined with an observation model.
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Figure 4.4: MAP based Fusion Approach

Same model can be used for the MAP based fusion method. Spectral response func-

tion of the RGB camera can be used to relate the HR HS image and HR RGB. First,

the inverse problem can be constructed using the one component of RGB image then

it can be extended to other two components. For example, equation (4.36) shows

the relation between HR HS image (ZHSI) and Red component (ZRED) of HR RGB

image.

ZRED = ZHSIR
T
RED (4.36)

In (4.36),RRED shows the spectral response function of the red component of the

RGB image.

From section 4.1.1, it is known that HR HS image can be written using abundance

maps (AZ) and spectral signature matrix (P ):

ZRED = AZPR
T
RED (4.37)

Using (4.38), (4.37) can be rewritten as in (4.39).
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AZP = AZ(1)(P T (1))T + AZ(2)(P T (2))T

+ · · ·+ AZ(E)(P T (E))T
(4.38)

ZRED = AZ(1)(P T (1))TRRED + AZ(2)(P T (2))TRRED

+ · · ·+ AZ(E)(P T (E))TRRED

(4.39)

Using the matrices definitions in (4.40) and (4.41) and with the help of the identity in

(4.42), (4.39) can be written as in (4.43)

wi,RED , (P T (i))TRRED (4.40)

wdi,RED ,


wi,RED 0 · · · 0

0 wi,RED · · · 0
...

... . . . ...

0 0 · · · wi,RED

 (4.41)

AZ(i)wi,RED =


wi,RED 0 · · · 0

0 wi,RED · · · 0
...

... . . . ...

0 0 · · · wi,RED

AZ(i) (4.42)

ZRED = wd1,REDAZ(1) + wd2,REDAZ(2)

+ · · ·+ wdE,REDAZ(E)
(4.43)

The right hand side of (4.44) can be rewritten concatenating the triangular matrices:

ZRED =
[
wd1,RED wd2,RED · · · wdE,RED

]

Az(1)

Az(2)
...

Az(E)

 (4.44)
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Using the matrix definitions in (4.13), (4.45) and (4.46), the relation between HR

RGB image and HR abundance maps is found as given in (4.47).

WRGB ,


wd1,RED wd2,RED · · · wdE,RED

wd1,GREEN wd2,GREEN · · · wdE,GREEN

wd1,BLUE wd2,BLUE · · · wdE,BLUE

 (4.45)

ZRGB ,


ZRED

ZGREEN

ZBLUE

 (4.46)

ZRGB = WRGBz (4.47)

After these arrangements, the inverse problem is obtained using the abundance maps

and HR RGB image:

ẑ = arg minz||WRGBz − ZRGB||ll (4.48)

Extending (4.48), the cost function (Cfuse) can be defined as:

Cfuse = zTW
T
RGBWRGBz − zTW T

RGBZRGB − ZT
RGBWRGBz − ZT

RGBZRGB (4.49)

Last term in (4.49) is constant and can be removed from the cost function. Moreover,

second and third term in (4.49) are scalar and transpose of each other, and can be

written as a single term. Therefore, cost function becomes:

Cfuse = zTW T
RGBWRGBz − 2ZT

RGBWRGBz (4.50)

Similar to the previous section, the cost function in (4.50) is quadratic with the fol-

lowing definitions:

Hfuse , 2W T
RGBWRGB (4.51)
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ffuse , (−2ZT
RGBWRGB)T (4.52)

Combining (4.50) with the MAP framework given in the previous section, a cost

function for a MAP based fusion is obtained:

CMAP_fuse = σMAPCMAP + σfuseCfuse (4.53)

In (4.53), CMAP_fuse is the total cost function. σMAP and σfuse are the weights of the

cost functions of MAP and fusion based approaches. CMAP and Cfuse are the cost

functions defined in (4.11) and (4.50) respectively.

The weights of the two approaches are adjusted using a weight parameter w in the

following expression:

σfuse
σMAP

= w
norm(HMAP )

norm(Hfuse)
(4.54)

Since both MAP and fusion approaches are quadratic, a quadratic function is obtained

for the MAP based fusion method with the following expressions for the objective

function:

HMAP_fuse = HMAP + w
norm(HMAP )

norm(Hfuse)
Hfuse (4.55)

fMAP_fuse = fMAP + w
norm(HMAP )

norm(Hfuse)
ffuse (4.56)

Solving the quadratic function defined by the parameters given in (4.55), (4.56) with

UC and BC constraints gives the HR abundance maps. Using these maps and spectral

signatures, HR HS image reconstructed. No need to use texture preserving since HR

RGB image gives the texture information for the HR HS image.

MAP based approach has limited performance compared to fusion based approaches,

however, performance is consistent throughout the bands. On the other hand, fusion

based approaches have better performance in the matching band range of the auxiliary
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HR image whereas their performance sharply decreases in the other bands of the

spectrum. Proposed MAP based fusion approach overcomes the limitations of both

mentioned approaches. It has superior performance in all the bands of the spectrum.
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CHAPTER 5

RESULTS

In this chapter, quantitative experimental results on various hyperspectral datasets are

given.

5.1 Performance Metrics

The SRR algorithms are compared quantitatively using four measures: (i) peak signal-

to-noise ratio (PSNR), (ii) structural similarity index measure (SSIM), (iii) spectral

angle mapper (SAM), and (iv) relative dimensionless global error in synthesis (ER-

GAS).

The first measure, PSNR, is the ratio between the maximum possible power of a

signal and the power of the distorting noise [99]. PSNR is expressed in terms of the

logarithmic decibel scale (dB) and higher PSNR means better match of the estimated

and reference image. Given an estimated image y and a reference image x both

encoded using b bits per pixel, PSNR is computed as:

PSNR(x, y) = 10 log10

 2b − 1

1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− y(i, j)]2

 (5.1)

The second measure, SSIM, is based on the human visual perception which is more

sensitive to structural information [100]. PSNR estimates the absolute error whereas

SSIM considers image degradation as perceived change in structural information. The

SSIM is defined as:
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SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µx
2µy

2 + C1)(σx2 + σy2 + C2)
(5.2)

where µx and µx are the mean values of the pixels in a window for images x and y.

σ2
x, σ2

y and σxy are the variances of x, y and the covariance of x and y respectively.

C1 and C2 are two constants used to avoid instability, and are set to 0.01 and 0.03

respectively as in [100].

The third measure, SAM, is one of the most common metrics in hyperspectral pro-

cessing [101]. SAM is the angle between the estimated ith pixel x(i) and the ground

truth ith pixel y(i), averaged over the whole image [102]. It measures the average

spectral distortion in radians between two images and given in (5.3) where N is the

number of pixels in the image.

SAM(x, y) =
1

N

∑
arccos

x(i)Ty(i)

||x(i)||2||y(i)||2
(5.3)

Last measure is ERGAS which is used to measure the radiometric distortion in the

images [103]. The main difference between SAM and ERGAS is that the former is

used to measure spectral distortion whereas the latter is concerned with the radiomet-

ric distortion. Therefore, both metrics are the most common metrics for quantitative

comparisons in HS imaging applications.

ERGAS(x, y) =
100

SR

√√√√1

p

p∑
i=1

(
RMSE(xi, yi)

µi

)2 (5.4)

Where p is the total number of bands, SR is the scale ratio of HS and MS spatial

resolutions, and µi is the average of the ith band. A zero ERGAS value denotes the

absence of radiometric distortion, but possible spectral distortion.

In these metrics, while higher PSNR and SSIM measures indicate a better match

between the estimation and the ground truth. However, lower SAM and ERGAS

values are desired for smaller distortions.
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5.2 Experiments on Real Hyperspectral Image Datasets

The proposed method is applied to three different datasets. The first dataset is the

Cave dataset which consists of 32 scenes [104]. It is in the 400 nm to 700 nm wave-

length range with steps of 10 nm. The resolution is 512x512 pixels. The second

database, called Harvard [105], has 50 indoor and outdoor images recorded under

daylight illumination. The spatial resolution of these images is 1392x1040 pixels,

with 31 spectral bands of 10 nm width, ranging from 420 nm to 720 nm. The last

dataset is the Hyperspectral Remote Sensing Scenes (HRSS) dataset of urban areas

consisting of 5 images [106]. The area covered is comprised of different sizes of im-

ages, with hundred spectral bands from 380 nm to 2500 nm. For all the experiments,

centre of the image with patch size 256x256 is used as the reference image. For the

Harvard experiment, in the captured images there are movement (or dust) in some

regions and these regions are masked out. Therefore, the images with no problem in

the centre are used in the experiments. Similarly, for the Cave experiment, 24 images

are used in the experiments. In HRSS dataset, corrected images (i.e. indian_pines_-

corrected and salinas_corrected) are smaller than 256x256, therefore, for salinas_-

corrected and indian_pines_corrected images, image patches are used 200x200 and

128x128, respectively.

These reference images form the ground truth and are used to evaluate the perfor-

mance of the proposed methods. The LR HS images are obtained from the HR im-

ages by blurring the HR HS image using a 3x3 uniform kernel, down sampling the

result by two and adding 30 dB additive white Gaussian noise signal.

The proposed methods are compared with three different methods. The first method

is called Yang et al.’s method which is a state-of the art single image SRR method

[107]. This method preserves the structures in the image succesfully. Second is

the Xiong et al.’s method which is a very recent single image SRR method for HS

images [58]. These methods are selected for the fair comparison with our single

image MAP based SRR methods for HS images. In addition, a fusion based state-of-

the-art method by Lanaras et al. is selected. Lanaras et al.’s method is a hyperspectral

SR method based on the image fusion of a HR RGB image and a LR HS image

[88]; which was shown to have a better performance than several other hyperspectral
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SR methods [88]. Methods are explained in Chapter 3. In the experimental results,

proposed MAP approach without post processing is also given to understand the effect

of texture preserving operation on the performance. In experiments, MAP shows the

proposed approach without post processing, TP MAP shows the texture preserving

MAP method and MAP fusion shows the proposed fusion approach. For the fusion

based methods,it is important to note that auxiliary HR image is assumed to be RGB

in the experiments. Performance can differ when the auxiliary image is panchromatic

or MS. Moreover, HR RGB input images are created by integrating over the original

spectral channels of HR HS image using the spectral response of a typical digital

camera. Not only HR images but also high pass filtered of the corresponding HR

images are also given for a better comparison.

In the metric results, the best performance in each image is underlined for the sin-

gle image SRR methods and written bold for the fusion based methods. Moreover,

in the visual results, for Cave and Harvard datasets RGB bands are used to show

HR HS images whereas for the HRSS dataset false RGB images are generated using

60th, 70th and 80th bands of the HR HS image.

Before giving the experimental comparisons, visual and metric results are given to

see the effect of the parameters on the performance for the proposed methods.
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5.2.1 Effect of λ on Images

In MAP based method, λ value is the most critical parameter that affects the perfor-

mance. Higher λ smooths the image whereas lower values result in unstable solutions.

Equally weighted case is λ0 and expressed in 5.5. In Figure 5.1, the effect of λ can

be seen for different λ values. Metric results are given in Table 5.1.

λ0 =
norm(Hdata)

norm(Hsmoothness)
(5.5)

Where

Hdata = 2DT
DBDDB (5.6)

Hsmoothness = 2[(I −D1
Sx)T (I −D1

Sx) + (I −D−1
Sx)T (I −D−1

Sx)

+ (I −D1
Sy)

T (I −D1
Sy) + (I −D−1

Sy )T (I −D−1
Sy )]

(5.7)

Table5.1: Metric results for different λ values

PSNR SSIM SAM ERGAS

λ = 0 23.480 0.340 0.332 136.286

λ = 0.01λ0 29.634 0.661 0.158 58.929

λ = 0.1λ0 33.028 0.863 0.108 42.934

λ = λ0 32.222 0.857 0.116 48.778

λ = 10λ0 32.879 0.962 0.122 55.494

λ = 100λ0 28.478 0.939 0.175 74.665

As seen from the Table 5.1, λ values between 0.1λ0 and λ0 have better performance

in terms of PSNR, SAM and ERGAS metrics. In the experiments, 0.1λ0 is used for

the λ.
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(a) Original Image (b) λ = 0.01λ0

(c) λ = 0.1λ0 (d) λ = λ0

(e) λ = 10λ0 (f) λ = 100λ0

Figure 5.1: MAP based SRR results for different λ values
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5.2.2 Effect of Balance Between MAP and Fusion on MAP Fusion Method

In MAP Fusion method, weights of the methods can be adjusted using the expression:

HMAP_fuse = HMAP + σHfuse (5.8)

In the proposed approach, MAP and Fusion methods are weighted in the optimization.

In order to do so, assuming the weight of the MAP method as unity, the weight of the

fusion method is defined in 5.9.

σ , wσ0 (5.9)

where w is the weight term and σ0 is defined as:

σ0 ,
norm(HMAP )

norm(Hfuse)
(5.10)

In order to see the effect of σ, experiments are conducted for different values and can

be seen in Figure 5.2.

Table5.2: Metric results for different σ values

PSNR SSIM SAM ERGAS

σ = 0 31.022 0.920 0.110 27.026

σ = 0.01σ0 30.921 0.924 0.105 25.697

σ = 0.1σ0 32.689 0.940 0.087 20.962

σ = σ0 34.688 0.946 0.075 18.277

σ = 10σ0 35.598 0.945 0.072 17.694

σ = 100σ0 35.054 0.930 0.079 19.551

Similarly, from Table 5.2, σ values between σ0 and 100σ0 have better performance.

In the experiments, 20σ0 is used for the σ.
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(a) Original Image (b) σ = 0.01σ0

(c) σ = 0.1σ0 (d) σ = σ0

(e) σ = 10σ0 (f) σ = 100σ0

Figure 5.2: SRR results for different σ values
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5.2.3 Effect of Spectral Unmixing on the Performance

Spectral unmixing is the crucial step of the proposed methods. If the number of end-

members are underestimated, then performance will strictly decrease. However, if

the number of endmembers are overestimated, then complexity will increase. There-

fore, determination of correct number of endmembers has a key role on the perfor-

mance of the proposed methods. In order to analyse the dependency, a synthetic data

is generated using four endmembers and performance plots are given in Figure 5.3

for different number of endmembers. In Figure 5.3, vertical dashed line shows the

correct number of endmembers. As clearly seen from the figure, under-estimation

of the number of endmembers results in lower performance. On the contrary, over-

estimation of the number of endmembers has little effect on the performance. Since in

the proposed methods, splitting an abundance to multiple endmembers does not vio-

late any constraints except the smoothness. Therefore, over-estimation of the number

of endmembers has stable performance. The increase in the computational complex-

ity is the main drawback of the over-estimation.
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Figure 5.3: Performance of Proposed Methods for Different Number of Endmembers
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5.2.4 Experimental Results on Cave Dataset

Table5.3: PSNR (dB) results for the Cave dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

balloons 37,863 36,159 39,135 38,317 40,028 46,346

chart_and_stuffed_toy 31,483 30,904 31,439 31,574 34,559 38,879

face 33,657 39,366 38,371 39,903 39,855 44,080

fake_and_real_lemons 37,389 37,736 38,979 38,060 37,814 46,507

fake_and_real_strawberries 27,887 29,786 33,021 33,840 35,937 42,558

glass_tiles 28,360 26,720 30,037 30,311 34,459 39,450

real_and_fake_apples 45,111 43,558 43,853 44,353 36,792 47,003

real_and_fake_peppers 33,559 32,556 31,039 34,747 37,862 43,055

thread_spools 28,483 28,787 32,405 33,158 36,161 41,908

beads 29,952 26,906 30,546 30,550 30,896 36,567

clay 35,253 32,809 35,743 36,321 30,555 39,811

cloth 22,719 23,051 26,958 26,924 32,580 38,635

fake_and_real_beers 32,840 37,575 37,341 39,315 41,682 42,274

fake_and_real_lemon_slices 24,633 31,607 34,536 33,736 36,655 46,179

feathers 35,641 33,082 36,786 37,945 31,269 44,589

flowers 32,675 29,737 33,947 34,159 31,787 41,411

hairs 32,803 32,876 34,242 34,428 37,601 41,833

jelly_beans 30,916 29,309 33,401 33,435 34,806 42,133

oil_painting 24,046 27,42 28,951 28,877 35,705 39,569

paints 33,560 29,223 35,172 35,687 36,955 40,283

photo_and_face 25,316 31,652 34,484 35,023 43,183 45,236

pompoms 35,609 34,834 37,302 37,736 32,354 43,347

sponges 31,630 33,733 37,303 37,451 32,309 42,142

stuffed_toys 33,604 30,134 32,038 32,066 33,146 35,615

AVERAGES 31,874 32,063 34,459 34,913 35,623 42,059
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Table5.4: SSIM results for the Cave dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

balloons 0,947 0,825 0,966 0,905 0,985 0,983

chart_and_stuffed_toy 0,906 0,908 0,932 0,936 0,953 0,970

face 0,929 0,966 0,958 0,957 0,979 0,981

fake_and_real_lemons 0,953 0,966 0,972 0,916 0,984 0,986

fake_and_real_strawberries 0,905 0,943 0,963 0,965 0,972 0,988

glass_tiles 0,897 0,887 0,933 0,937 0,965 0,984

real_and_fake_apples 0,976 0,976 0,977 0,980 0,986 0,980

real_and_fake_peppers 0,937 0,956 0,824 0,963 0,968 0,978

thread_spools 0,915 0,920 0,930 0,947 0,970 0,984

beads 0,934 0,888 0,931 0,932 0,952 0,960

clay 0,909 0,950 0,939 0,927 0,968 0,964

cloth 0,822 0,772 0,870 0,880 0,944 0,980

fake_and_real_beers 0,897 0,967 0,959 0,970 0,972 0,980

fake_and_real_lemon_slices 0,894 0,950 0,953 0,911 0,979 0,988

feathers 0,929 0,946 0,944 0,957 0,973 0,979

flowers 0,908 0,892 0,938 0,933 0,961 0,972

hairs 0,865 0,887 0,896 0,870 0,978 0,969

jelly_beans 0,941 0,935 0,957 0,934 0,937 0,985

oil_painting 0,726 0,728 0,769 0,760 0,953 0,964

paints 0,922 0,934 0,960 0,966 0,962 0,980

photo_and_face 0,915 0,968 0,976 0,978 0,976 0,990

pompoms 0,912 0,927 0,942 0,946 0,973 0,981

sponges 0,861 0,944 0,918 0,938 0,975 0,956

stuffed_toys 0,923 0,936 0,952 0,956 0,972 0,976

AVERAGES 0,905 0,916 0,931 0,932 0,968 0,977
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Table5.5: SAM (radians) results for the Cave dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

balloons 0,036 0,058 0,040 0,044 0,023 0,018

chart_and_stuffed_toy 0,085 0,091 0,081 0,081 0,049 0,038

face 0,041 0,040 0,045 0,038 0,030 0,026

fake_and_real_lemons 0,111 0,114 0,098 0,110 0,092 0,042

fake_and_real_strawberries 0,161 0,201 0,139 0,132 0,104 0,053

glass_tiles 0,149 0,177 0,126 0,123 0,111 0,046

real_and_fake_apples 0,079 0,102 0,095 0,090 0,092 0,073

real_and_fake_peppers 0,108 0,127 0,126 0,096 0,096 0,040

thread_spools 0,125 0,165 0,112 0,106 0,081 0,046

beads 0,136 0,189 0,135 0,133 0,121 0,076

clay 0,057 0,071 0,055 0,053 0,053 0,039

cloth 0,163 0,197 0,133 0,132 0,105 0,040

fake_and_real_beers 0,034 0,033 0,035 0,028 0,018 0,021

fake_and_real_lemon_slices 0,094 0,119 0,090 0,101 0,076 0,033

feathers 0,060 0,077 0,054 0,048 0,056 0,025

flowers 0,079 0,109 0,068 0,067 0,039 0,033

hairs 0,060 0,062 0,054 0,056 0,023 0,026

jelly_beans 0,109 0,143 0,096 0,099 0,090 0,036

oil_painting 0,119 0,130 0,114 0,115 0,071 0,040

paints 0,064 0,104 0,057 0,054 0,066 0,033

photo_and_face 0,085 0,127 0,096 0,092 0,050 0,038

pompoms 0,051 0,061 0,046 0,044 0,049 0,025

sponges 0,040 0,047 0,032 0,031 0,024 0,019

stuffed_toys 0,042 0,084 0,071 0,070 0,050 0,046

AVERAGES 0,087 0,110 0,083 0,081 0,065 0,038
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Table5.6: ERGAS results for the Cave dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

balloons 11,673 14,988 10,355 11,585 9,045 4,986

chart_and_stuffed_toy 26,741 28,344 25,077 24,997 20,497 13,663

face 22,769 11,469 12,659 10,891 12,077 7,710

fake_and_real_lemons 44,691 47,499 38,671 43,916 50,012 15,384

fake_and_real_strawberries 137,32 83,218 57,493 54,789 48,495 21,889

glass_tiles 39,454 46,872 33,121 32,346 31,365 13,344

real_and_fake_apples 32,072 39,033 33,701 31,949 52,990 25,279

real_and_fake_peppers 47,293 56,385 53,867 42,620 51,127 16,092

thread_spools 60,913 57,896 37,339 35,435 32,839 16,287

beads 47,222 64,742 47,012 46,002 48,379 26,065

clay 16,736 21,122 16,191 15,372 19,599 12,297

cloth 60,258 53,242 35,422 35,018 31,318 11,136

fake_and_real_beers 12,324 7,737 8,263 6,976 7,123 5,824

fake_and_real_lemon_slices 109,43 36,668 27,884 31,156 27,056 11,262

feathers 17,597 22,970 15,741 13,954 19,337 7,285

flowers 24,373 33,785 20,470 20,314 21,057 10,752

hairs 17,715 17,346 14,992 15,354 7,239 7,689

jelly_beans 39,214 48,825 32,563 33,586 35,305 12,865

oil_painting 58,636 34,923 30,659 30,898 18,423 12,962

paints 21,352 34,534 18,199 17,387 28,044 11,177

photo_and_face 159,15 55,760 41,456 40,160 22,591 18,201

pompoms 15,607 17,403 13,096 12,666 15,648 7,564

sponges 14,830 12,698 8,509 8,585 6,521 5,456

stuffed_toys 14,985 23,389 20,113 19,836 14,855 13,540

AVERAGES 43,848 36,285 27,202 26,491 26,289 12,863
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.4: SRR Results of Example Image Patch A from Cave Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.5: High Frequency Results of Example Image Patch A from Cave Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.6: SRR Results of Example Image Patch B from Cave Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.7: High Frequency Results of Example Image Patch B from Cave Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.8: SRR Results of Example Image Patch C from Cave Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.9: High Frequency Results of Example Image Patch C from Cave Dataset
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5.2.5 Experimental Results on Harvard Dataset

Table5.7: PSNR (dB) results for the Harvard dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

imga2 27,548 26,371 27,650 27,457 27,428 28,379

imga6 31,524 31,356 32,343 32,775 30,677 34,404

imga7 28,276 27,594 28,884 28,945 31,036 35,190

imgb0 30,526 29,230 32,191 32,224 38,021 39,962

imgb1 30,562 29,441 32,824 32,854 36,823 38,017

imgb3 35,456 35,073 35,905 36,096 32,063 37,708

imgb5 35,307 35,342 36,683 36,553 33,349 40,753

imgb6 31,356 29,080 33,464 33,632 29,539 42,308

imgb7 34,573 31,630 32,265 33,253 30,298 34,368

imgb9 31,356 35,939 38,860 39,604 37,485 42,223

imgc7 35,129 35,939 35,104 35,388 38,728 39,014

imgc8 33,471 29,343 31,183 31,231 33,240 33,446

imgd2 34,554 33,003 35,144 35,706 43,200 42,986

imgd3 34,203 31,971 35,733 36,339 34,734 40,943

imgd7 28,386 26,669 28,939 28,909 32,054 33,385

imgd8 37,817 35,716 38,595 39,326 38,981 41,709

imgd9 30,909 32,470 32,127 31,998 31,209 33,333

imge7 31,458 29,509 33,428 32,951 36,312 38,924

imgf4 34,122 31,307 34,767 35,067 38,891 44,310

imgf6 25,847 25,756 26,941 27,222 27,003 33,124

imgf7 30,868 29,868 31,708 32,071 33,461 38,882

imgf8 26,547 25,912 28,532 28,648 23,658 35,975

imgh0 29,779 27,443 31,866 31,673 32,804 34,306

imgh1 35,352 33,829 37,952 37,299 35,091 44,797

imgh2 34,749 32,668 35,804 36,287 37,905 39,028

imgh3 20,698 19,294 21,601 21,846 23,382 28,621

averages 31,553 30,452 32,711 32,898 33,360 37,542
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Table5.8: SSIM results for the Harvard dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

imga2 0,638 0,595 0,625 0,616 0,657 0,661

imga6 0,757 0,771 0,812 0,807 0,840 0,851

imga7 0,738 0,753 0,805 0,799 0,913 0,931

imgb0 0,834 0,840 0,892 0,880 0,952 0,954

imgb1 0,810 0,830 0,883 0,878 0,933 0,938

imgb3 0,851 0,872 0,881 0,876 0,890 0,894

imgb5 0,877 0,922 0,924 0,906 0,936 0,939

imgb6 0,853 0,825 0,918 0,908 0,961 0,973

imgb7 0,870 0,883 0,859 0,891 0,893 0,900

imgb9 0,853 0,917 0,928 0,929 0,944 0,946

imgc7 0,854 0,917 0,880 0,876 0,916 0,916

imgc8 0,866 0,892 0,907 0,909 0,934 0,933

imgd2 0,911 0,933 0,942 0,944 0,973 0,972

imgd3 0,901 0,912 0,926 0,923 0,940 0,942

imgd7 0,695 0,724 0,733 0,733 0,810 0,800

imgd8 0,890 0,924 0,921 0,925 0,930 0,932

imgd9 0,671 0,749 0,734 0,729 0,750 0,776

imge7 0,844 0,851 0,889 0,860 0,929 0,933

imgf4 0,890 0,894 0,941 0,932 0,977 0,982

imgf6 0,753 0,758 0,781 0,784 0,862 0,867

imgf7 0,840 0,871 0,861 0,886 0,924 0,923

imgf8 0,792 0,800 0,850 0,848 0,881 0,908

imgh0 0,860 0,864 0,899 0,897 0,914 0,917

imgh1 0,932 0,955 0,955 0,949 0,962 0,962

imgh2 0,871 0,902 0,899 0,903 0,915 0,914

imgh3 0,504 0,424 0,657 0,629 0,846 0,912

averages 0,814 0,830 0,858 0,855 0,899 0,907
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Table5.9: SAM (radians) results for the Harvard dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

imga2 0,075 0,081 0,074 0,075 0,071 0,069

imga6 0,050 0,049 0,044 0,043 0,040 0,037

imga7 0,072 0,072 0,065 0,064 0,041 0,032

imgb0 0,091 0,102 0,077 0,077 0,039 0,035

imgb1 0,057 0,062 0,045 0,045 0,028 0,027

imgb3 0,056 0,057 0,054 0,052 0,063 0,045

imgb5 0,065 0,061 0,052 0,051 0,055 0,034

imgb6 0,122 0,146 0,097 0,097 0,082 0,044

imgb7 0,077 0,098 0,093 0,086 0,094 0,077

imgb9 0,122 0,080 0,063 0,059 0,051 0,044

imgc7 0,064 0,080 0,060 0,058 0,041 0,040

imgc8 0,077 0,106 0,091 0,090 0,061 0,073

imgd2 0,087 0,102 0,084 0,078 0,036 0,037

imgd3 0,100 0,116 0,085 0,082 0,069 0,050

imgd7 0,064 0,071 0,060 0,059 0,040 0,038

imgd8 0,062 0,070 0,053 0,050 0,048 0,039

imgd9 0,046 0,038 0,040 0,039 0,040 0,035

imge7 0,078 0,093 0,066 0,070 0,041 0,037

imgf4 0,103 0,134 0,092 0,089 0,058 0,035

imgf6 0,138 0,140 0,124 0,122 0,091 0,074

imgf7 0,098 0,108 0,090 0,085 0,058 0,045

imgf8 0,183 0,187 0,147 0,146 0,150 0,086

imgh0 0,058 0,071 0,046 0,046 0,040 0,036

imgh1 0,127 0,146 0,100 0,099 0,100 0,052

imgh2 0,067 0,082 0,059 0,056 0,050 0,044

imgh3 0,151 0,161 0,131 0,135 0,095 0,066

averages 0,088 0,097 0,076 0,075 0,061 0,047
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Table5.10: ERGAS results for the Harvard dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

imga2 16,445 17,699 16,654 16,737 16,060 15,844

imga6 10,368 10,089 9,337 9,165 8,682 8,093

imga7 14,832 14,807 13,308 13,253 9,079 7,209

imgb0 21,999 24,420 18,524 18,531 10,578 9,662

imgb1 12,604 13,693 10,162 10,177 6,729 6,816

imgb3 12,751 12,754 12,405 12,128 14,661 10,958

imgb5 19,619 17,900 15,561 15,395 17,028 11,569

imgb6 27,351 32,031 21,628 21,860 18,452 11,243

imgb7 19,024 22,942 22,451 20,741 22,423 18,856

imgb9 27,351 19,548 15,612 14,797 12,978 11,749

imgc7 16,012 18,160 14,994 14,481 11,031 10,981

imgc8 18,286 24,862 21,737 21,513 15,211 18,113

imgd2 32,186 37,826 31,097 29,166 14,745 15,345

imgd3 26,066 29,610 21,969 21,178 18,992 14,057

imgd7 14,335 15,571 13,582 13,351 10,243 9,829

imgd8 25,437 28,440 21,569 20,313 20,943 16,893

imgd9 10,628 9,720 9,585 9,364 9,763 8,821

imge7 18,343 21,742 15,566 16,320 10,485 9,590

imgf4 34,130 44,527 30,507 29,617 21,595 12,623

imgf6 33,479 33,872 30,257 29,838 23,024 19,856

imgf7 28,226 30,938 25,868 24,614 17,281 14,168

imgf8 43,695 43,842 34,510 34,335 35,782 22,001

imgh0 12,516 15,178 10,383 10,325 9,472 8,856

imgh1 43,224 51,210 34,331 34,216 35,517 19,234

imgh2 20,490 25,897 18,205 17,454 16,009 14,176

imgh3 31,200 33,456 27,228 27,994 20,213 15,366

averages 22,715 25,028 19,886 19,494 16,422 13,150
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.10: SRR Results of Example Image Patch A from Harvard Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.11: High Frequency Results of Example Image Patch A from Harvard
Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.12: SRR Results of Example Image Patch B from Harvard Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.13: High Frequency Results of Example Image Patch B from Harvard
Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.14: SRR Results of Example Image Patch C from Harvard Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.15: High Frequency Results of Example Image Patch C from Harvard
Dataset
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5.2.6 Experimental Results on HRSS Dataset

Table5.11: PSNR (dB) results for the HRSS dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

botswana 28,494 29,110 30,833 30,887 33,496 36,268

indian_pines_corrected 29,634 29,284 29,940 29,868 30,935 30,296

pavia 28,560 26,097 29,376 29,631 22,753 34,221

paviaU 29,296 26,372 30,537 30,886 25,448 35,039

salinas_corrected 28,930 28,891 31,189 31,171 22,185 34,472

averages 28,983 27,951 30,375 30,489 26,963 34,059

Table5.12: SSIM results for the HRSS dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

botswana 0,696 0,752 0,820 0,823 0,880 0,905

indian_pines_corrected 0,719 0,807 0,837 0,836 0,822 0,844

pavia 0,868 0,827 0,904 0,909 0,859 0,941

paviaU 0,875 0,841 0,912 0,915 0,857 0,943

salinas_corrected 0,775 0,874 0,908 0,901 0,753 0,929

averages 0,786 0,820 0,876 0,877 0,834 0,912

Table5.13: SAM (radians) results for the HRSS dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

botswana 0,076 0,068 0,059 0,058 0,056 0,045

indian_pines_corrected 0,045 0,047 0,045 0,045 0,044 0,045

pavia 0,156 0,191 0,138 0,135 0,181 0,096

paviaU 0,128 0,164 0,112 0,110 0,146 0,074

salinas_corrected 0,109 0,082 0,068 0,069 0,155 0,055

averages 0,103 0,110 0,085 0,083 0,116 0,063
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Table5.14: ERGAS results for the HRSS dataset

Single Image SRR Methods Fusion Based SRR Methods

Yang Xiong MAP TP MAP Lanaras MAP Fusion

botswana 17,472 14,989 13,063 16,926 13,274 10,881

indian_pines_corrected 9,554 10,493 9,959 9,992 9,762 9,773

pavia 38,054 46,479 34,149 36,934 44,698 24,189

paviaU 30,989 39,846 27,547 30,514 34,966 18,136

salinas_corrected 52,910 23,421 21,496 21,510 39,843 20,034

averages 29,796 27,046 21,243 23,175 28,509 16,603

5.3 Spectral Consistency Results

Spectral consistency is another important issue in SRR of HS images. Especially for

the fusion based methods, in general, visual results are satisfactory since HR RGB

image gives the textures and edges. However, the performance of these methods

sharply decreases beyond the visible spectrum since auxiliary image does not give in-

formation from these bands. Therefore, spectral consistency is a significant metric for

SRR of HS images. For each dataset, two images are selected having the best metric

results for MAP and Lanaras. In the selected figures, the spectral characteristics of

an average of 8-neighbourhood pixels of the center pixel is calculated and given in

Tables 5.15- 5.16- 5.17. In order to see the effect of the band on spectral consistency,

spectral reflectance characteristics of selected figures from HRSS dataset will be also

given in Figure 5.22 and 5.23. Related figures from Cave and Harvard dataset are not

given since these datasets have fewer bands and the spectrum of the methods are al-

most overlapped, interpretable figures are difficult to obtain. In Figure 5.22 and 5.23,

it is clearly seen that Lanaras method gives inconsistent results beyond the visible

spectrum. Actually, a fusion based SRR method may have problems with the non-

overlapped bands of the HR auxiliary image. Therefore, for the fusion based SRR

methods, a fair comparison should be done using the HS images which are extending

the visible spectrum such as remote sensing images having hundreds of bands.
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.16: SRR Results of Example Image Patch A from HRSS Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.17: High Frequency Results of Example Image Patch A from HRSS Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.18: SRR Results of Example Image Patch B from HRSS Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.19: High Frequency Results of Example Image Patch B from HRSS Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.20: SRR Results of Example Image Patch C from HRSS Dataset
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(a) Original HR Image (b) LR Image

(c) MAP (d) TP MAP

(e) Xiong (f) Yang

(g) Lanaras (h) Fusion MAP

Figure 5.21: High Frequency Results of Example Image Patch C from HRSS Dataset
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Table5.15: Correlation in spectral reflectance (%) between ground truth and SRR
methods for Cave dataset

Yang Xiong MAP TP MAP Lanaras MAP Fusion

Cave-glass_tiles 91.55 84.20 87.52 88.09 80.50 91.93

Cave-hairs 99.88 99.96 99.97 99.97 99.95 99.97

Table5.16: Correlation in spectral reflectance (%) between ground truth and SRR
methods for Harvard dataset

Yang Xiong MAP TP MAP Lanaras MAP Fusion

Harvard-img_d3 99.46 99.88 99.87 99.88 99.61 99.86

Harvard-img_d2 99.39 99.77 99.82 99.78 99.77 99.88

Table5.17: Correlation in spectral reflectance (%) between ground truth and SRR
methods for HRSS dataset

Yang Xiong MAP TP MAP Lanaras MAP Fusion

HRSS-salinas_corrected 99.93 99.98 99.98 99.97 96.33 99.99

HRSS-botswana 99.87 99.90 99.89 99.84 99.63 99.90

Figure 5.22: Spectral reflectance characteristics of HRSS-botswana image
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Figure 5.23: Spectral reflectance characteristics of HRSS-salinas_corrected image

5.4 Discussion

Firstly, upon observing the results, in all datasets, proposed MAP based approaches

outperform the Yang and Xiong method in all metrics. Moreover, when compared

with the Lanaras method, proposed MAP based approach outperforms the Lanaras

method on all metrics in the HRSS dataset despite the fact that Lanaras method uses

an HR RGB image with LR HS image. This is due to the fact that there are only 31

bands in the Cave and Harvard datasets as opposed to the more than 100 bands in

the HRSS dataset. Therefore, for the cases where the number of spectral bands are

low, the HR RGB gives reasonably high information in the fusion based methods. On

the other hand, when the number of spectral bands increase, the effect of the extra

information provided by the RGB image is not as substantial; and the performance

of the fusion based method degrades. This is particularly critical in remote sensing

applications where HS image consists of hundreds of bands.
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Secondly, proposed MAP based fusion has the best performance in all datasets. The

advantage of the method can be seen interpreting the Cave, Harvard and HRSS datasets

together. MAP based methods have limited performance since single HS image is not

enough to recover HR HS image. On the other hand, fusion based methods have

excellent performance in the overlapping bands with auxiliary image. In fact, non-

overlapping bands show the real performance of the fusion based methods and the per-

formance sharply decreases in these bands. This is the reason why Lanaras method

has lower performance in HRSS dataset. On the contrary, MAP based fusion ap-

proach gives an optimal solution to the SRR problem for HS images with merging

MAP framework with fusion. From the conducted experiments, it is clearly seen that

MAP based fusion method has better performance in all datasets. In almost all the

HS images of each dataset, proposed MAP fusion method beat the other methods.

Lanaras beats the proposed MAP based fusion in few images having sharp textures

and edges extremely violating the smoothness constraint.

Thirdly, SRR methods should keep the spectrum consistency as much as possible

while enhancing the spatial resolution of HS images. In terms of spectrum consis-

tency, proposed MAP approach and proposed MAP based fusion approach have better

results as compared to Lanaras method. The figures show that Lanaras has problems

beyond the visible band and this approach highly degrades the spectrum consistency.

Metric results also show the poor correlation of spectrum of HR HS image with the

original HS image in this method. When comparing other methods between each

other in terms of spectrum consistency, our proposed methods have slightly better

results than the Yang and Xiong method.

Lastly, computation time is also important. Our current implementations have not

been optimised for speed and computation times depend on the image size and num-

ber of endmembers. For a 256× 256 image, typically, it takes ≈ 8 minutes for MAP

and MAP based fusion methods. Texture preserving nearly doubles the computation

times of the MAP method. On the other hand, processing time of Yang method di-

rectly depends on the number of spectral bands and has ≈ 1 minute for Cave and

Harvard datasets and ≈ 7 minutes for the HRSS dataset. Xiong method has ≈ 1

minute and Lanaras method has ≈ 4 minutes depending on the number of iterations

and convergence parameters.
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CHAPTER 6

SUMMARY AND CONCLUSION

6.1 Summary

Chapter 2 presents a general information about HS imaging. Moreover, spectral un-

mixing concept, process of finding materials and their fractions in the HS image, is

introduced in this chapter. Spectral unmixing consists of three stages, namely, deter-

mination of number of endmembers, estimation of their signatures and extracting the

abundance maps. A survey on these methods are given in detail.

In Chapter 3, a survey on SRR for both natural and HS images are introduced. HS

SRR is roughly divided into two groups: single image based and fusion based meth-

ods. Single image SRR methods increase the resolution of HS images without using

any other source of information whereas fusion based methods fuse LR HS image

with HR auxiliary image in order to obtain HR HS image.

In Chapter 4, two SRR methods from different perspectives for HS images are pro-

posed. First method is a novel MAP based SRR method for HS images when there

is no any other source of information. The idea of the proposed approach is that in-

stead of using the spectral images, the correlation of neighbouring pixels in terms of

abundances of the endmembers in the scene are used in the SRR process. Moreover,

ill-posed inversion problem of SRR is further regularized with constraints specific

to abundance maps results in more stable solutions. Another advantage of using the

abundances in SRR process is obtaining spectrally more consistent results in HR HS

images. In this approach, first, hyperspectral data is unmixed and abundances of the

endmembers are found. Then, using the LR abundance maps as the basic DC, an
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energy function is defined using an SC from a priori information with a UC and a

BC for the abundance maps. Energy function is converted to a quadratic optimization

problem and jointly minimized using QP techniques. Moreover, in order to preserve

textures, a post processing is applied to the HR abundance maps. After finding the HR

abundance maps, HR HS image is constructing using these maps and corresponding

material spectrum.

Second proposed approach utilizes the same concept when an auxiliary HR image is

available with LR HS image. Similarly, fusion problem is converted to a quadratic

optimization problem in abundance map domain. Moreover, it is regularized with a

MAP framework. Solving the quadratic MAP based fusion problem, HR abundance

maps are found and used for the reconstruction HR HS image.

Chapter 5 gives the experimental results. Experiments are conducted on three real

hyperspectral datasets and compared to three other state-of-the-art SRR methods. The

results show that the proposed algorithms produce better results in all quantitative

metrics as compared to its competitors. In addition, upon observing the individual

pixels for spectral consistency, the proposed methods are closest to the ground truth

in the experiments.

6.2 Conclusion

In this thesis, two different approaches are studied for the SRR of HS images. First

method can be used for SRR of single HS image when there is no auxiliary informa-

tion such as a coinciding HR image. This method shows that using abundance maps

gives robust and effective solutions to the SRR of HS images as compared to single

band SRR methods. Since single band SRR methods do not use the band to band

correlation of HS images, they have poorer performance as compared to methods that

use inherent intra band informations. Moreover, using joint energy minimization with

the quadratic programming significantly increases the performance as compared the

regularization based single image HS SRR methods. However, unmixing is the most

critical part of the methods using abundance maps in any step of processing. In the

proposed MAP based method, under-estimation of the number of endmembers signif-
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icantly reduces the performance. Peak performance is achieved when the number of

endmembers are correctly determined. Over-smoothing is another problem related to

approaches using smoothing for regularization. Nonetheless, over-smoothing prob-

lem is successfully solved using a post-processing technique. Instead of adding an

edge preserving regularizer to the quadratic function, using post-processing simpli-

fies the minimization problem and removes the parameter tuning for the regularizer.

In addition, using abundance maps in the minimization gives robust solutions to the

noise problem since spectral unmixing stages decrease the noise in the abundance

maps. Therefore, spectral unmixing and abundance maps have been used in noise

removal algorithms in recent years [10, 108].

Second method is a novel HS image fusion method. Similarly, proposed fusion

method converts the fusion problem to a quadratic optimization problem in the abun-

dance maps domain. Moreover, MAP framework is also included in the optimization.

Regularizing the fusion problem with MAP framework gives the ability to overcome

the problems of the fusion based methods beyond the visible spectrum and shows su-

perior performance in all the spectral bands throughout the spectrum. The solution of

the joint optimization problem is unique and gives the HR abundance maps. Instead

of using alternating minimization, joint minimization of abundance maps gives bet-

ter results in the visible bands as compared to the fusion based methods. Moreover,

spectral consistency is preserved throughout the spectrum using MAP framework.

Under-estimating the number of endmembers also reduces the performance in the

proposed fusion method and performance is satisfactory when the estimated number

of endmembers are greater than the actual number of endmembers.

In both methods, HR HS image is reconstructed using the HR abundance maps and

spectral signatures of the endmembers. Experimental results show that performance

and spectral consistency of the proposed methods are better than the existing state-of-

the-art methods.
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IEEE, 2013, pp. 1–4.

Submitted Journal Publications

• H. Irmak, G. B. Akar, and S. E. Yuksel, “A map-based approach for Hyperspectral imagery

super-resolution in IEEE Transactions on Image Processing (Major Revision)

112


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Statement of the Problem
	Contribution of the Thesis
	Thesis Outline

	HYPERSPECTRAL IMAGING and UNMIXING
	Hyperspectral Imaging
	Spectral Unmixing
	Determination of the Number of Endmembers
	Endmember Selection
	Abundance Estimation


	Superresolution Reconstruction
	Observation Model and SRR Problem
	SRR Methods
	Bayesian Methods
	Iterative Back Projection Method
	Projection onto Convex Sets Method
	Learning Based Methods

	SRR Methods for HS Images
	Single Image SRR
	Spatial Optimization Based Methods
	Learning Based Methods

	Fusion Based Methods
	Pan-sharpening Based Methods
	Subspace Based Methods



	PROPOSED METHODS
	A MAP based Approach
	Spectral Unmixing
	SRR using Joint Energy Minimization
	Quadratic Programming
	Post Processing to Solve Oversmoothness

	A MAP based Fusion Approach

	RESULTS
	Performance Metrics
	Experiments on Real Hyperspectral Image Datasets
	Effect of  on Images
	Effect of Balance Between MAP and Fusion on MAP Fusion Method
	Effect of Spectral Unmixing on the Performance
	Experimental Results on Cave Dataset
	Experimental Results on Harvard Dataset
	Experimental Results on HRSS Dataset

	Spectral Consistency Results
	Discussion

	SUMMARY and CONCLUSION
	Summary
	Conclusion

	REFERENCES
	CURRICULUM VITAE

