Abstract:
Recent BCI-based stroke rehabilitation studies focus on exploiting information obtained from sensorimotor EEG activity. In the present study, to extend this focus beyond ...Show MoreMetadata
Abstract:
Recent BCI-based stroke rehabilitation studies focus on exploiting information obtained from sensorimotor EEG activity. In the present study, to extend this focus beyond sensorimotor rhythms, we investigate associative brain areas that are also related with motor learning skills. Based on experimental data from twenty-one healthy subjects, resting-state EEG recorded prior to the experiment was used to predict motor learning performance during a force-field adaptation task in which subjects performed center-out reaching movements disturbed by an external force-field. A broad resting-state beta-power configuration was found to be predictive of motor adaptation rate. Our findings suggest that resting EEG beta-power is an indicator of subjects' ability to learn new motor skills and adapt to different sensorimotor states. This information can be further exploited in a novel BCI-based stroke rehabilitation approach we propose.
Date of Conference: 16-19 May 2016
Date Added to IEEE Xplore: 23 June 2016
ISBN Information: