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Abstract

Can people use text-entry based brain-computer interface (BCI) systems and

start a free spelling mode without any calibration session? Brain activities differ

largely between people and across sessions for the same user. Thus, how can the

text-entry system classify the target character among the other characters in the

P300-based BCI speller matrix? In this thesis, we introduce a new unsupervised

classifier for a P300-based BCI speller, which uses a disjunctive normal form rep-

resentation to define an energy function involving a logistic sigmoid function for

classification. Our proposed classifier updates the initialized random weights per-

forming classification for the P300 signals from the recorded data exploiting the

knowledge of the sequence of row/column highlights. To verify the effectiveness of

the proposed method, we performed an experimental analysis on data from 7 healthy

subjects, collected in our laboratory and used public BCI competition datasets. We

compare the proposed unsupervised method to a baseline supervised linear discrim-

inant analysis (LDA) classifier and Bayesian linear discriminant analysis (BLDA)

and demonstrate its performance. Our analysis shows that the proposed approach

facilitates unsupervised learning from unlabelled test data.
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Özet

İnsanlar metin yazma amaçlı beyin-bilgisayar arayüzü (BBA) sistemleri için

ayarlama oturumuna ihtiyaç duymadan doğrudan heceleme moduna geçebilirler mi?

Beyin aktiviteleri insanlar arasında ve aynı kullanıcının farklı oturumları arasında

büyük degişkenlik göstermektedir. Bu durumda metin yazma sistemleri P300 tabanlı

BBA heceleme matrisindeki hedef harfi diğerlerinden ayırt ederek nasıl sınıflandırabilir?

Biz bu tezde P300 tabanlı BBA heceleyicileri için yeni bir gözetimsiz sınıflandırıcı

öneriyoruz. Bu sınıflandırıcı lojistik sigmoid fonksiyonuna dayalı bir enerji fonksiy-

onu tanımlamak için ayırıcı normal form temsili kullanıyor. Önerdiğimiz sınıflandırıcı

satır/sütunların parlaklaştırılarak vurgulanma dizisine dair bilgileri kullanarak, kaydedilen

verilerden P300 sinyallerini sınıflandırmak için rastgele olarak başlatılan ağırlıkları

günceller. Önerilen yöntemin geçerliliğini doğrulamak için kendi laboratuvarımızda

toplanan ve kamuya açık BBA yarışması veri kümelerinde bulunan 7 sağlıklı kul-

lanıcıya ait veriler üzerinde bir deneysel analiz gerçekleştirdik. Önerdiğimiz gözetimsiz

yöntemi temel düzeyde birer gözetimli sınıflandırıcı olan doğrusal ayırtaç anal-

izi (DAA) ve Bayesçi doğrusal ayırtaç analizi (BDAA) ile karşılaştırıp başarımını

gösterdik. Analizimiz önerilen yaklaşımın etiketsiz test verilerinden gözetimsiz öğrenmeyi

kolaylaştırdığını gösterdi.
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Chapter 1

Introduction

Across all ages and cultures, people are doing their best to use multiple means

to communicate and control, from the beginning of creation to the current era.

Talking, writing, and gesture have been the most common ways to interact with

each other throughout time. Interestingly, in each era, intellectuals thought about

potential barriers and how to overcome them, at least theoretically. For example, a

short time ago, back in the 60s, communicating and controlling devices with brain

waves was listed as science fiction. In today’s world, it became true and people can

communicate with the computer through brain waves. A brain-computer interface

(BCI) aims to establish a direct communication channel between the brain and a

computer or machine so disabled individuals can interact with the real-world [12].

In this thesis, we introduced a new unsupervised classifier for a P300-based BCI,

which tackle some main problems for the text entry systems. These problems can

be briefly addressed under the calibration sessions where they are tedious, time-

consuming, and annoying sessions for the subjects especially the disabled individu-

als. Furthermore, we demonstrate the use of our proposed approach on offline and

simulated online analysis in order to verify the effectiveness of the proposed method.

1.1 Scope

Technology should always improve life quality. A significant number of indi-

viduals suffer from losing all voluntary muscle control due to amyotrophic lateral

sclerosis (ALS), traumatic brain injuries, or spinal cord injuries [13]. Although the

motor pathway is lost, neuronal activity of the brain still works in many of these

cases. Therefore, one direction for raising the life quality of the disabled individuals
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is to create a channel between a brain and a computer which it can be used for

various applications. Thus, BCI returns hope to many people.

Over the last two decades, a large body of work has been performed for recording

activity from the brain either invasively or non-invasively for the purpose of brain-

computer interfacing. The electroencephalogram (EEG) is a non-invasive technique

involving electrical signals measured through the scalp and can be used as the cor-

nerstone for BCI [14]. Along with EEG [15], magnetoencephalography (MEG) [16],

positron emission topography (PET) [17], functional magnetic resonance imaging

(fMRI) [18], and optical imaging, functional near infrared spectroscopy (fNIRS) [19]

provide other ways to monitor brain activity non-invasively. In an EEG-based BCI

system, incoming signals from an EEG amplifier are processed and classified to de-

code the user’s intent [20]. Furthermore, it can be used to provide input signals in

many applications including text entry systems [21], robotic arm control [22], and

cursor control [23]. Figure 1.1 shows how data are collected from subjects.

One of the most common application related to BCI is the text-entry systems.

They allow subjects to select characters from a symbolic grid matrix containing

characters and symbols on a computer screen while recording the brain waves. The

P300 speller is one of the most common BCI-based text-entry systems, which allows

subjects to write text on the computer screen. Farwell and Donchin [21] demon-

strated the first P300 speller paradigm which is also called the oddball paradigm.

P300 is an event-related potential (ERP) elicited in the brain as a response to a

visual or auditory stimulus. It is a positive deflection measured around the parietal

(a) (b)

Figure 1.1: (a) A BCI-based motor imagery system. (b) A BCI-based P300 speller.
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Figure 1.2: Interface of P300-based speller matrix used in this study.

lobe, nearly 300 ms to 600 ms after the occurrence of the attended stimulus [24].

The system allows people to spell words and numbers by focusing on the desired

character or number in a matrix shown on the screen (see Figure 1.2). When the

desired character is highlighted, the subject attends to the unexpected stimulus and

a P300 wave is generated. The character which the user intends to type can be

inferred from the intersection of the detected P300 responses in the sequence of

row/column highlights. Machine learning algorithms can be used to classify and

learn the attended and non-attended highlights for rows and columns. Thus, the

character can be estimated from the intersection of attended highlights.

EEG signals suffer from low signal to noise ratio (SNR) due to several factors

including the variability in brain activities, changes in electrode positions in long ses-

sions, meta-activities in the brain, and artifacts due to eye movements and muscular

activities. Therefore, P300 spellers need several stimulus repetitions to increase the

classification accuracy [25] [26].

1.2 Motivation

One of the most common problems in BCIs is the calibration process. Subjects

have to go through tedious, time-consuming and annoying calibration sessions before

they can start using a BCI system for communication purposes. The brain signals

vary across people and across sessions for the same user [27]. For this reason,

supervised training methods based on calibration sessions involving labelled training

data are usually used. Furthermore, the BCI system should be trained for a specific
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person. The downsides of having to use such sessions include the consumption of

additional time and increased fatigue for the users. Even for healthy people the

calibration is still an annoying process. Furthermore, such sessions might have to

be repeated to account for any non-stationary behaviour of the brain signals over the

course of system use. The aforementioned problems imply another inherent problem,

namely the collected training data may sometimes be unreliable. For example,

during the data collection for this thesis, many users reported that they felt sleepy,

lost concentration, and probably could not focus on the target letters. Mainly the

labelled data is what we expect the user to write, not the user actual writes. Healthy

subjects can report mistakes and express feelings during the experiment, then we

can decide how reliable the data are. On the other hand, paralyzed people can not

express when they made mistakes and it is hard to measure the reliability of the

data.

There have been few pieces of work on unsupervised methods for P300-based

BCI spellers to tackle the problems raised above. An unsupervised method was

proposed by Lu et al. [28]. Although that unsupervised classifier has also been

applied to P300 data, it still needs some labelled data from many previous subjects

to train a subject independent classification model (SICM), which allows EEG from

a new subject to be classified first by the SICM then goes through adaptation

process. Another recent unsupervised classification method, based on a Bayesian

model, has been proposed by Kindermans et al. [11]. The classifier can be trained

unsupervisedly using an Expectation Maximization (EM) approach, eliminating the

use of calibration sessions. Up to my knowledge, it was the only paper which is able

to train a P300 classifier without any labelled data. There also exist semi-supervised

adaptation methods which involve supervised training followed by adaptation of the

classifier with the incoming EEG data [29].

1.3 Contributions

The work done in this thesis provides a contribution towards addressing the men-

tioned problems by proposing a new unsupervised classifier for P300-based spellers.

In this approach, the disjunctive normal form plays a role in forming an energy

function, which allows to update the randomly initialized classifier weights by using
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the logistic sigmoid function for classification and by exploiting the knowledge of the

sequence of row/column highlights [30]. The idea is that one round of row/column

highlights in the speller matrix should evoke a P300 response only after two (one row

and one column) of the highlights. Note that exploiting this fact does not require

knowledge of the labels of the data, hence this idea can be a basis for unsupervised

learning.

To achieve this goal, we propose a disjunctive normal unsupervised LDA for

P300-based brain-computer interfaces 1. The thesis makes several contributions,

which can be summarized as follows. We developed a novel unsupervised method

based on the disjunctive normal form for P300-based BCI speller systems, which

allows us to run the classifier without using any calibration process and without

any labelled data. Moreover, we demonstrated the use of our proposed approach

on both offline and simulated online analysis experiments. Besides, we compared

our classifier with BCI competition datasets (BCI Competition II [32] and BCI

competition III [33]).

1.4 Outline

Chapter 2 presents introductory background information about BCI, P300

speller paradigm, stimulus software used in this work, and a survey of machine

learning techniques used for P300.

Chapter 3 presents the proposed unsupervised classifier and all the supervised

classification technical pieces involved in this work together with their mathematical

preliminaries.

Chapter 4 presents the offline and simulated online experiments for P300

speller, in order to demonstrate the proposed classifier effectiveness. The perfor-

mance and detailed report results can be found in this chapter.

Chapter 5 provides a summary of the contributions made and indicates possi-

ble directions for future work, motivated by the limitations and advantages of the

proposed methods.

1A preliminary portion of this work was published at the IEEE 24th Signal Processing and

Communication Application Conference (SIU) 2016. [31]
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Chapter 2

Background on BCI and P300 Spellers

This chapter aims to provide the basic concepts of EEG signals processing, brain-

computer interfaces (BCIs), P300 signals of event-related potentials (ERP) and

P300-based spellers, motor imagery systems, and classification methods in both

supervised and unsupervised domains. It also includes a survey of published works,

methods, and results.

2.1 Introduction

BCI might use brain signals recorded by a variety of methodologies. These

include invasive and non-invasive methods. Scalp-recorded EEG provides the most

practical and widely used non-invasive access to the brain activity. However, its

signal resolution is low. On the other hand, using invasive techniques such as electro-

corticography (ECoG), require access to the cortical surface of the brain. Although

this technique provides high resolution signals, it is prohibitively expensive and

might involve risks for the patient [20].

Most BCIs rely on sensors outside the head to measure the electrical activity of

the brain. Magnetoencephalography (MEG), functional magnetic resonance imag-

ing (fMRI), and positron emission tomography (PET) are non-invasive rather than

(ECoG) which is an invasive. However, they are expensive, hard to utilise outside the

laboratory, and not applicable in daily life [20]. In contrast, EEG is relatively cheap,

applicable with many different paradigms and offers non-muscular communication

and control mechanisms. Table 2.1 shows the methods used for brain-computer

Interfaces.
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EEG MEG fMRI ECoG

Deployment Noninvasive Noninvasive Noninvasive Invasive

Measured activity Electrical Magnetic Hemodynamic Electrical

Temporal resolution Medium Medium Low High

Spatial resolution Low Low Medium Medium

Portability High Low Low High

Cost Low High High High

Table 2.1: Methods used for brain-computer interfaces. Taken from [10].

2.2 Electroencephalography (EEG) Signals

EEG is one of the well-known technique due to its advantages of low cost, non-

invasiveness, portability, and ease of use. Because of that, it has become the most

commonly used BCI signal acquisition tool. EEG has been mainly used for clinical

diagnosis of neurological disorders. EEG signals provide a good temporal resolution

(in milliseconds). It measures the electrical activity as voltage changes on the scalp

via the electrodes attached to it. Hans Berger introduced human EEG in 1929 [34].

However, EEG is not without disadvantages: EEG signals suffer from poor spatial

resolution because of measuring the electrical activities from the scalp as it is an

invasive method.

To establish a BCI channel, the electrodes must be placed on the scalp by the

cap to detect the EEG signals (5-20 microvolt range). Then, it can be connected to

the amplifiers to magnify the EEG signals. Finally, actual brain signals are recorded

by a device and converted to a digital format. A typical EEG based BCI system is

illustrated in Figure 2.1.

2.2.1 Electrodes

One of the most important components of BCI systems are electrodes. Electrodes

are little pin-pads of Ag/AgCl attached to the scalp with the aid of a headcap

consisting of an elastic cap with plastic, electrode holders. An example of the

headcap used in our laboratory can be seen in Figure 2.2. In order to decrease
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Figure 2.1: A typical EEG based BCI system consists of electrodes, cables, amplifier,

and a computer that processes the data. Taken from [1].

the skin resistance or voltage offset and to have a stable, stationary conductive

medium for proper measurements, usually a conductive gel is applied to fill the

plastic holes before clicking the active electrodes as shown in Figure 2.3. However,

electromagnetic interference, power cable noise, and signal degradation, need for

skin preparation, etc., are problems for practical usage of these electrodes outside

the laboratory [35]. To reduce some of these effects, high active electrode impedance

and cable shielding is used as shown in Figure 2.3.

The electrodes are placed on the head of the subject according to an international

system called 10-20 system, proposed by the American EEG society [36]. It is widely

used in clinical EEG recording and EEG research as well as BCI research. This

system proposes that the electrodes are placed in a 10% - 20% distance from each

other with respect to the total distance between the nasion and inion of the subject.

The labels of the electrode sites are usually also the labels of the recorded channels.

Figure 2.4 depicts the electrode placement according to the 10 - 20 system.
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Figure 2.2: 64-channel electrode cap using international 10-20 electrode distribution.

Taken from [2]

Figure 2.3: Active electrodes and gel used in this study. Taken from [3]

Figure 2.4: The international 10-20 system. Taken from [1].
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2.3 A Journey to General BCI Systems

In order to activate the neurons in the brain to elicit electrical signals, it does

not require an interference or an effort from the user. Daily life activities such as

thinking, moving, feeling something, etc., unconsciously do that itself. Further-

more, the neurons will translate the activities of the physiological and pathological

information in terms of electrical signals [37]. Those electrical signals recorded by

electrodes can be measured and acquired by a bio-signal acquisition system. Then

the signals are analyzed to translate the brain activities into command signals using

a computer algorithm. These commands can be used to provide input signals in

many applications including text entry [21], robotic arm control [22], cursor control

[23]. As shown in Figure 2.5, the BCI system usually consists of three main parts:

Signal Acquisition, Signal Processing, and Application Interface.

Signal Acquisition involves collecting temporal EEG data and amplifying brain

signals. It uses active or passive electrodes to transmit the electrical activity of

the subject to a high sensitivity, low-noise amplifier, namely the EEG amplifier.

The Signal Processing part then processes the acquired brain signals in three steps

sequentially: data pre-processing, feature extraction, and classification or detection.

The processed data is transmitted into the Application Interface part for further

control of external devices or any other useful clinical applications like treating

stroke, autism, and other disorders.

2.3.1 Motor Imagery

Many BCI systems rely on imagined movement. The brain activity changes in

the EEG recording either with real or imagined movement. That advance the ability

of people to record and use BCIs with their mental state tasks. The EEG signals

are recorded multiple times from the brain processes. The information is averaged

over the different recordings to filter out redundant brain activity and to keep the

relevant information [38]. Most of the motor imagery data belong to two classes

such as mentally thinking about moving left and right hand[39]. Besides, it allows

subjects to have binary communication to choose between two categories by just

thinking of right and left hand movements.

The EEG has many regular rhythms. The most well-known are the occipital
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Figure 2.5: A typical BCI system model. Taken from [4].

alpha rhythm and the central mu and beta rhythms. In motor imagery studies,

spectral power densities around 16-24 Hz for beta, 12-16 Hz for sigma, 8-12 Hz for

alpha bands are used. A calibration session or adaptivity method is needed to train

or adapt the computer to differentiate between the different classes.

2.3.2 Event Related Potentials

An event-related potential (ERP) is a specific brain response to an event such as

the presentation of a visual or auditory stimulus (e.g., a specific flash or sound), a

mistake, a motor event [40]. It is an unconsciously stereotyped brain wave recorded

on the scalp. ERPs can be measured before, during or after sensory, motor or

psychological events and usually have a fixed time delay after (or before) these

events, named stimuli. In 1964, Walter et al. discovered that when a subject was

required to press a button after detecting a target in a visual stimulus, they elicited

a large negative voltage at frontal electrodes that happen just before the subject

presses the button [41]. This voltage, ERP component called Contingent Negative
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Variation (CNV) indicated the subject’s mental preparation to press the button.

One of the most extensively used ERP component in BCI research is P300, usually

named P300 component discovered by Sutton et al. in 1965 [42]. This thesis is

focused and completely related to the P300 component. This component will be

discussed in the next section.

P300 component

P300 is an event-related potential (ERP) elicited in the brain as a response to

a visual or auditory stimulus. It is a large positive deflection measured around the

parietal lobe, nearly 300 ms to 600 ms after the occurrence of the attended stimulus

[24]. This idea generated another paradigm known as the ‘oddball paradigm’, where

the subject is stimulated with two categories of events: relevant and irrelevant [43].

The relevant events occur rarely with respect to irrelevant events, and due to the

complete random order of events, elicit a large P300 response in ERPs. For the

first time in 1988, Farwell and Donchin used the oddball paradigm to devise a

communication system which allows users to type letters on a screen by thoughts

with P300 signals rather than using muscular output [21].

Donchin and his colleagues developed a 6× 6 matrix of letters, numbers, and/or

other symbols. The individual rows and columns flash in a block-randomized fashion

and the user attends to the desired item and counts how many items it flashes. Here

the row and column which contain the target letter are the relevant events or target

stimuli, while other are irrelevant events or non-target stimuli.

The P300 component is located along the mid-line scalp sites. The highest

amplitudes of the P300 component can be recorded from central-parietal (Cz) and

mid-frontal (Fz) electrode locations [44]. Figure 2.6 shows the electrode placement

layout used in this work according to the 10-20 electrode placement system. Figure

2.7 shows a typical P300 response of a single trial and averaged over trials recorded

at several electrode sites used in this work.

As can be seen from that section, recording the P300 component looks easy.

Nevertheless, the quality of P300 signals is affected by various factors as following:

• Positioning a cap toward the correct location plays a role with signals quality

including P300 components.
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Figure 2.6: Electrode placement layout according to the 10-20 electrode system. The

dashed black circles show the location of highest amplitude of the P300 component.

The golden electrodes are used in this work. CMS and DRL electrodes form a

feedback loop, which drive the average potential of the subject (the Common Mode

voltage) as close as possible to the ADC reference voltage. Taken from [5]

• A subject’s mental state, emotion, psychological activities, degree of fatigue,

and concentration will all affect the result of P300 recordings.

• The recording environment of the temporal EEG data will also influence the

final acquisition of a P300 signal. The surrounding noise should be reduced in

order to achieve a high quality P300 signal. A P300 signal is always averaged

by several measurements due to its small amplitude (in µv).
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Figure 2.7: Average of (Subject 5) brain signals over trials following a visual stimulus

obtained from different electrode sites. The solid red line is the average response of

trials where a P300 wave is visible, the blue dashed line shows the average response

of trials where no P300 wave is elicited.

2.4 P300-based BCI Systems

The first ERP-based BCI system that was produced is the P300-based BCI by

Farwell and Donchin (1988), also known as the matrix speller. The matrix speller

consists of a 6× 6 grid of symbols which are shown on the computer screen. Figure

2.8 shows the first prototype of the P300 speller paradigm. Donchin’s first P300

speller has become the most widely studied P300 based BCI system [21]. It can

be seen from the Figure 2.8 that it has 36 cells, involves 26 letters, 6 commands,

and 4 symbols. The task here is to spell the word “B-R-A-I-N” letter by letter

using the matrix speller paradigm shown at the top of Figure 2.8. By focussing

attention on a specific symbol, the subject is able to select that symbol. The speller

matrix is covered by a random flash sequence. If the the row or column with the

target character is flashed, then a P300 signal will occur. The other flashes with

the non-target characters are then considered as irrelevant targets and no P300
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Figure 2.8: First P300 speller paradigm used by Farwell and Donchin.

signals will appear. Besides, using feature selection and classification techniques for

P300 signals aid the system to predict the character and display it on the computer

screen. In a few cases the computer displayed a letter other than the one in which a

subject was focusing, then the subject focused on the BKSP (backspace) command

to delete the character in order to correct the error. At the end, the subject selected

the TALK command and a computer read the spelled word [21].

P300-based BCI systems and related technologies have been highly developed

and improved recently. Many paradigms including flashing, stimulus techniques,

and interfaces have been introduced. One example of this is the hexagonal two-

level hierarchy of the Berlin BCI known as “Hex-o-Spell” [45], where characters

are clustered based on hexagons appealing visualization as shown in Figure 2.9

(a). Another introduced paradigm is the rapid serial visual presentation (RSVP)

keyboard. It allows visual stimulus sequences to be displayed on a screen over time

on a fixed focal area and in rapid succession [46]. RSVP keyboard paradigm can be

seen in Figure 2.9 (b).

An auditory ERP-based paradigm, called AMUSE, is introduced in [47]. In

AMUSE, each stimulus is a specific tone that originates from a specific direction.

Kindermans et al., used 6 unique tones forming auditory stimuli, each produced by

one of six speakers that are positioned on a ring of 130 cm diameter around the

user. Figure 2.10 shows the user interface used in this study [6].
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(a) (b)

Figure 2.9: Two different paradigms (a) Hex-o-Spell interface. (b) RSVP keyboard

interface.

Another popular software tool based on BCI spelling is BCI2000. It is a complete

package of tools used by many EEG research groups around the world. It was first

developed by the members of Schalk laboratory and presented in [48]. BCI2000

can incorporate alone or in combination with any brain signals, signal processing

methods, output devices, and operating protocols. See Figure 2.11.

In this work, the SU-BCI P300 stimulus software is used to deliver the subject

with the required visuals, or directions, to evoke the desired stimulus. SU-BCI

was previously developed at the Signal Processing and Information System (SPIS)

Laboratory [49]. It is essentially a matrix based system similar to the one introduced

by Donchin. The software allows any matrix size, cell content customization (letters

or shapes), various colouring, stimulation schemes, and timings as shown in Figure

2.12.
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Figure 2.10: The user interface of the AMUSE paradigm. Each circle encodes one

out of six tones/tone directions relative to the user, who is positioned in the middle

of the ring of speakers [6]

Figure 2.11: Elements of the user’s screen. Text To Spell indicates the pre-defined

text. The speller will analyze evoked responses, and will append the selected text

to Text Result. [7]
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Figure 2.12: SU-BCI P300 Stimulus Software used in this study.

2.4.1 Decoding the Brain Signals for A P300-based BCI System

The goal of a BCI is not only recording a raw data, but also the recording

should be informative and contains meaningful signals. Decoding the user’s P300

component from the EEG data reflects the characteristic parameters of the subject.

Further, it can be decided if the recording is done in a well prepared setup atmo-

sphere or not. After decoding the signals, the extracted features are converted to

commands to control external devices through computer algorithms matching with

the task [44].

Recorded EEG data require three main steps in order to process the data: data

pre-processing, classification, and post processing (detection). Raw EEG data are

converted to digital signals using an ADC converter. The digital signals are pre-

processed for classification. First, the signals are band-pass filtered and decimated

or sub-sampled by a factor to eliminate the artifacts. Noise and artifacts refer

to information that reduces the signal quality. The signals are divided into one-

second epochs corresponding to individual row and column flashes which are used

as the feature vectors for classification. Features might be peaks, actual or special

waveforms or deflections at specific times, spectral density, etc. In order to obtain

a good feature representation, a feature extraction process might be applied. In
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this thesis, the amplitude of the signals represents the feature vector [49]. Second,

the classification step, the classifier learned the P300 wave pattern by giving the

formed feature vector to the classifier. Finally, the extracted features are translated

into P300 detection for every row and column and combined to detect the desired

character. The character which the user intends to type can be inferred from the

intersection of the detected P300 responses in the sequence intersection of row and

column highlights.

2.5 Machine Learning for P300 Speller

The goal of this section is to introduce the most closely related machine learning

methods used in P300 speller in BCI context. Classical machine learning meth-

ods are mainly divided into the following groups: supervised, semi-supervised, and

unsupervised methods. Previous works have been done in our laboratory for devel-

oping supervised and semi-supervised algorithms for the P300 Speller [37] [50]. The

methods developed in this thesis are for unsupervised methods.

2.5.1 Supervised Learning

We start with the most common machine learning models, those models require

labelled data for training. Furthermore, test data can be applied to the learned

method for validation through the model accuracy. In this section, some of the

supervised classifiers are briefly presented with their mathematical preliminaries

such as: Linear Discriminant Analysis (LDA), Fisher’s Linear Discriminant Analysis

(FLDA), and Bayesian Linear Discriminant Analysis (BLDA).

Linear Discriminant Analysis

The aim of Linear Discriminant Analysis (LDA) is to use hyperplanes to separate

the data representing the different classes. For a two-class problem, LDA looks for a

linear combination of features that characterizes or separates two classes (see Figure

2.13) [51] [52]. Where x is the feature vector and w is a clasification weight vector.

LDA assumes a normal distribution of the data, with equal covariance matrices for

both classes (see Figure 2.14) [8].
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Figure 2.13: A hyperplane which separates two classes. Taken from [8]

Figure 2.14: Three examples of data generated by the LDA model. Note that in

LDA both classes share the same covariance structure. To show the influence of the

covariance structure on the direction of the decision boundary, we have used the

same means per class in all three examples. By changing the covariance structure

over the three examples, we rotate the decision boundary. An example can be seen

in [9].

The separating hyperplane is obtained by seeking the projection that maximizes

the distance between the two classes means and minimizes the interclass variance

[52]. This classifier is simple to use and generally provides good results with a very

low computational requirement. Consequently, LDA has been used with success in

the P300 speller [53] [54]. More practical descriptions are given in Chapter 3.

Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant analysis (FLDA) is the benchmark method for de-

termining the optimal separating hyperplane between two classes [55]. It uses a
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different weight calculation process compared to LDA. Fisher’s LDA aims at finding

a set of weights w that maximize the ratio:

J(w) =
wTSBw

wTSww
(2.1)

where SB is the scatter matrix between classes and Sw is the scatter matrix

within a class. SB and Sw are defined as:

SB =
∑
c

(µc − x̄)(µc − x̄)T (2.2)

Sw =
∑
c

∑
i∈c

(x̄i − µc)(x̄i − µc)T (2.3)

FLDA is simple in calculations and provides a robust classification when the two

classes are Gaussian with equal covariance [54]. A detailed description of FLDA is

given in Appendix A of [12]. This method has been extensively used in P300 studies

[56].

Bayesian Linear Discriminant Analysis

BLDA can be seen as an extension of Fisher’s Linear Discriminant Analysis

(FLDA). In contrast to FLDA, in BLDA regularization is used to prevent overfitting

to high dimensional and possibly noisy datasets. Through a Bayesian analysis the

degree of regularization can be estimated automatically and quickly from training

data without the need for time consuming cross-validation [12]. Besides, BLDA is

one of the main classifiers which has been used widely in BCI applications [57]. A

detailed description of BLDA is shown in Chapter 3.

2.5.2 Unsupervised Learning

Unsupervised learning methods are used to discover hidden structures or to

exploit known patterns in the data. Those methods do not require labelled data and

they start learning directly with the unlabelled data. In this section, some of the

unsupervised classifiers are briefly presented with their mathematical preliminaries

such as: K-means clustering, Gaussian Mixture Models (GMM), and Expectation

Maximization (EM).
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K-means Clustering

K-means is an efficient unsupervised learning algorithm that groups the data into

clusters. The aim of the K-means algorithm is to divide M points in N dimensions

into K clusters so that the within-cluster sum of squares is minimized, where K

is chosen before the algorithm starts pointing to the number of clusters. K-means

clustering algorithm is described in detail by Hartigan (1975) [58]. It is also called

Lloyd’s algorithm [59].

K-means clustering is one of the most popular clustering techniques due to its

simplicity and efficiency in speed. The first step in K-means algorithm is to define k

centroids, one for each cluster. These centroids should be placed in a cunning way

because different locations causes different results, hence it is a non-deterministic

algorithm. The better choice is to place them as far away from each other as possible

[60]. The algorithm tries to minimize the objective function:

arg min
c

k∑
i=1

∑
x
¯
∈ci

‖x
¯
− µi‖22 (2.4)

where ci is the set of points that belong to cluster i. The K-means clustering

typically uses Euclidean distance metric for computing the distance between data

points and the cluster centers. It can also uses different distance separation measures

[61].

The main disadvantage of that method is that it needs to assign the initial

seeds to start the algorithm. Furthermore, k-means++ has been developed to start

the algorithm automatically without the need of specifying the initial seeds. It is

a method to initialize the number of k cluster which is given as an input to the

k-means algorithm. Since choosing the right value for k centroids in advance is

difficult, this algorithm provides a method to find the value for k centroids before

proceeding to cluster the data [62].

Gaussian Mixture Models

A two-component Gaussian Mixture model (GMM) is almost identical to the

LDA model discussed in supervised learning section, the only difference is that a

GMM assumes that each group of data-points has its own covariance matrix and
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Figure 2.15: Example of data generated from a three component Gaussian Mixture

Model. Note that unlike data generated by an LDA model, each cluster has its own

covariance structure. Example in [9].

that GMM models are trained unsupervised without any label information. In a

GMM model, there are N data points xn, where the generative model specifies that

each data point belongs to one of the k groups (or clusters). The data in group

k is distributed as a multivariate Gaussian with mean µk and covariance
∑

k (see

Figure 2.15). Apart from that, the LDA parameters are selected using maximum

likelihood; this is not possible for GMM, therefore the Expectation Maximization

algorithm is applied to select the parameters for GMM [9].

Expectation Maximization

The Expectation Maximization (EM) framework can be used to optimize latent

variable models of missing or hidden data , such as the GMM, where it is difficult

to maximize the likelihood [63]. Each iteration of the EM algorithm consists of two

processes: The expectation step, and the maximization step. In the expectation, or

E-step, the missing data are estimated given the observed data and current estimate

of the model parameters. This is achieved using the conditional expectation. In the

M-step, the likelihood function is maximized under the assumption that the missing

data are known. The estimate of the missing data from the E-step are used instead

of the actual missing data. Convergence is assured since the algorithm is guaranteed

to increase the likelihood at each iteration [64].
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2.6 Summary

A general introduction and background knowledge about the BCI topics have

been covered in this chapter. Especially, some concepts are described such as: EEG

signals, recording concepts, Event-related potential (ERP), P300 component, and

P300-based BCI systems. P300-based BCI took most of the focus including infor-

mation about the application, interface, working principles, and flashing paradigms,

since the P300 speller is one of the most common BCI-based text-entry systems.

The general procedure needed for the subject to type letters with thoughts through

the brain signals was outlined in this chapter. A survey of classification techniques

have has been briefly introduced. We mentioned the most classification techniques

used before with the P300 speller for supervised and unsupervised learning. We in-

troduced Linear discriminant Analysis, Fisher’s Linear Discriminant Analysis, and

Bayesian Linear Discriminant Analysis as examples for supervised learning. For un-

supervised learning techniques we mentioned K-means, Gaussian Mixture Models,

and Expectation Maximization. Some of these algorithms are going to be used in

the following chapters to develop, analyze, and compare the proposed classifier for

P300 speller based BCI.

In this work, we aim at proposing a new unsupervised classifier for P300-based

spellers which allow us to run the classifier without using any calibration process

and without any labelled data. In addition, it will be compared with the main

supervised classifiers to demonstrate its effectiveness.
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Chapter 3

Disjunctive Normal Unsupervised Classifier

In this chapter, we present in detail the proposed methodology of the developed

unsupervised classifier. Several supervised classifiers are introduced in detail to give

the reader a background on the used supervised classifiers such as Linear discrim-

inant analysis (LDA) and Bayesian Linear Discriminant Analysis (BLDA). After-

wards, we introduce some techniques used for improving the proposed unsupervised

classifier. At the end of this chapter, toy examples are presented for the proposed

unsupervised classifier on a synthetic data to demonstrate the effectiveness.

3.1 Linear Discriminant Analysis (LDA)

LDA supervised classifier has been used as a baseline classifier model for com-

parison with the proposed unsupervised method. LDA can be derived from sim-

ple probabilistic models which model the class conditional distribution of the data

P (X|y = k) for each class k. Predictions can then be obtained by using Bayes’ rule:

P (y = k|X) =
P (X|y = k)P (y = k)

P (X)
=

P (X|y = k)P (y = k)∑
K P (X|y = k)P (y = k)

(3.1)

We choose the class k which maximizes the conditional probability. P (X|y = k)

can be modelled as a multivariate Gaussian distribution with density:

P (X|y = k) =
1

(2π)n|Σk|1/2
exp
(
− 1

2
(X − µk)Σk

−1(X − µk)t
)

(3.2)

The estimate of the class mean and shared covariance matrix for unweighted data

are:
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µ̂k =
1

nk

∑
yi=k

xi (3.3)

Σ̂ =
1

n− k

K∑
k=1

∑
yi=k

(xi − µ̂k)(xi − µ̂k)T (3.4)

this leads to linear decision surface and can used to predict the classes with the

learned weights [65].

Consider a two-class classification problem K = {0, 1}, where k = 1 corresponds

to row/column containing the target letter and k = 0 corresponds to row/column not

containing the target letter. Given the EEG data (X), where the model assumes

(X) has a Gaussian distribution. The model has the same covariance matrix for

each class; only the means vary as mentioned in Chapter 2. Under this modelling

assumption, the classifier infers the mean and covariance parameter of each class; it

computes the sample mean of each class. Then, it computes the sample covariance

by first subtracting the sample mean of each class from the observations of that

class, and taking the empirical covariance matrix of the result.

In this work, we calculate the estimated mean for each class and the shared

covariance matrix. Then the classifier generates the weight vector which is a linear

combination of the components of x and used for classification decisions to predict

the classes by using the using of Sigmoid function that has real-valued and a differ-

entiable function which produces a curve with an S shape and takes the value 0.5

in the middle of the classification line between the two classes. Derivatives of the

sigmoid function are employed in learning algorithms.

3.2 Bayesian Linear Discriminant Analysis (BLDA)

The other supervised classifier used for comparison with the proposed unsuper-

vised classifier is BLDA. The algorithm was proposed in [12], and the actual code

was developed by Ulrich Hoffmann of the EPFL BCI group in 2006. This section

exactly follows the summary given in Appendix B of [12]. The extended explanation

can be founded in [66].

BLDA can be seen as an extension of Fisher’s Linear Discriminant Analysis

(FLDA) described in (Chapter 2). In contrast to FLDA, in BLDA regularization is
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used to prevent overfitting to high dimensional and possibly noisy datasets. Through

a Bayesian analysis, the degree of regularization can be estimated automatically and

quickly from training data without the need for the time consuming cross-validation

process.

Least squares regression is equivalent to FLDA if regression targets are set to

N/N1 for examples from class 1 and to −N/N2 for examples from class -1; where N

is the total number of training examples, N1 is the number of examples from class

1 and N2 is the number of examples from class -1. Given the connection between

regression and FLDA, BLDA performs regression in a Bayesian framework and sets

the targets mentioned above.

The assumption in Bayesian regression is that targets t and feature vectors x are

linearly related with additive white Gaussian noise n.

t = wTx + n (3.5)

Given this assumption, the likelihood function for the weights w used in regression

is

p(D|β,w) =

(
β

2π

)N/2
exp

(
−β

2
‖XTw − t‖2

)
(3.6)

Here, t denotes the vector containing the regression targets, X denotes the matrix

that is obtained from the horizontal stacking of the training feature vectors, D

denotes the pair {X, t}, β denotes the inverse variance of the noise, and N denotes

the number of examples in the training set.

To perform inference in a Bayesian setting , one has to specify a prior distribution

for the latent variables, i.e., for the weight vector w. The expression for the prior

distribution we consider and use here is

p(w|α) =
( α

2π

)D/2 ( ε

2π

)1/2
exp

(
−1

2
wTI′(α)w

)
(3.7)

where I′(α) is a square, D + 1 dimensional, diagonal matrix

I′(α) =


α 0 . . . 0

0 α . . . 0
...

...
. . .

...

0 0 . . . ε
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and D is the number of features. Hence, the prior for the weights is an isotropic,

zero-mean Gaussian distribution. The effect of using a zero-mean Gaussian prior

for the weights is similar to the effect of regularization term used in ridge regression

and regularized FLDA. The estimates for w are shrunk towards the origin and the

danger of over-fitting is reduced. The prior for the bias (the last entry in w) is a

zero-mean univariate Gaussian. Setting ε to a very small value, the prior for the

bias is practically flat. This expresses the fact that a priori there are no assumptions

made about the value of the bias parameter.

Given the likelihood and the prior, the posterior distribution can be computed

using Bayes rule.

p(w|β, α,D) =
p(D|β,w)p(w|α)∫
p(D|β,w)p(w|α)dw

(3.8)

Since both the prior and the likelihood are Gaussian, the posterior is also Gaus-

sian and its parameters can be derived from the likelihood and the prior by complet-

ing the square. The mean m and covariance C of the posterior satisfy the following

equations.

m = β(βXXT + I′(α))−1Xt (3.9)

C = (βXXT + I′(α))−1 (3.10)

By multiplying the likelihood function Eq. 3.6 for a new input vector x̂ with the

posterior distribution Eq. 3.8 followed by integration over w, we obtain the predic-

tive distribution, i.e., the probability distribution over regression targets conditioned

on an input vector,

p(t̂|β, α, x̂,D) =

∫
p(t̂|β, x̂,w)p(w|β, α,D)dw (3.11)

The predictive distribution is Gaussian and can be characterized by its mean µ

and its variance σ2.

µ = mTx̂ (3.12)

σ2 =
1

β
+ x̂TCx̂ (3.13)

In this work, only mean values used for taking decisions in order to classify P300

signals which containing the target letter versus non-P300 signals which containing
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non-target letters by calculating score; mean value of the predictive distribution.

Mean values are summed over trials and the decision made by selecting the max

summed mean. In order to calculate the character accuracy, score of the trials

that contain the corresponding character should be summed individually. Scores

are added up in consecutive repetitions of stimuli (called trial groups) for typing a

particular character. The classifier chooses the character with the maximum score.

In this work, we use the scores, rather than the classification decisions of BLDA as

in [67].

3.3 Disjunctive Normal Unsupervised LDA classifier (DNUL)

The following sections provide the details of our proposed unsupervised classifi-

cation method based on the disjunctive normal form [30]. The first section propose

the model architecture of the unsupervised classifier which mainly focuses on inte-

grating the proposed idea to classify P300 signals unsupervisedly without using any

calibration session and labelled data. The second section shows how the classifier

parameters can be initialized and configured. The last section provides the model

optimization procedures in order to learn and update the classifier weights.

3.3.1 Model Architecture

Consider a two-class classification problem: C = {0, 1}, for which we observe

the data samples (x1, x2, ..., xn) where n is the number of samples. Let us assume

one row/column flash among a full sequence of flashes comes from the class C = 1

and all other (n − 1) row/column flashes in that sequence come from the class C

= 0 where C = 1 corresponds to row/column containing the target letter and C =

0 corresponds to row/column not containing the target letter. Let yj = f(xj) for

j ∈ {1, ..., n} where y ∈ {0, 1} and f(xj) is the classification function. Let us define

the following Boolean indicator function, which we will call the one-vs-all function

g(y).

g(y1, y2, ..., yn) =

1, if only one argument is 1;

0, otherwise.

(3.14)
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Any Boolean function can be written as a disjunction of conjunctions, also known

as the disjunctive normal form [68].

E(x) = g(y1, y2, ..., yn)

= (y1, y
′
2, ..., y

′
n) ∪ (y′1, y2, ..., y

′
n) ∪ ... ∪ (y′1, y

′
2, ..., yn)

(3.15)

Furthermore, allowing M repeated observations, we define:

E(x) =
M∑
i

g(f(x1i), f(x2i), ..., f(xni)) (3.16)

where we can relax the function f so it has real valued outputs in [0, 1] rather than

binary. We perform such relaxation through a logistic sigmoid function, where β is

a sensitivity parameter and S is the dimensionality of the feature vector.

f(xji) =
1

1 + e−β
(∑S+1

k=1 w(k)xji(k)
) (3.17)

Using De Morgan’s laws and products of conjunctions yields the following dif-

ferentiable energy function [68].

E(x) =
M∑
i

(
1−

n∏
j

(
1− f(xji)

n∏
k 6=j

(
1− f(xki)

)
︸ ︷︷ ︸

Qj

))
(3.18)

where M denotes the number of rounds for row/column highlights.

3.3.2 Model Initialization

Let us consider a P300 speller paradigm with Γ = {(x, L(x))}, where x denotes

the data and L(x) denotes the binary class label corresponding to x. Furthermore,

let Γ+ denote class L = 1 corresponding to the desired target and Γ− denote class

L = 0 corresponding to the non-desired target.

Since the model is designed to work in an unsupervised fashion, the labels for

learning the model will not be available to the algorithm. We will use the disjunctive

normal form-based energy function in (3.18) to classify the two classes without using

any labels. The weights w of the disjunctive normal unsupervised linear discriminant

(DNUL) classifier are randomly initialized and the bias term is set to 1 as it considers

a good initial seed point and chooses arbitrary in order to reduce the computational

time. Consider a speller matrix as in Fig. 1.2. We have 6 × 6 characters, which
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means the target character needs a set of row/column intensifications (highlights)

to cover the matrix in order to be classified. We call the set of intensifications

covering the entire array a trial group. Therefore, n = 6 in our algorithm. Trial

group is one of the important terms used for P300 spellers, which defined in details

in terminology section (chapter 4).

The sigmoid function in (3.17) takes the value 0.5 in the middle of the classifi-

cation line between two classes. The goal is to design a classifier to put the data

from the desired class in Γ+ when f(xji) ≥ 0.5 and data from non-desired class in

Γ− when f(xji) < 0.5 by optimizing the energy function in (3.18).

3.3.3 Model Optimization

In order to learn the DNUL classifier, we use gradient ascent to maximize the

energy function by taking the partial derivatives of the energy function with respect

to the weights. The gradient of the energy function in (3.18) is given by:

∂E

∂w
= −

M∑
i

∂

∂w

( n∏
j

Qj

)

= −
M∑
i

n∑
j

(
∂Qj

∂w

n∏
l 6=j

Ql

)
∂Qj

∂w
= − ∂

∂w
f(xji)

n∏
k 6=j

(
1− f(xki)

)
− f(xji)

n∑
p6=j

(
− ∂

∂w
f(xpi)

n∏
k 6=p,j

(
1− f(xki)

))
(3.19)

The model performs iterations till the DNUL classifier converges updating the

weights at each iteration: Equation (3.20) shows that where α is the step size or

learning rate. The bias term is included in the weight vector.

wnew = wold + α
∂E

∂w
(3.20)

3.4 Regularized Disjunctive Normal Unsupervised LDA Classifier (RD-

NUL)

In this section, a new regularization term is introduced. Regularization is used

to prevent overfitting to high dimensional data and possibly noisy datasets. Adding
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Lambda Influence on the model

λ = 0 Downgrade to the original energy function

λ =∞ Only cares about penalizing w which has the large influence

λ in between Balance data fit against the magnitude of the coefficients

Table 3.1: Influence of the tuning parameter.

the regularization term to the energy function which is introduced in Equation (3.18)

produces the regularized DNUL (RDNUL) energy function as follows:

E(x) =
M∑
i

(
1−

n∏
j

(
1− f(xji)

n∏
k 6=j

(
1− f(xki)

)
︸ ︷︷ ︸

Qj

))
− λ

2
‖w‖2 (3.21)

Where the penalty term in ridge regression composed of ‖w‖2 which is the L2

norm of the weight vector and λ which is the tuning parameter or constant regular-

ization parameter [69]. Table 3.1 shows the general influence of the tuning parameter

on the model.

By taking the partial derivative with respect to the weights, the gradient of the

regularization term is given by:

∂‖w‖2

∂w
= 2w (3.22)

Equation 3.23 shows the learning process including updating the weights at each

iteration where λ is the tuning parameter.

wnew = wnew + α(
∂E

∂w
− λw) (3.23)

For the tuning parameter, as it is an unsupervised problem we can’t use vali-

dation set (for large datasets) or cross validation (for smaller datasets) to tune the

parameter. In this work we chose that value empirically by trial and error.

3.5 Toy Examples for the Proposed Unsupervised Classifer

In this section, different scenarios of a toy example with synthetic data are in-

troduced for the proposed disjunctive normal unsupervised LDA classifier (DNUL).
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The aim of this section is to introduce the efficiency of the proposed DNUL classifier,

where discussed in detail in section 3.3.

The synthetic data are simulated for P300 spellers; we assume we have one

row/column flash contains a P300 component among a full sequence of flashes and all

other (n−1) rows/columns flashes in that sequence don’t contain P300 components.

In other words, the aim of the classifier is to classify a P300 instance on one side

and the other five instances which do not contain P300 on the other side in case of

6 × 6 matrix as shown in Figure 1.2. The data are generated based on a two class

classification problem, one class centred with a zero mean and the other class with a

mean vector of ones. The variance of the classes are chosen with different diversity

in order to control the difficulty of the problem.

The DNUL classification model is one of the most challenging as it starts initially

unlearned without using labels. In this case, the model fed by the synthetic data

directly in order to classify the P300 signals without any single labelled instance.

The initialization parameters of the DNUL classifier for the toy example initialized as

following: for each classifier, we perform 10 optimizations. For each optimization,

we initialize 2 weight vectors drawn from normally distributed random numbers

∼ N (0, 1), one with w and one with -w. In total, we have 20 classifiers and we

pick the classifier with the highest energy function. The number of iterations is set

to 500, the step size is set to α = 0.2, and the sensitivity parameter β = 1. We

generated two dimensional (2D) data with 312 artificial instances.

First, we started with a very ideal simple toy example to show the strength of

the proposed model. In order to change the difficulty of the classification data,

we increased the data variance. Hence, the intersection between classes increases.

Figure 3.1 illustrates a detailed example with an easy case.
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Figure 3.1: A toy example on a synthetic dataset with a standard deviation =

0.2. The DNUL classifier classified the data successfully with 100% classification

accuracy. The second figure shows the energy function for the initialized 2 random-

weight vectors for one of the classifiers among 10 classifiers (which is the highest).

As we can see from the Figure 3.1, the energy function with -w converged to

1 (Energy = 1) and the other one with w be unabled to reach a high energy and

failed to classify the instances. The following figures show the different scenarios

with increasing the variance and how the DNUL classifier is able to classify the

synthetic data with different hard levels.
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Figure 3.2: A toy example on a synthetic dataset with a standard deviation =

0.4. The classifier achieved 97.76% classification accuracy with true positive rate =

94.23% and true negative rate = 97.69%.
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Figure 3.3: A toy example on a synthetic dataset with a standard deviation =

0.5. The classifier achieved 95.19% classification accuracy with true positive rate =

82.69% and true negative rate = 98.46%.
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Figure 3.4: A toy example on a synthetic dataset with a standard deviation =

0.6. The classifier achieved 91.67% classification accuracy with true positive rate =

71.15% and true negative rate = 95.76%.
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Figure 3.5: A toy example on a synthetic dataset with a standard deviation =

0.7. The classifier achieved 90.71% classification accuracy with true positive rate =

69.23% and true negative rate = 95%.
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Figure 3.6: A toy example on a synthetic dataset with a standard deviation =

0.8. The classifier achieved 87.18% classification accuracy with true positive rate =

63.46% and true negative rate = 91.92%.
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Figure 3.7: A toy example on a synthetic dataset with a standard deviation =

0.9. The classifier achieved 86.56% classification accuracy with true positive rate =

61.53% and true negative rate = 91.53%.
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Chapter 4

Offline and Simulated Online Analysis Experiments

This chapter includes the procedures and steps for the signal processing which

has been applied on the EEG data for this study. In addition, it contains the

description of offline and simulated online analysis. At the end of the chapter, the

experimental results for both of these analyses and comparison with other relevant

studies have been shown.

4.1 Background

In BCI research, there are many scenarios for analysing the EEG data. The most

common scenarios for P300 spellers are offline, online simulation analysis, and real

online analysis. Each of these types of analysis has its own purpose and laboratory

configuration.

Offline analysis is one of the main common analysis used for P300 speller where

the data collection performed separately from the experimental analysis. In other

words, the data collection can be recorded in one laboratory in a broad period

of time, and then the analysis is done in another place at different time, with all

the experimental data as a chunk. The purpose of this analysis is to develop a

classification algorithms and techniques for P300-based BCIs, that is because the

whole dataset is available for the classifier. For this case, there is no feedback

capability to indicate the classification results; which allows the subject to see the

chosen character. Offline analysis considered as a first step toward the improvement

of a real P300 speller system, where the subject can see the written characters in a

real-time.

In online analysis, generally, data are pre-processed and analysed concurrently.
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In other words, for P300 spellers the characters are pre-processed and classified one

by one in a real time and we call this by real online analysis. The offline recorded data

can also be online analysed by simulating the offline recorded characters individually.

In this case, characters classified sequentially one by one and the classification results

are instantly displayed to the subject. For this case we call this scenario by simulated

online analysis. Hence, feedback can be provided for the subject for these analysis.

Online analysis is useful toward understanding the strength of the classifier as it

starts with less amount of data and increases sequentially which make it harder for

the classifier to learn with small amount of data especially in the beginning.

4.2 Terminology

Some extensively used terms should be defined in order to make it possible for

readers to understand clearly the work presented in this thesis. This section exactly

follows the same terminology used in [37] [49] .

• A target letter is the letter that the subject is informed to focus on at a time

instant.

• A trial denotes the intensification of each row or column, the timing of which

is marked by trigger signals in the recording. We also use the term “flash” in

this thesis to imply a trial.

• A trial group is the group of trials that includes each row and column in-

tensification that is flashed exactly once. For example, with a speller matrix

dimension of 6×6, a trial group consists of 12 individual flashes in which there

are no rows or columns that are flashed more than once. With this in mind,

a trial group is the smallest data set for a P300 classification problem. In this

thesis, a trial group is sometimes referred as repetition or one set of flashes.

• An epoch is a determined period of recorded data that includes a trial. In

P300 studies, this period is usually from 600 ms to 1000 ms starting from the

time when a stimulus event (flash) occurs.

• A run is the collection of several trial groups. A run is recorded for each letter

defined in a session to be spelled. There can be a period of a few seconds
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between each run, but the recording is not interfered with, and is continues.

• A session is the time period in which the recordings for all previously defined

number of target letters are done.

• A session group is the collection of all sessions recorded with one subject

during the course of a day with a time break in between each session.

To increase the performance of the classifier, the number of recorded trial groups

(repetitions) in a run in the training set has to be increased. However, that leads

to low information rate and therefore the speed of the BCI system is decreased.

Hence, researchers on BCI try to come up with efficient signal processing and clas-

sification algorithms to achieve performance improvements in accuracy and speed

simultaneously.

4.3 P300 Classification Problem

The aim of the classification problem is to detect or determine whether the

received epoch contains P300 component or not. It can be seen that, it is the first

step toward classification since a trial group (the smallest dataset which contains 12

trials) contains two P300 components and the other 10 trials not containing a P300

component. The intersection between row and column which corresponds to P300

components can be deduced, in order to classify a character. If the classifier makes

a single mistake for a trial group then we will lose the character. In this case, the

classifier accuracy may appear higher than the character accuracy. All the results

reporting in this thesis are for character accuracies.

The data are recorded in two sessions, one for training the classifier and the other

used for testing; to see how well the classifier learnt. In this thesis, classification

algorithms are divided in two categories, supervised and unsupervised classification.

For the supervised classification, we have used the Linear Discriminant Analysis

(LDA) classifier and Bayesian Linear Discriminant Analysis (BLDA), which were

described in Sections 3.1 and 3.2, respectively. The classifier uses a classical machine

learning methodology where the first session is used as the training set and the other

session is given to the classifier as the test set for evaluation. MATLAB was used

to perform all the analysis of the experimental data in this study and to read the
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raw EEG data file in BioSemi Data File (BDF) format. It also creates the necessary

data structures for the recorded data. As the data structures are formed after the

recorded data file is read, data epochs of 1-second (1000 ms) periods that follow

each trigger signal are extracted and each epoch is labelled as 1 or -1 according to

the target stimuli. In addition, R programming was used to represent and illustrate

the results.

DNUL, our unsupervised classifier proposed in section 3.3, has a different method-

ology in learning compared to supervised classifiers. It is unsupervisedly trained on

the test set. The learning process looks different compared to the supervised classi-

fiers but as a rule with unsupervised algorithms, the learning process starts with the

test data and the learning (training) perform without using any ground truth label.

This methodology was used to enable comparison with other supervised algorithms

on the same data.

4.4 Methods

4.4.1 Data pre-processing

The 6 × 6 spelling matrix uses the most common stimulus type as shown in

Figure 1.2. The intensification covers the rows and columns of the matrix in a block-

randomized fashion. Each intensification flashes exactly once with an inter-stimulus

interval (ISI) of 125 ms; the intensification duration of 50 ms and the remaining 75

ms waiting for the next intensification. As it mentioned before, EEG signals suffer

from low signal to noise ratio (SNR) due to several factors including the variability

in brain activities. Therefore, P300 spellers need several stimulus repetitions (trial

groups) to increase the classification accuracy. In this work we fixed the number of

trial groups to 15. Each trial group consists of 12 trials; 2 of the trials are relevant

to stimuli (contain P300 component) and the other 10 trials are irrelevant stimuli

(not contain P300 component). When a particular experiment involves the use of

multiple trial groups we average the EEG data over the trial groups to obtain the

data points to be used in classification. The pre-processing of the data in this work

follows the steps which described in [70].

Temporal EEG data was recorded from 12 active channels during the experiment
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which were placed at Fp1, Fp2, Fz, Cz, Pz, Oz, P3, P4, Po7, and Po8 locations ac-

cording to the international 10-20 system, in addition to the two auxiliary electrodes

located on the mastoid channels for reference as shown in Figure 2.6. The data were

recorded with the BioSemi acquisition ActiView software. It is an open source pro-

gram written in LabVIEW. It saves the recordings as a BDF file, which uses a format

originally developed by BioSemi. MATLAB is used to extract the saved BDF file

via the code developed by Alois Schloegl in 1998. After that, the raw data pass

through several signal processing steps before the classification step.

Trigger channel plays a role in dividing the data into epochs where it can be

extracted form the raw data. In order to do that, times (sample numbers in the

sequence) and values (actual trigger values) of each trigger signal are obtained from

the data in the trigger channel and stored in a key-value pair. After obtaining this

information, a sequence of row/column can be obtained. In this work, exploiting

this information also motivates us to classify P300 components with knowing the

sequence of row/column trail.

First step to do with the raw data in order to obtain a better representation of

P300 component is filtering. The whole data are filtered with a 3rd order Butter-

worth bandpass filter with cut-off frequencies 1-12 Hz. The aim of filtering is to get

rid of irrelevant frequency components such such as background noise (e.g. power

cable frequency) and DC offset that occurs between electrodes and the skin due to

sweating. There are other different irrelevant artifacts that come from the body

potentials of the subject due to muscle movement and irrelevant EEG signals that

are not relevant to P300 component. Hence, as mentioned before the mean of two

recorded mastoid channels are used as a reference signal by subtracting these from

the other channels, we obtain a higher SNR and the data are referenced.

The next step after the data have been filtered is to reshape the whole data into

epochs. Each epoch is a data set of 1 second (1000 ms). Since, the data are sampled

at 2048 Hz; each epoch contains 2048 samples. The recorded data are decimated

by 64 in order to reduce the feature space. After the preparation step, the data

are normalized to remove the negative effects of the electrode-skin resistance which

plays a role in amplitude changes. However, if the waveform contains very high and

extreme values, normalization may result in a poor performance. To eliminate that
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effect, the data are windsorized in a 10% window. Windsorizing the data removes

the extremities by clipping the samples that are out of this window and provides a

healthy normalization. At the end, we have a better representation of the data and

we got a feature vector contains 32 samples after decimation. Hence, the data are

ready for classification.

The pre-processing method described in section 4.4.1 are applied equally to all

7 subjects included in SU dataset as shown in Appendix A, and the results for each

subject is presented separately [37].

4.4.2 Classification

Classification is one of the most important steps in the scope of this thesis.

After the data pre-processing procedure, we get a feature vector for each epoch

by concatenating the filtered data from each electrode. Sequel to the above pre-

processing section, in case of 10 electrodes we obtain a feature vector of 320 samples.

At the end, we reshape the data in order to obtain a matrix of size r × t where r

is the size of feature vector (320 samples) and t is the number of feature vectors

(epochs) usually it equals to 180 (12 trials × 15 trial groups).

The data now are ready for classification. As shown in Chapter 3, we used two

different learning paradigms for classifying the P300 component: supervised and

unsupervised learning. We used supervised techniques in this thesis to compare

with our proposed unsupervised classifier.

4.5 Dataset

In our offline validation, this work used three different datasets involving data

from a 6 × 6 visual matrix speller. In the first one, data are recorded in our own

laboratory by 7 male healthy subjects who performed offline spelling, whose ages

are between 18 and 30. Only two of the subjects had prior BCI experience. The

6 × 6 spelling matrix uses the most common stimulus type. The intensification

covers the rows and columns of the matrix in a block-randomized fashion. Each

subject recorded two sessions: one for training and one for testing. The training

session involved spelling 14 characters forming 2 Turkish words. The test session

involved spelling 26 characters forming 4 Turkish words. In this work, we generate
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two versions of test data, one with 14 characters and the other one with the entire

26 characters as shown in Table A.1. The data were recorded with the BioSemi

ActiView software. We used the data pre-processing methods described in section

4.4.1. Details of this dataset are given in Appendix A.

The second and third datasets are publicly available and most widely used in

BCI research. These datasets are: BCI Competition II (Dataset IIb) [32] and BCI

Competition III (Dataset II) [33]. The first one involves one subject called subject C

and it is considered as an easy dataset. The second dataset involves 2 subjects called

subjects A and B. Subject A is harder than subject B. Details of these datasets are

given in Appendix A.

4.6 Experimental Setup

In order to evaluate the proposed disjunctive normal unsupervised LDA classifier

(DNUL) for the P300 based speller, accuracy and bit-rate performance have been

evaluated. These two main criteria can demonstrate our classifier effectiveness.

Classifier accuracy is calculated by dividing the total number of correctly classified

characters in a session by the total number of characters to be classified in that

session. To evaluate the speed of communication, information transfer rate, which

is commonly called bit-rate (B) in bits/min is computed as in [71]:

B =
60

T

(
log2(n) + p log2(p) + (1− p) log2

(
1− p
n− 1

))
(4.1)

where n is the number of characters in the speller matrix (36 in this case), p is

the classification accuracy and T is the time in seconds that is needed to spell one

symbol calculated for SU datasets as in Appendix A by (3.5 + 0.125 × 12 × Nt),

where Nt is the number of available trial groups. Since one set of flashes takes 1.5 s

and assuming that 3.5 s is needed to display the target letter to the subject, there

can be 12 characters at maximum that a subject can type in a minute. Hence, the

maximum bit-rate of our system using a perfect classifier for offline classification is

62.04 bits/min, which is calculated by 12× log2 36, for using one trial group in SU

datasets. Using more trial groups will reduce the bit-rate as for 15 trial groups the

perfect classifier for offline classification is 11.93 bits/min. In a similar way, for the
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BCI competitions dataset as shown in Appendix A, one set of flashes takes 2.1 s. If

we take into account the 2.5 s period for the target letter displaying, at most 13.04

characters can be typed in a minute by the subject. Hence, the maximum bit-rate

for offline classification for both BCI competition II and BCI competition III are

67.42 bits/min.

Two other supervised classifiers, LDA and BLDA, are used for comparison with

the proposed unsupervised classifier and all of them will be evaluated using the same

criteria.

4.7 Experimental Results

The DNUL classification model is one of the most challenging as it starts initially

unlearned without using labels. In this case, there is no need for the training session,

the approach just evaluates the model on the upcoming EEG data as discussed in

Chapter 3. Most systems, including ours, classify the individual intensifications and

combine the outputs to predict the spelled character and that makes the problem

harder, because if the model fails to classify one intensification it will lead to losing

a character.

The number of trial groups for spelling a character was pre-defined, the maximum

number of trial groups recorded in these datasets was 15. Our experiments are

divided into two main categories, offline analysis (batch mode) and simulated online

analysis (sequential mode). The sequential mode is designed to simulate online

spelling in order to evaluate the sequential adaptation process of the classifier. The

configurations of these setups are shown in the next corresponding sections.

Two extensively used terms should be clearly described in order to understand

the results presented in this thesis.

• An optimization: for each optimization, we initialize 2 weight vectors drawn

from normally distributed random numbers ∼ N (0, 1), one with w and one

with -w.

• A Classifier group: For each classifier group, we perform 10 optimizations.

In total, we have 20 classifiers and we pick the classifier with the highest energy

function.
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The initialization parameters of the DNUL model is the same for all experiments.

The number of iterations is set to 500 and the step-size is set to α = 0.2. The

sensitivity parameter β = 0.1 was chosen based on an analysis performed for 7

subjects and is used for the whole other dataset as shown in detail in Appendix

B. The variation of β will alter the classification accuracy as depicted in Figure

B.1. Sensitivity parameter β controls the steepness of the sigmoid; the bigger β

is, the steeper the sigmoid. We are working on a mechanism to set this parameter

automatically based on data.

4.7.1 Offline Analysis

To start, we compare our proposed approach with the supervised LDA and BLDA

classifiers. As a rule, the LDA and BLDA classifiers always learns (trains) with the

training data and the DNUL classifier learns (trains) with the test data which will be

used for validating the supervised classifiers in order to enable comparison. In this

section, two main offline experiments are performed to demonstrate the efficiency of

the unsupervised classifier.

• Batch mode: In this configuration mode, experiments are carried out by

averaging the EEG dataset with a chunk of the whole trial groups (15 in

this case) for supervised or unsupervised learning and then the classifier is

evaluated on the sequence of trial groups starting from 1 to 15.

• N-Batch mode: In this mode, the number of trial groups for supervised and

unsupervised learning respectively matches the number of trial groups used

for testing.

SU-Dataset: Batch mode with 26 characters in the test set

In this experiment, all classifiers are evaluated on the (Test 2) dataset as shown

in Table A.1. The detailed accuracies for individual subjects corresponding to the

experiments are given in Table 4.1 and can be shown in Figures 4.1 to 4.8. The

curves display classification accuracy and bit-rate as a function of the number of

trial groups involved in each data sample used to test the classifiers.
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Figure 4.1: Offline analysis results for subject 1 with (Batch-26) configuration.

As it can be seen, using more trial groups, DNUL improves compared to LDA

and getting closer in performance to BLDA. The overall improvement from LDA to

DNUL is 34.61% and 4.47 bits/min for accuracy and bit-rate respectively in case of

15 trial groups. There is a small difference between BLDA and DNUL in case of 15

groups. The BLDA improved compared to DNUL by 13.74% and 2.25 bits/min for

accuracy and bit-rate respectively and that is because of the non-stationarity of the

EEG signals.

Table 4.1: Percentage of correctly classified characters for each subject obtained

with different values of trial groups for (Batch-26).

5 trial groups 10 trial groups 15 trial groups

Subjects DNUL LDA BLDA DNUL LDA BLDA DNUL LDA BLDA

S1 15.38 3.85 46.15 61.54 11.54 61.54 84.62 15.38 84.62

S2 7.69 3.85 57.69 53.85 23.08 65.38 76.92 34.62 88.46

S3 11.54 7.69 61.54 50 30.77 84.62 76.92 34.62 96.15

S4 46.15 7.69 80.77 76.92 30.77 92.31 88.46 61.54 92.31

S5 42.31 11.54 53.85 88.46 23.08 84.62 100 50 100

S6 7.69 3.85 57.69 19.23 23.08 57.69 26.92 50 84.62

S7 65.38 3.85 96.15 96.15 34.62 100 96.15 61.54 100

Average 28.02 6.04 64.84 63.74 25.27 78.02 78.57 43.96 92.31
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Figure 4.2: Offline analysis results for subject 2 with (Batch-26) configuration.
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Figure 4.3: Offline analysis results for subject 3 with (Batch-26) configuration.
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Figure 4.4: Offline analysis results for subject 4 with (Batch-26) configuration.
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Figure 4.5: Offline analysis results for subject 5 with (Batch-26) configuration.
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Figure 4.6: Offline analysis results for subject 6 with (Batch-26) configuration.
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Figure 4.7: Offline analysis results for subject 7 with (Batch-26) configuration.
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Figure 4.8: Average classification performance over 7 subjects with (Batch-26).

Error shadows show 95% confidence intervals from the mean with sample size = 7.

SU-Dataset: Batch mode with 14 characters in the test set

For this experiment, all classifiers are evaluated on the (Test 1) dataset as shown

in Table A.1. The idea behind this analysis is that we came up with a version which

has equal number of characters to learn and evaluate with the supervised classifiers.

The detailed accuracies for individual subjects corresponding to the experiments are

given in Table 4.2 and can be shown in Figures 4.9 to 4.16.

As shown in the table 4.2, there is no change in behaviour of the classifiers among

Table 4.2: Percentage of correctly classified characters for each subject obtained

with different values of trial groups for (Batch-14).

5 trial groups 10 trial groups 15 trial groups

Subjects DNUL LDA BLDA DNUL LDA BLDA DNUL LDA BLDA

S1 21.43 7.14 50 85.71 21.43 71.43 85.71 28.57 85.71

S2 14.29 0 57.14 28.57 28.57 64.29 42.86 28.57 85.71

S3 14.29 0 64.29 71.43 21.43 85.71 71.43 35.71 92.86

S4 42.86 7.14 78.57 85.71 35.71 92.86 92.86 35.71 92.86

S5 21.43 14.29 42.86 71.43 21.43 85.71 85.71 57.14 100

S6 7.14 0 42.86 7.14 14.29 42.86 21.43 42.86 85.71

S7 42.86 0 92.86 85.71 28.57 100 85.71 50 100

Average 23.47 4.08 61.22 62.24 24.49 77.55 69.39 39.8 91.84
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each others. DNUL overcomes in performance compared to LDA. The performance

outcome of this experiment is generally smaller than the previous experiment spe-

cially for DNUL as it learns with less number of characters than the previous one.

For the supervised classifiers, the accuracies are fairly comparable with DNUL as

they learn with the same amount of characters. Besides, the performance of the

bit-rate shows the speed of typing reduces a little bit compared to the previous

experiment.

The next two experiments related to SU-datasets are going to use different con-

figuration mode which we call N-batch mode as mentioned in the offline analysis

section.
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Figure 4.9: Offline analysis results for subject 1 with (Batch-14) configuration.
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Figure 4.10: Offline analysis results for subject 2 with (Batch-14) configuration.
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Figure 4.11: Offline analysis results for subject 3 with (Batch-14) configuration.
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Figure 4.12: Offline analysis results for subject 4 with (Batch-14) configuration.
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Figure 4.13: Offline analysis results for subject 5 with (Batch-14) configuration.
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Figure 4.14: Offline analysis results for subject 6 with (Batch-14) configuration.
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Figure 4.15: Offline analysis results for subject 7 with (Batch-14) configuration.
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Figure 4.16: Average classification performance over 7 subjects with (Batch-14).

Error shadows show 95% confidence intervals from the mean with sample size = 7.
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SU-Dataset: N-Batch mode with 26 characters in the test set

In this experiment, all classifiers are evaluated on the (Test 2) dataset as shown

in Table A.1. This experiment follows the same methodology of Batch mode with

26 characters, but apart from this, it has a different configuration. With this con-

figuration the number of trial groups the classifiers techniques use for supervised

and unsupervised learning respectively matches the number of trial groups used

for testing. The detailed accuracies for individual subjects corresponding to the

experiments are given in Table 4.3 and are shown in Figures 4.17 to 4.24. The

curves display classification accuracy and bit-rate as a function of the number of

trial groups involved in each data sample used to test the classifiers.

For this mode, it can be expected that the performance of most classifiers for the

first few trial groups would be worse than the other mode. For instance, with 5 trial

groups, the overall deterioration from batch mode to N-batch mode for accuracy of

DNUL and BLDA is 19.78% and 8.8% respectively. Interestingly, the LDA classifier

improved 8.25% with 5 trial groups. Table 4.3 gives more details for 10 and 15 trial

groups.

Table 4.3: Percentage of correctly classified characters for each subject obtained

with different values of trial groups for (N-Batch-26).

5 trial groups 10 trial groups 15 trial groups

Subjects DNUL LDA BLDA DNUL LDA BLDA DNUL LDA BLDA

S1 0 3.85 42.31 57.69 11.54 57.69 88.46 15.38 84.62

S2 3.85 7.69 42.31 3.85 23.08 61.54 69.23 34.62 88.46

S3 15.38 11.54 50 61.54 23.08 88.46 76.92 34.62 96.15

S4 19.23 19.23 80.77 92.31 30.77 96.15 88.46 61.54 92.31

S5 0 7.69 53.85 65.38 19.23 88.46 100 50 100

S6 0 3.85 23.08 3.85 15.38 65.38 42.31 50 84.62

S7 19.23 46.15 100 3.85 38.46 100 96.15 61.54 100

Average 8.24 14.29 56.04 41.21 23.08 79.67 80.22 43.96 92.31
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Figure 4.17: Offline analysis results for subject 1 with (N-Batch-26) configuration.
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Figure 4.18: Offline analysis results for subject 2 with (N-Batch-26) configuration.
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Figure 4.19: Offline analysis results for subject 3 with (N-Batch-26) configuration.
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Figure 4.20: Offline analysis results for subject 4 with (N-Batch-26) configuration.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trial groups

A
cc

ur
ac

y 
(%

)

Classifiers

BLDA

DNUL

LDA

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trial groups

B
it 

ra
te

 (
bi

ts
/m

in
) Classifiers

BLDA

DNUL

LDA

(a) Classifier Accuracy (b) Bit rate

Figure 4.21: Offline analysis results for subject 5 with (N-Batch-26) configuration.
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Figure 4.22: Offline analysis results for subject 6 with (N-Batch-26) configuration.
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Figure 4.23: Offline analysis results for subject 7 with (N-Batch-26) configuration.
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Figure 4.24: Average classification performance over 7 subjects with (N-Batch-26).

Error shadows show 95% confidence intervals from the mean with sample size = 7.

SU-Dataset: N-Batch mode with 14 characters in the test set

In this experiment, all classifiers are evaluated on the (Test 2) dataset as shown in

Table A.1. This experiment uses the N-batch mode with 14. The detailed accuracies

for individual subjects corresponding to the experiments are given in Table 4.4 and

can be shown in Figures 4.25 to 4.32. The curves display classification accuracy and

bit-rate as a function of the number of trial groups involved in each data sample

used to test the classifiers.
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Table 4.4: Percentage of correctly classified characters for each subject obtained

with different values of trial groups for (N-Batch-14).

5 trial groups 10 trial groups 15 trial groups

Subjects DNUL LDA BLDA DNUL LDA BLDA DNUL LDA BLDA

S1 0 7.14 42.86 0 21.43 71.43 71.43 28.57 85.71

S2 7.14 7.14 50 0 28.57 64.29 0 28.57 85.71

S3 7.14 14.29 50 57.14 28.57 85.71 71.43 35.71 92.86

S4 0 21.43 78.57 92.86 35.71 100 92.86 35.71 92.86

S5 0 0 28.57 78.57 14.29 100 85.71 57.14 100

S6 7.14 7.14 21.43 21.43 21.43 64.29 28.57 42.86 85.71

S7 7.14 50 100 7.14 42.86 100 85.71 50 100

Average 4.08 15.31 53.06 36.73 27.55 83.67 62.24 39.8 91.84
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Figure 4.25: Offline analysis results for subject 1 with (N-Batch-14) configuration.
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Figure 4.26: Offline analysis results for subject 2 with (N-Batch-14) configuration.
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Figure 4.27: Offline analysis results for subject 3 with (N-Batch-14) configuration.
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Figure 4.28: Offline analysis results for subject 4 with (N-Batch-14) configuration.
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Figure 4.29: Offline analysis results for subject 5 with (N-Batch-14) configuration.
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Figure 4.30: Offline analysis results for subject 6 with (N-Batch-14) configuration.
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Figure 4.31: Offline analysis results for subject 7 with (N-Batch-14) configuration.
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Figure 4.32: Average classification performance over 7 subjects with (N-Batch-14).

Error shadows show 95% confidence intervals from the mean with sample size = 7.

Overall, these results demonstrate the unsupervised classification capability of

DNUL against the LDA; the most comparable supervised classifier in terms of classi-

fication decisions and simplicity. Although the BLDA performed better than DNUL,

BLDA is one of the most powerful classifiers for P300 since it uses regularization,

still our proposed classifier learned without any labelled data in comparison with

BLDA and gives a high accuracy especially with larger number of trial groups. Inter-

estingly, when the unlabelled data quality (through more repetitions) and quantity

(through more characters) is sufficiently high, DNUL appears to provide better per-

formance than supervised LDA which is trained on labelled data from a separate

session. We speculate this might be due to the non-stationary nature of the EEG

data across the sessions. Same for BLDA, but for this case our DNUL classifiers

appears to provide a high accuracies with some of the subjects (For instance, some

subjects with DNUL exceeded the BLDA performance in the last 5 trial groups,

and one subject exceeded the BLDA accuracy from the 9th trial group as shown in

Figure 4.10) and these variations in accuracies appears due to the non-stationary

nature of the EEG data across the sessions.

Regularized DNUL (RDNUL)

A direction toward improving the DNUL performance is to add a regularization

term as proposed in section 3.4. As it can be seen form the figures below, regular-
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Figure 4.33: Average classification performance comparing the regularized DNUL

classifier with DNUL. Error shadows corresponding to the point show 95% confi-

dence intervals from the mean with sample size = 7.

ization term slightly increased the accuracies for all the experiment described above

in comparison with DNUL.

Figure 4.33 shows the overall accuracies form the DNUL and the RDNUL which

follow the same experiments methodology. For Batch mode, we can see that RDNUL

accuracies exceeded the DNUL among all number of trial groups. On the other hand,

with N-batch mode, accuracies remain close across trial groups. Moving to the

bit-rate, Figure 4.34 shows an overview of bit-rates for the described experiments

with RDNUL bitrates. Logically, It can be proved that the bit-rate is directly

proportional with the accuracy performance of the classifier. That demonstrates

that RDNUL bit-rates for batch mode slightly increased compared to DNUL.
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Figure 4.34: Bit rate performance comparing the regularized DNUL classifier with

DNUL. Error shadows corresponding to the point show 95% confidence intervals

from the mean with sample size = 7.

BCI Competition Dataset II & III Results

Before going through the performance results for the proposed method with the

BCI competition datasets, different pre-processing techniques are applied to the BCI

competition dataset in order to get a good representation of P300 signals. Appendix

A describes the properties of the datasets, time, and channel parameters. In this

section we are going to evaluate the proposed classifier with two datasets form BCI

competition which contains 3 subjects A, B and C. The pre-processing procedure

used for these datasets is listed below:

• A version with 12 electrodes out of 64 was chosen by the position of central,

parietal, and occipital lobes where the P300 signal is known to be more appar-

ent. The selected channels are Fz,Cz,Pz,Oz,O1,O2,P3,P4,CPz,FCz,PO7 and
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PO8. Note that 8 of these channels were also used in our own EEG recordings

(SU-Dataset) as in [37].

• Another version with the whole 64 electrodes was chosen and used in com-

parison with the relevant work in [11].

• Averaging all 64 channels signal is computed and then subtracted from each

channel for referencing. This method called a Common Average Reference

(CAR) as in [72]. Unlike SU-Dataset recordings which we had the mastoid

channels that were not used in this dataset for reference purpose.

• A band-pass filter with cut off frequencies 1-30 Hz was applied to the whole

data and the data were normalized and windsorized.

• An epoch was extracted with a time frame of 0-667 ms post stimulus, starting

from the sample where the stimulus is presented. The dimensionality was

reduced by sub-sampling with a factor 8 and 20 samples for each channel was

retained.

The following experiments evaluated the proposed method with different datasets

using the previous pre-processing technique. The experiments below will follow the

same methodology for batch mode and N-batch mode configurations. Subject A

is considered as the hardest subject in terms of classifying the P300 component.

Subject C is considered an easy subject where classifying the P300 component is

easier. Bit-rate is also depicted in the figures as a function of the number of trial

groups.

64



BCI Competition III Dataset: Subject A (Batch-mode)
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Figure 4.35: Average classification performance for subject A over 5 classifier groups

using 12 electrodes with a batch mode configuration.
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Figure 4.36: Average classification performance for subject A over 5 classifier groups

using 64 electrodes with a batch mode configuration.

As seen in the Figure 4.35 and 4.36, the classification accuracies reached the

maximum with 15 trial groups. DNUL shows its effectiveness compared with the

LDA classifier. It can be noticed that DNUL performance is slightly higher when

using more electrodes. Interestingly, LDA classifier totally failed in case of 64 elec-

trodes due to high dimensionality of the feature vector against other classifiers. Bit

rates are increased gradually with more trial received compared to LDA. However,

it is almost stable with BLDA. Table 4.5 and 4.6 show the percentage accuracies.
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BCI Competition III Dataset: Subject A (N-Batch-mode)
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Figure 4.37: Classification performance for subject A using 12 electrodes with a

N-batch mode configuration.
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Figure 4.38: Classification performance for subject A using 64 electrodes with a

N-batch mode configuration.

Figure 4.37 and 4.38 show the classification accuracies for the N-batch mode

configurations. It can be seen in case of using 64 electrodes that the DNUL failed

with the 10th trial group and got 0% accuracy. The reason is the 10 optimizations

are not sufficient enough to reach a high energy function for that case. That does

not imply we always get 0% accuracy with this amount of trial groups. Table 4.7

shows the percentage accuracies in detail for the used classifiers.
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BCI Competition III Dataset: Subject B (Batch-mode)
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Figure 4.39: Average classification performance for subject B over 5 classifier groups

using 12 electrodes with a batch mode configuration.
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Figure 4.40: Average classification performance for subject B over 5 classifier groups

using 64 electrodes with a batch mode configuration.

As seen in the Figure 4.39 and 4.40, this time DNUL reached the highest accuracy

compared to other supervised classifiers with 64 electrodes. Furthermore, the BLDA

and DNUL have close accuracies in case of 12 electrodes. Table 4.5 and 4.6 show

the percentage accuracies in details for the used classifiers. Note that, Table 4.5 and

4.6 shows the 5 classifier groups in detail.
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BCI Competition III Dataset: Subject B (N-Batch-mode)
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Figure 4.41: Classification performance for subject B using 12 electrodes with a

N-batch mode configuration.
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Figure 4.42: Classification performance for subject B using 64 electrodes with a

N-batch mode configuration.

It can be seen in this case of using 64 electrodes that the DNUL failed with

some trail groups and as we said the reason is the about 10 optimizations are not

sufficient to reach a high energy function as shown in Figure 4.41 and 4.42. Table

4.7 shows the percentage accuracies in detail for the used classifiers.
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BCI Competition II Dataset: Subject C (Batch-mode)
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Figure 4.43: Average classification performance for subject C over 5 classifier groups

using 12 electrodes with a batch mode configuration.
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Figure 4.44: Average classification performance for subject C over 5 classifier groups

using 64 electrodes with a batch mode configuration.

Subject C is considered as an easy subject. DNUL classifier reached to 100%

classification accuracy with this subject. Using the whole set of electrodes slightly

improved the character classification with smaller number of trial group. Bit rates

are high and increased gradually with more trial received compared to LDA. Table

4.5 and 4.6 show the percentage accuracies in detail using 5 classifier groups for the

used classifiers.
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BCI Competition II Dataset: Subject C (N-Batch-mode)
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Figure 4.45: Classification performance for subject C using 12 electrodes with a

N-batch mode configuration.
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Figure 4.46: Classification performance for subject C using 64 electrodes with a

N-batch mode configuration.

As can bee seen with N-batch configuration for subject C, the DNUL classifier

reached 100% classification accuracy with only 4 trial groups. That demonstrates

that our DNUL classifier is able to compete with other supervised classification ac-

curacies. Table 4.7 shows the percentage accuracies in detail for the used classifiers.
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BCI Competition II & III Results Summary Tables

Table 4.5: Batch mode: percentage of correctly classified characters for subjects

A, B, and C for 12 electrodes. The values in braces are the standard deviation.

R LDA BLDA DNUL(1) DNUL(2) DNUL(3) DNUL(4) DNUL(5) DNUL

A 5 5 42 11 12 14 12 12 12.2 (1.1)

10 23 66 35 37 35 37 37 36.2 (1.1)

15 38 81 66 65 65 65 66 65.4 (0.54)

B 5 22 66 31 31 35 30 32 31.8 (1.92)

10 50 86 70 70 62 69 69 68 (3.39)

15 49 93 90 89 90 90 89 89.6 (0.55)

C 5 22.58 90.32 74.19 77.42 77.42 77.42 74.19 76.13 (0.55)

10 64.51 100 100 100 100 100 100 100 (0.0)

15 74.19 100 100 100 100 100 100 100 (0.0)

Table 4.6: Batch mode: percentage of correctly classified characters for subjects

A, B, and C for 64 electrodes. The values in braces are the standard deviation.

R LDA BLDA DNUL(1) DNUL(2) DNUL(3) DNUL(4) DNUL(5) DNUL

A 5 2 54 10 4 13 14 13 10.8 (4.09)

10 5 77 43 44 52 49 50 47.6 (3.91)

15 9 91 80 72 85 83 85 81 (5.43)

B 5 1 66 41 43 42 39 39 40.8 (1.8)

10 5 89 83 82 84 76 84 81.8 (3.34)

15 5 95 96 98 95 95 95 95.8 (1.3)

C 5 0 93.55 70.96 70.96 74.19 70.96 70.96 71.61 (0.45)

10 0 100 100 100 100 100 100 100 (0.0)

15 12.9 100 100 100 100 100 100 100 (0.0)
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Table 4.7: N-Batch mode: percentage of correctly classified characters for subjects

A, B, and C for 12 and 64 electrodes configuration.

12 electrodes 64 electrodes

R LDA BLDA DNUL LDA BLDA DNUL

A 5 5 37 11 1 51 2

10 27 62 44 0 73 1

15 38 81 65 9 91 81

B 5 24 62 42 3 64 0

10 50 89 77 5 85 74

15 49 93 90 5 95 95

C 5 41.94 93.55 83.87 3.22 93.5 61.29

10 70.97 96.77 96.77 12.9 100 100

15 74.19 100 100 12.9 100 100

4.7.2 Simulated Online Analysis

For this experiment an online simulation has been done to test the adaptation

process of DNUL. We design and update the classifier after the data are received for

each character and perform classification. Finally, we also perform an offline retest,

that is we classify each previously seen character with the final classifier as shown in

Figure 4.47. This experiment demonstrates how DNUL can in principle be adapted

and refined as more test data are received.

We evaluated the online experiment by using the same dataset as used before

with the offline experiments as shown in Appendix A. The pre-processing steps are

done as described previously in this chapter. The only difference is we pre-processed

the data character by character in order to have a fair online simulation procedure.

Figure 4.47: An arbitrary example shows a sequence of letters for simulated online

spelling.
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One step further, the configuration of the classifier is also the same as the previous

experiments.

The sequence of the online experiment is as follows. The classifier starts in the

beginning without using any training data. In order to classify a character we are

adding the EEG data for the received character. Then we apply the DNUL classifier

with 10 optimizations in order to classify the character. For the next character, we

increase the amount of training dataset for the classier to classify the next character.

Note that for BCI competition III, we used 3 optimizations to perform the online

experiments in a reasonable time because the large data size.

Overall, we observe that the classifier is improved when we either receive more

data or increase the number of used electrodes. As expected, the classifier performs

better if the data involve more trial groups. Figure 4.48 shows the average online

spelling for the SU dataset with the 7 subjects. The horizontal axis represents

the number of processed characters. The vertical axis represents the number of

characters that were classified correctly. The dashed line is an upper bound showing

the number of the seen characters. Figures from 4.49 to 4.51 show the performance

of online spelling with the BCI competition datasets.

One of the observations is about the retest classifier, it should perform better

than the adaptive process (DNUL), as shown in Figure 4.51. However, in some

cases it gives a lower performance as in Figure 4.50 with the case of 10-trial groups

using 64 electrodes. The reason is the adaptivity process failed at some point as the

classifier couldn’t reach a good position and that reflects on the slope of the DNUL

classifier. The higher slope we got, the faster adaptivity process is performed. That

imply the last classifier not in a good position and failed to classify the character

because the number of optimizations was not enough or due to the non-stationarity

of the data.
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SU subjects: Average of 7 subjects (Simulated online analysis)
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Figure 4.48: Simulated online spelling (sequential mode) showing the performance

averaged over the 7 subjects.
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BCI Competition III Dataset: Subject A (Simulated online analysis)
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Figure 4.49: Simulated online spelling using 12 electrodes and 64 electrodes for

subject A.
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BCI Competition III Dataset: Subject B (Simulated online analysis)
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Figure 4.50: Simulated online spelling using 12 electrodes and 64 electrodes for

subject B.
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BCI Competition II Dataset: Subject C (Simulated online analysis)
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Figure 4.51: Simulated online spelling using 12 electrodes and 64 electrodes for

subject C.

77



4.8 Comparison with the State-of-the-art in Unsupervised Classifica-

tion in BCIs

In this section, a comparison is performed in order to compare our proposed

unsupervised classifier with another unsupervised classifier for a P300-based speller

introduced by Kindermans et al. in [11]. It is the only existing method which is able

to train a P300 classifier without any labelled data till that time. That motivates

us to compare with his method to demonstrate the effectiveness of our method and

show the merits and demerits of our proposed method.

The introduced classifier by Kindermans et al. uses the combination of the Ex-

pectation Maximization (EM) algorithm for classification and a direct maximization

of the likelihood as a criterion to find the best classifier as described in [11] and [9].

This classifier has been used to increase the classification accuracies for P300 spellers

by combining inter-subject transfer learning and language models with the classifier

[73].

Before proceeding to compare the accuracies of the classifiers, some important

points should be introduced for both of them. First of all, both of the classifiers are

purely unsupervised classifiers without using any single label. Second, our classifier

does not use any clustering or statistical modelling techniques. The competing

classifier uses EM algorithm and Bayesian linear analysis. It also uses regularization

while ours does not use any regularization. We came up with the regularized version

later as described at section 3.4 chapter 3. Third, both of the classifiers start

with initial seeds drawn from normally distributed random numbers forming two

weight vectors one with w and one with -w. Finally, the classifiers get detached

at the decision making manner. Our proposed method selects the best classifier

corresponding to the highest energy function. On the other hand, the competing

classifier finds the maximum log likelihood in order to find the best classifier.

For this comparison, different types of experiments have been separated into

two categories, offline and online. Details about the experiments will be mentioned

briefly for comparison and the detailed experiments can be found in [11]. The aim

of these experiments is to evaluate the classifier performance for different configu-

rations, for instance, the amount of unlabelled data, speller adaptivity, and spelling

without any prior knowledge.
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Experiments

Before presenting and interpreting the results, different configurations we will

consider should be mentioned and described. This section follows the experiment

section as in [11].

OFF-US: Unsupervised Training on the Test Set

The first experiment uses the entire test data for learning the classifier without

using any labels. This procedure was used to enable comparison with existing meth-

ods on the same data. This experiment is identical to the batch mode which was

described before.

OFF-US-T: Increasing the Amount of Unlabelled Data

This experiment is the same as the first experiment except that, it was designed

to evaluate the performance of the unsupervised classifier by increasing the amount

of unlabelled data using the training data.

ON-US-T: A Non-adaptive but Unsupervised Online System

In this online experiment, the OFF-US classifier is used which is trained unsu-

pervisedly on the train set and tested on unseen data from the same subject.

OA-US-T: Improving the Online Spelling Trough Adaptation

This experiment re-uses the ON-US-T to initialize the system to increase the

performance by adapting the classifier with the new sessions. While evaluating the

classifier on the test set, the classifier receives the EEG data for the character that

it has to classify. Hence, the the training data grows.

RE-OA-US-T: Evaluation of OA-US-T

A retest evaluation of the OA-US-T classifier is done after the entire test set

was processed. These results are not representative for online classification but they

show if the classifier has improved or not.
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OA-US: The True Challenge, Spelling Without any Prior Knowledge

This is the most challenging experiment. The classifier starts initially untrained.

To classify a character we add the EEG data for that character and learn the clas-

sifier. After that, the next character comes to increase the training set and learn

the classifier. Note, training set does not mean the training session, it refers to the

data which the classifier unsupervisedly learns with.

Comparison and discussion

Before we start to compare our unsupervised classifier with the introduced classi-

fier by Kindermans et al. [11] we will give some information about the pre-processing

steps and what the differences between the two classifiers are. BCI competition

dataset II & III are pre-processed character by character allowing the online simu-

lation in the system. The only difference allocated in the pre-processing step is the

downsampling. In our data we reduced the dimensionality by sub-sampling with

a factor 8 and 20 samples of each channel was returned. The competing method

sub-sampled the data by a factor 6. The comparison applied on two competition

datasets as shown in Appendix A. Table 4.8 shows the results of the averaged

accuracies for our proposed classifier comparable with the other classifier [11].

Table 4.8: Averaged accuracies of our proposed unsupervised classifier (DNUL).

The numbers show the percentage of correctly classified characters. The values in

braces are the standard deviation.

R OFF-US OFF-US-T ON-US-T OA-US-T RE-OA-US-T OA-US

A 5 11.1 (2.9) 16.9 (2.37) 12.3 (2.21) 12.8 (1.55) 11.9 (1.79) 5.3 (3.16)

10 45.4 (5.29) 52.7 (3.62) 36.6 (2.95) 39.5 (2.32) 44.2 (3.01) 5.2 (4.54)

15 76.5 (4.88) 85.5 (1.96) 54.4 (2.36) 71.4 (2.37) 74.4 (1.84) 41.2 (16.3)

B 5 32.7 (2.8) 37.4 (3.53) 23.8 (3.35) 28.5 (2.46) 27.9 (3.66) 5.1 (2.37)

10 81.8 (1.28) 81.1 (3.03) 52.5 (3.74) 61.7 (3.86) 72 (4.22) 4.7 (3.13)

15 96.5 (0.71) 96.6 (0.69) 63.6 (3.83) 85.7 (2.11) 91.1 (2.38) 48.5 (22.3)

C 5 76.8 (1.03) 75.16 (1.06) 45.81 (1.23) 60.04 (2.29) 66.14 (3.14) 10.32 (15.4)

10 100 (0.0) 100 (0.0) 86.13 (0.82) 100 (0.0) 100 (0.0) 74.84 (4.24)

15 100 (0.0) 100 (0.0) 92.90 (0.67) 100 (0.0) 100 (0.0) 83.87 (11.3)
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Table 4.9: Averaged accuracies of the competing unsupervised classifier. The num-

bers show the percentage of correctly classified characters. The values in braces are

the standard deviation. Taken from Kindermans et al. [11]

R OFF-US OFF-US-T ON-US-T OA-US-T RE-OA-US-T OA-US

A 5 46.8 (4.0) 69.0 (0.0) 64.2 (0.0) 66.5 (0.5) 69.0 (0.0) 9.0 (7.4)

10 89.4 (1.1) 91.0 (0.0) 86.0 (0.0) 87.0 (0.0) 88.0 (0.0) 62.4 (4.1)

15 95.8 (1.3) 96.0 (0.0) 94.0 (0.0) 96.0 (0.0) 96.0 (0.0) 86.6 (1.6)

B 5 76.3 (1.6) 79.0 (0.0) 75.0 (0.0) 75.0 (0.0) 79.0 (0.0) 53.0 (2.1)

10 92.1 (1.3) 95.0 (0.0) 91.0 (0.0) 94.0 (0.0) 95.0 (0.0) 87.9 (0.6)

15 95.2 (0.6) 95.0 (0.0) 92.0 (0.0) 94.0 (0.0) 95.0 (0.0) 87.3 (1.1)

C 5 98.7 (1.7) 96.8 (0.0) 96.8 (0.0) 96.8 (0.0) 96.8 (0.0) 56.5 (5.5)

10 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 83.5 (1.1)

15 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 92.3 (1.7)

Table 4.10: Accuracies of different supervised classifiers. The numbers show the

percentage of correctly classified characters. eSVM, SUP, and OA-SUP are taken

from Kindermans et al. [11].

R eSVM SUP OA-SUP BLDA LDA

A 5 72 67 68 51 3

10 83 88 91 75 2

15 97 96 95 89 4

B 5 97 84 84 69 0

10 75 93 93 87 3

15 96 96 93 95 8

C 5 100 100 100 93.54 0

10 100 100 100 100 0

15 100 100 100 100 16.1

Let us start with comparing the OFF-US classifier which is the main method and

comparable to the supervised classifiers as well. Although our classifier is too simple,

it performs well and get some results comparable with the other classifier. Overall,

our classifier has a drawback with limited number or trial groups. We got too low

accuracies compared to other classifier. That is because of the non-stationarity of

the EEG signals which the classifier got affected. While increasing the number of
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trial groups, almost higher than 10 trials, the classifier works well and gives a high

accuracy. It can be seen from Table 4.8, with 15 trial groups we have high character

accuracies comparable with the competing classifier and other supervised classifiers.

The results for subject A with 5 trial groups is a very poor compared to the

other classifier. When we increase the number of trial groups, the averaged ac-

curacy increases till it reaches 76.5%. Subject A is considered as a hard subject

for classification compared with subjects B and C. Moving to subject B, we found

that with 10 trial groups it shows a good averaged accuracy with 81.8% and still it

is somewhat low compared to the other unsupervised classifier. However, with 15

trial groups we recorded an average accuracy of 96.5% which considered the high-

est accuracy achieved by our unsupervised classifier compared with the competing

classifier which achieved accuracy of 95.2% as shown in Table 4.9 and all other su-

pervised classifiers. The winners of BCI competition achieved an 96% accuracy for

subject B with 15 trial groups with eSVM [74] and SUP supervised classifiers [75]

as shown in Table 4.10. For subject C, as it can be seen, our approach has achieved

an 100% averaged accuracy with 10 and 15 trail groups but a low accuracy with

5 trial groups. Subject C EEG dataset is considered classifiable where most of the

classifiers classify the whole characters successfully.

Overall, for the other experimental configurations, our classifier has a poor accu-

racy compared to the competing classifier especially with the small number of trial

groups. The reason is with fewer trial groups less information can be inferred due

to the low signal to noise ratio (SNR). The influence of the amount of data can be

shown in the second experiment performance where we are merging the training and

testing data. Tables 4.11 to 4.16 show the accuracies for the individual experiments

with 10 classifier groups for each.
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Table 4.11: OFF-US: percentage of correctly classified characters through 10 clas-

sifier groups.

Classifier groups

R 1 2 3 4 5 6 7 8 9 10

A 5 16 9 11 11 14 11 11 5 10 13

10 53 41 41 48 56 44 44 41 42 44

15 86 74 73 74 84 77 76 73 71 77

B 5 30 30 30 34 35 34 30 37 31 36

10 80 80 80 81 82 83 80 83 80 82

15 95 95 95 95 96 96 95 96 95 96

C 5 74.19 77.42 74.19 77.41 80.64 77.41 80.64 70.96 74.19 80.64

10 100 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100 100

Table 4.12: OFF-US-T: percentage of correctly classified characters through 10

classifier groups.

Classifier groups

R 1 2 3 4 5 6 7 8 9 10

A 5 21 18 14 14 16 14 18 17 19 18

10 9 56 55 53 59 46 52 53 51 53

15 88 88 84 83 87 83 84 86 85 87

B 5 37 31 36 41 38 32 38 40 40 41

10 83 79 74 83 80 85 83 81 81 82

15 95 96 94 95 94 97 94 96 95 97

C 5 77.74 70.96 77.41 74.19 70.96 74.19 70.96 80.64 77.41 77.41

10 100 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100 100
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Table 4.13: ON-US-T: percentage of correctly classified characters through 10

classifier groups.

Classifier groups

R 1 2 3 4 5 6 7 8 9 10

A 5 9 13 13 9 15 15 14 11 11 13

10 39 42 38 34 38 38 36 32 35 34

15 5 54 58 58 55 51 56 50 55 55

B 5 25 24 27 21 22 21 20 21 30 27

10 50 46 57 52 49 57 57 51 54 52

15 61 59 62 71 64 67 68 61 62 61

C 5 45.16 48.38 41.93 38.71 45.16 51.61 48.38 48.38 41.93 48.38

10 87.09 80.64 83.87 87.09 87.09 87.09 90.32 83.87 87.09 87.09

15 93.54 93.54 90.32 93.54 90.32 93.54 93.54 93.54 93.54 93.54

Table 4.14: OA-US-T: percentage of correctly classified characters through 10

classifier groups.

Classifier groups

R 1 2 3 4 5 6 7 8 9 10

A 5 12 13 13 13 15 13 13 13 9 14

10 38 40 41 38 38 40 40 45 37 38

15 73 74 69 75 71 73 70 72 69 68

B 5 31 27 31 27 30 24 27 28 32 28

10 60 56 63 59 62 69 67 61 59 61

15 88 84 83 85 85 88 88 85 83 88

C 5 58.06 58.06 58.06 61.74 58.06 64.52 61.29 58.06 61.29 61.29

10 100 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100 100
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Table 4.15: RE-OA-US-T: percentage of correctly Percentage of correctly classi-

fiedlassified characters through 10 classifier groups.

Classifier groups

R 1 2 3 4 5 6 7 8 9 10

A 5 10 14 12 15 13 11 13 10 11 10

10 46 42 46 46 47 48 42 44 38 43

15 76 75 74 76 74 75 74 77 72 71

B 5 30 27 34 27 31 28 27 30 26 29

10 69 66 77 66 74 78 75 73 70 72

15 92 88 92 92 94 91 89 94 87 92

C 5 64.52 67.74 64.52 67.74 67.74 67.74 61.29 61.29 70.97 67.74

10 100 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100 100

Table 4.16: OA-US: percentage of correctly classified characters through 10 classi-

fier groups.

Classifier groups

R 1 2 3 4 5 6 7 8 9 10

A 5 3 2 3 6 11 7 7 3 2 9

10 3 8 0 3 3 4 2 5 16 8

15 34 54 39 3 51 34 62 40 52 43

B 5 8 4 5 5 4 0 7 4 6 8

10 5 4 4 6 0 4 10 0 6 8

15 67 0 30 67 44 46 67 35 70 59

C 5 12.90 0 3.22 12.90 0 51.61 3.22 12.90 3.22 3.22

10 77.42 70.96 70.96 77.42 77.42 70.97 80.64 77.42 67.75 77.42

15 90.33 90.33 87.09 74.19 87.09 87.09 90.33 87.09 90.33 54.84
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Chapter 5

Conclusion and Future Work

Recently, researchers have been trying to move toward reducing the need of the

labelled data and the calibration sessions in order to improve the accuracy and the

decoding speed of ERP based on BCI. Although, massive efforts have been working

for reducing the usage of labelled data, it was reported as an impossible process

until recently. Over the last several years, some researches demonstrated methods

and algorithms that have been developed toward the true zero training in different

areas in BCI [76].

In this thesis, we presented and evaluated a novel unsupervised classifier based

on the disjunctive normal form for P300-based BCI speller systems which allows us

to run the classifier without using any calibration process and without any labelled

data. In this direction, we proposed the model architecture and how this idea can

be embedded into the P300 paradigm. Then, we showed how the proposed classifier

can be initialized and uses the initialized parameters for classification. At last, we

demonstrated the model optimization in order to learn the classifier weights with

the unlabelled data and updating the weights with performing many iterations.

Besides, we showed how we can improve the proposed method accuracies by using a

regularization term. In order to test the model, we generated simple toy examples

to demonstrate the idea and the classifier efficiency. We called our classifier the

disjunctive normal unsupervised LDA classifier (DNUL).

To demonstrate our classifier efficiency, many experiments have been performed

in order to find the limitations and advantages of our classifier. Moreover, offline

analysis experiments including both batch mode and N-batch mode are defined and

used in a wide scale in this thesis and simulated online analysis experiments which
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demonstrate a classifier in a real mode which involved in different useful experiments.

Initially, we illustrated the efficiency of the SU-dataset contains 7 healthy subjects

which there temporal EEG signals recorded in the Signal Processing and Information

System Laboratory (SPIS). In addition to two datasets from BCI competition II &

III. Bit-rates have also been calculated to demonstrate the classifier speed. We also

compared our results with two main supervised classifiers used in P300 which are

LDA and BLDA.

In general, our results demonstrate the efficiency of our unsupervised classi-

fier (DNUL), although conversely its simplicity as we are not using any statistical

models. For the SU-dataset classification with 15 trial groups produces high ac-

curacies and with some subjects we got higher accuracies compared to BLDA and

LDA classifiers. The overall accuracy is slightly less than the BLDA classifier in

all experiments. We do not to forget that BLDA classifier uses labelled data and

regularization in term of learning a classifier. On the other hand, in comparison

with LDA we exceed the classification accuracies in all cases especially with using

many repetitions or trial groups. Simultaneously, with the BCI competition II &

III we have 3 subjects as mentioned before. Interestingly, dataset of subject C got

100% accuracy with 10 and 15 trial groups compared with the supervised classifiers

and BCI winners. In addition, with subject B, we achieved an average accuracy

of 96.5% which considered the highest accuracy achieved by our unsupervised clas-

sifier compared with the competing classifier and supervised classifiers where they

achieved 95.2% and 96% accuracy respectively with 15 trial groups. In contrary,

with subject A we got very poor accuracies with small number of trial groups. Our

classifier gives very poor accuracies with small number of trial groups compared to

BLDA and mainly the same or a slightly higher accuracy with LDA classifier. As

number of trial groups increases, the accuracies of our classifier increases as well.

To sum up, we have a promising unsupervised classifier that achieves good accura-

cies with high number of trial groups despite its simplicity without using any single

label.

There are many further directions of this work to improve the classification

accuracies. Adding statistical information could be one possible way for improving

the model efficiency assuming that ERP features are normally distributed as in
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[77]. Following this further, a mechanism for the sensitivity parameter should be

developed to set this parameter automatically with different sets of trial groups

especially with N-batch mode experiments where the number of trial groups matches

the number of trial groups used for testing. Equally important, other factors could

affect the model, such as initialization seeds. We can find good initialization seeds

for the initial classifier. That will probably increase the classification accuracies and

reduce the number of iterations in order to find the best classifier. That could be

used as a form of transfer learning, which would transfer information in the form of

initalizations from other subjects. Additionally, the benefit of the use of a language

model in BCI based typing could be one of the directions in terms of increasing the

accuracies as in [67] [73]. Another line of future work could be aimed at increasing

the efficiency of the online adaptation process by updating the classier with new

test data rather than recomputing it.

Several portions of P300 speller have been studied and developed recently in-

cluding speller matrix sizes [78], flashing paradigms [79], and inter-stimulus intervals

[80] in order to increase the classification accuracy. That may led to different di-

rections for further work that can be focused on the speller matrix and the flashing

paradigms.

88



Appendix A

Datasets

In this appendix, specific details on the datasets used in this work will be pre-

sented.

SU Datasets

• These datasets were recorded in our lab at Sabanci University

• Paradigm: 6 by 6 matrix speller recorded using BioSemi software ActiView

• Subjects: 7

• EEG recording: 12 active channels at 2048 Hz

• Training Set: 14 characters, 15 trial groups

• Test Set: 26 characters, 15 trial groups

• Inter Stimulus Interval (ISI): 125 ms

• Stimulus Duration: 50 ms

• Pause between Stimuli: 75 ms

• Reference: C. Ulas et al. (2013) [67], A. Amcalar et al. (2010) [35]
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Table A.1: Target words in training and test datasets for SU datasets

Dataset Spelled characters Characters

Training KALEM YOLCULUK 14

Test 1 KITAP MASA AGL 14

Test 2 KITAP MASA AGLAMAK SIKINTI 26

BCI Competition II - (Subject C)

• These datasets are provided by Wadsworth Center, NYS Department of

Health

• Paradigm: 6 by 6 matrix speller recorded using BCI2000

• Subjects: 1

• EEG Recording: 64 channels at 240 Hz

• Training Set: 42 characters, 15 trial groups

• Testset: 31 characters, 15 trial groups

• Inter Stimulus Interval (ISI): 75 ms

• Stimulus Duration: 100 ms

• Pause between Characters: 5 ms

• Reference: Blankertz et al. (2004) [32]

Table A.2: Target words in training and test datasets for BCI Competition II

Dataset Target words

Training 1 CAT DOG FISH WATER BOWL

Training 2 HAT HAT GLOVE SHOES FISH RAT

Test FOOD MOOT HAM PIE CAKE TUNA ZYGOT
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BCI Competition III - (Subject A & B)

• These datasets are provided by Wadsworth Center, NYS Department of

Health

• Paradigm: 6 by 6 matrix speller recorded using BCI2000

• Subjects: 2

• EEG Recording: 64 Channels at 240 Hz

• Training Set: 85 characters, 15 trial groups

• Test Set: 100 characters, 15 trial groups

• Inter Stimulus Interval (ISI): 75 ms

• Stimulus Duration: 100 ms

• Pause between Characters: 5 ms

• Reference: Blankertz et al. (2006) [33]
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Appendix B

Sensitivity Parameter (β)

In this appendix, an analysis was done for the sensitivity parameter to show the

effect of the beta (β) value on the classifier accuracy for DNUL classifier.
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Figure B.1: A sensitivity parameter analysis showing the classifier performance

averaged over the 7 subjects. The x-axis represents the beta value (β). The y-axis

represents the classifier accuracy. The shaded band shows the standard error from

the mean. The vertical green dashed line intercepts the beta value at 0.1 which

gives the maximum classifier accuracy among all values.
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Table B.1: Sensitivity parameter (β): SU Dataset (S1)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3293 83.33 0.3293 83.33 0.3293 83.33 83.33 (0.00)

0.01 0.5385 91.99 0.5611 92.95 0.5382 93.27 92.74 (0.67)

0.1 0.9893 98.08 0.9892 98.08 0.9895 97.44 97.86 (0.37)

0.2 0.9944 96.79 0.9944 96.79 0.9948 98.08 97.22 (0.74)

0.3 0.9953 95.51 0.9932 84.62 0.9962 99.36 93.16 (7.64)

0.4 0.9976 98.08 0.9962 93.59 0.9966 95.51 95.73 (2.25)

0.5 0.9964 87.82 0.9969 94.23 0.9954 88.46 90.17 (3.53)

0.6 0.9964 78.21 0.9955 82.69 0.9958 66.67 75.85 (8.27)

0.7 0.9956 74.36 0.9965 67.95 0.9961 67.95 70.09 (3.70)

0.8 0.9969 69.23 0.9960 70.51 0.9965 75.00 71.58 (3.03)

0.9 0.9970 82.69 0.9977 90.38 0.9970 78.21 83.76 (6.16)

1.0 0.9983 93.59 0,9978 75.64 0.9967 69.87 79.70 (12.4)

1.1 0.9967 72.44 0.9973 77.56 0.9971 69.87 73.29 (3.91)

1.2 0.9971 76.92 0.9969 70.51 0.9972 78.85 75.43 (4.36)

1.3 0.9978 70.51 0.9972 79.49 0.9972 71.15 73.72 (5.00)

1.4 0.9976 74.36 0.9975 71.15 0.9967 76.92 74.15 (2.89)

1.5 0.9975 76.28 0.9965 71.79 0.9979 76.28 74.79 (2.59)

1.6 0.9788 74.04 0.9983 74.36 0.9974 75.64 74.68 (0.84)

1.7 0.9977 68.59 0.9977 78.85 0.9982 78.85 75.43 (5.92)

1.8 0.9979 76.28 0.9979 75.00 0.9987 77.56 76.28 (1.28)

1.9 0.9984 77.56 0.9978 69.87 0.9788 76.60 74.68 (4.19)

2 0.9980 76.28 0.9792 72.76 0.9978 69.87 72.97 (3.21)

3 0.9797 83.33 0.9798 71.15 0.9798 69.55 74.68 (7.53)

5 0.9036 68.91 0.9415 67.31 0.9227 71.79 69.34 (2.27)

7 0.8076 75.32 0.8651 75.00 0.8843 76.92 75.75 (1.03)

9 0.8076 77.24 0.8267 69.23 0.8268 66.35 70.94 (5.64)

11 0.7499 70.19 0.8268 70.19 0.7883 69.87 70.09 (0.18)

13 0.6728 75.00 0.8069 68.27 0.6923 66.35 71.05 (3.51)

15 0.6346 71.47 0.6731 68.91 0.6731 67.95 69.44 (1.82)

20 0.6538 68.27 0.5385 66.35 0.5192 69.55 68.06 (1.61)

40 0.4423 67.63 0.4808 59.62 0.5577 68.27 65.17 (4.82)

60 0.4231 72.12 0.4038 66.99 0.4423 66.67 68.59 (3.05)

80 0.5192 68.91 0.4615 62.18 0.3269 53.85 61.65 (7.54)

100 0.3462 61.22 0.4615 68.91 0.2692 62.50 64.21 (4.12)
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Table B.2: Sensitivity parameter (β): SU Dataset (S2)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3231 83.33 0.3231 83.33 0.3231 83.33 83.33 (0.00)

0.01 0.4433 89.74 0.4335 89.10 0.4164 85.26 88.03 (2.42)

0.1 0.9830 95.51 0.9848 96.15 0.9828 95.51 95.72 (11.5)

0.2 0.9925 96.15 0.9902 92.95 0.9916 94.87 94.66 (1.61)

0.3 0.9944 92.95 0.9946 94.87 0.9916 83.97 90.60 (5.81)

0.4 0.9949 86.54 0.9936 82.05 0.9930 67.31 78.63 (10.0)

0.5 0.9944 80.13 0.9936 76.92 0.9950 73.08 76.71 (3.53)

0.6 0.9956 86.54 0.9950 85.26 0.9955 76.28 82.69 (5.59)

0.7 0.9976 92.31 0.9957 69.87 0.9960 72.44 78.21 (12.2)

0.8 0.9954 70.51 0.9955 71.79 0.9950 67.95 70.09 (1.95)

0.9 0.9969 71.15 0.9938 73.08 0.9952 68.59 70.94 (2.25)

1.0 0.9956 71.15 0.9965 73.08 0.9965 70.51 71.58 (1.33)

1.1 0.9963 71.79 0.9967 81.41 0.9964 69.23 74.15 (6.42)

1.2 0.9965 69.87 0.9974 71.79 0.9963 71.15 70.94 (0.97)

1.3 0.9967 69.87 0.9961 76.92 0.9977 78.21 75.00 (4.48)

1.4 0.9968 70.51 0.9967 71.15 0.9968 73.08 71.58 (1.34)

1.5 0.9969 69.23 0.9971 78.85 0.9974 73.72 73.93 (4.81)

1.6 0.9962 73.08 0.9979 76.28 0.9974 69.87 73.08 (3.21)

1.7 0.9974 71.15 0.9782 72.76 0.9976 76.92 73.61 (2.97)

1.8 0.9784 80.45 0.9976 80.77 0.9978 69.87 77.03 (6.20)

1.9 0.9977 69.87 0.9976 69.23 0.9963 67.31 68.80 (1.34)

2 0.9979 68.59 0.9978 73.72 0.9964 71.79 71.37 (2.59)

3 0.9786 70.83 0.9407 76.92 0.9797 83.65 77.14 (6.41)

5 0.9610 78.85 0.9801 66.99 0.9411 72.76 72.86 (5.93)

7 0.8459 74.04 0.8649 64.42 0.8844 67.31 68.59 (4.93)

9 0.7883 69.87 0.9228 69.87 0.8076 72.12 70.62 (1.29)

11 0.8461 72.44 0.7884 70.19 0.8653 77.88 73.50 (3.95)

13 0.7115 67.31 0.6923 66.03 0.6346 65.06 66.13 (1.12)

15 0.6730 67.63 0.6538 65.06 0.6731 67.31 66.67 (1.39)

20 0.6538 75.32 0.5192 76.92 0.7692 68.59 73.61 (4.42)

40 0.4808 69.55 0.4808 59.62 0.5385 63.46 64.21 (5.01)

60 0.5192 65.38 0.4615 68.59 0.5385 67.63 67.20 (1.64)

80 0.4808 75.32 0.4808 77.88 0.5385 65.71 72.97 (6.42)

100 0.3846 61.22 0.5385 71.15 0.3846 57.69 63.35 (6.98)
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Table B.3: Sensitivity parameter (β): SU Dataset (S3)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3240 83.33 0.3240 83.33 0.3240 83.33 83.33 (0.00)

0.01 0.7102 93.59 0.7262 93.27 0.7107 93.27 93.38 (0.18)

0.1 0.9839 94.87 0.9849 96.15 0.9822 94.23 95.09 (0.98)

0.2 0.9920 94.23 0.9930 94.23 0.9933 96.79 95.09 (1.48)

0.3 0.9955 96.79 0.9953 96.79 0.9942 93.59 95.73 (1.85)

0.4 0.9958 92.95 0.9955 89.74 0.9960 94.87 92.52 (2.59)

0.5 0.9965 93.59 0.9961 92.95 0.9962 89.10 91.88 (2.42)

0.6 0.9970 91.03 0.9967 92.31 0.9956 82.69 88.68 (5.22)

0.7 0.9968 91.67 0.9979 94.87 0.9959 89.74 92.09 (2.59)

0.8 0.9955 71.79 0.9971 90.38 0.9960 71.15 77.78 (10.9)

0.9 0.9971 70.51 0.9962 69.87 0.9970 83.97 74.79 (7.96)

1.0 0.9963 83.33 0.9977 87.18 0.9972 73.72 81.41 (6.93)

1.1 0.9969 82.69 0.9961 73.08 0.9969 73.08 76.28 (5.55)

1.2 0.9971 88.46 0.9967 73.08 0.9961 72.44 77.99 (9.07)

1.3 0.9965 71.79 0.9783 79.17 0.9971 72.44 74.47 (4.08)

1.4 0.9966 75.00 0.9783 77.56 0.9969 71.79 74.79 (2.89)

1.5 0.9788 83.65 0.9788 77.88 0.9970 82.69 81.41 (3.09)

1.6 0.9974 70.51 0.9977 87.82 0.9974 73.08 77.14 (9.34)

1.7 0.9782 77.24 0.9789 76.60 0.9782 79.49 77.78 (1.51)

1.8 0.9979 83.33 0.9991 88.46 0.9790 79.49 83.76 (4.50)

1.9 0.9981 85.90 0.9982 83.97 0.9977 71.15 80.34 (8.01)

2 0.9978 69.23 0.9982 69.23 0.9973 71.79 70.09 (1.48)

3 0.9986 78.21 0.9988 67.95 0.9787 74.68 73.61 (5.21)

5 0.9610 72.12 0.9798 72.12 0.9610 73.08 72.44 (0.55)

7 0.9036 77.56 0.8840 66.67 0.9804 75.64 73.29 (5.81)

9 0.7692 75.00 0.7884 68.91 0.8649 80.77 74.89 (5.93)

11 0.7307 79.81 0.8076 70.51 0.8268 70.83 73.72 (5.27)

13 0.5961 70.19 0.8269 65.71 0.7499 66.99 67.63 (2.31)

15 0.6731 69.55 0.6731 64.74 0.7115 72.44 68.91 (3.88)

20 0.6154 62.18 0.5000 66.35 0.6346 71.15 66.56 (4.49)

40 0.5577 70.19 0.5769 61.54 0.4038 63.46 65.06 (4.54)

60 0.5192 67.63 0.5000 76.28 0.4808 65.71 69.87 (5.63)

80 0.3654 69.87 0.5577 73.72 0.5577 68.91 70.83 (2.54)

100 0.3269 57.69 0.4231 69.55 0.3462 54.81 60.68 (7.81)
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Table B.4: Sensitivity parameter (β): SU Dataset (S4)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3078 83.33 0.3078 83.33 0.3079 83.33 83.33 (0.00)

0.01 0.4769 72.44 0.4767 72.12 0.4929 71.47 72.01 (0.49)

0.1 0.9881 98.08 0.9882 98.08 0.9881 98.08 98.08 (0.00)

0.2 0.9944 98.08 0.9944 98.08 0.9944 98.08 98.08 (0.00)

0.3 0.9964 98.08 0.9962 97.44 0.9953 97.44 97.65 (0.37)

0.4 0.9963 98.08 0.9972 98.08 0.9972 98.08 98.08 (0.00)

0.5 0.9978 97.44 0.9962 94.23 0.9963 95.51 95.73 (1.61)

0.6 0.9970 96.15 0.9966 95.51 0.9972 96.79 96.15 (0.64)

0.7 0.9954 67.31 0.9957 86.54 0.9966 96.15 83.33 (14.7)

0.8 0.9986 98.72 0.9952 72.44 0.9967 76.92 82.69 (14.1)

0.9 0.9980 95.51 0.9966 68.59 0.9977 91.03 85.04 (14.4)

1.0 0.9970 70.51 0.9961 69.87 0.9965 85.90 75.43 (9.07)

1.1 0.9958 69.87 0.9962 78.21 0.9970 76.28 74.79 (4.36)

1.2 0.9963 75.64 0.9974 90.38 0.9961 74.36 80.13 (8.91)

1.3 0.9972 71.15 0.9967 73.72 0.9968 81.41 75.43 (5.34)

1.4 0.9973 74.36 0.9982 89.74 0.9980 85.90 83.33 (8.01)

1.5 0.9976 69.87 0.9790 91.99 0.9971 67.31 76.39 (13.6)

1.6 0.9985 91.67 0.9978 72.44 0.9977 68.59 77.56 (12.4)

1.7 0.9974 76.28 0.9971 76.92 0.9970 78.21 77.14 (0.98)

1.8 0.9978 69.23 0.9978 73.08 0.9967 71.15 71.15 (1.92)

1.9 0.9973 70.51 0.9980 82.69 0.9985 68.59 73.93 (7.64)

2 0.9983 87.18 0.9983 88.46 0.9968 71.15 82.26 (9.64)

3 0.9795 77.24 0.9981 81.41 0.9606 77.88 78.85 (2.24)

5 0.9419 71.15 0.9795 74.04 0.9596 73.08 72.76 (1.47)

7 0.8458 67.63 0.8841 70.19 0.9032 66.35 68.06 (1.96)

9 0.7306 70.19 0.8075 66.67 0.8460 70.83 69.23 (2.24)

11 0.7692 67.95 0.7115 61.54 0.7307 68.91 66.13 (4.01)

13 0.5768 63.46 0.6923 75.96 0.5961 66.03 68.48 (6.60)

15 0.5769 65.71 0.7307 75.32 0.7883 68.27 69.76 (4.98)

20 0.3846 69.87 0.5385 78.21 0.7115 69.55 72.54 (4.90)

40 0.4808 61.54 0.3654 48.72 0.6346 64.10 58.12 (8.24)

60 0.4231 60.26 0.3654 58.97 0.3269 58.33 59.19 (0.97)

80 0.3269 63.14 0.2885 58.97 0.4038 66.35 62.82 (3.69)

100 0.1923 42.31 0.5962 82.37 0.2308 55.45 60.04 (20.4)
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Table B.5: Sensitivity parameter (β): SU Dataset (S5)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3121 83.01 0.3122 83.01 0.3121 83.01 83.01 (0.00)

0.01 0.4139 73.08 0.4232 74.04 0.4210 73.72 73.61 (0.49)

0.1 0.3121 100 0.9895 100 0.9898 100 100 (0.00)

0.2 0.9899 99.36 0.9891 85.26 0.9952 100 94.87 (8.33)

0.3 0.9947 75.00 0.9968 100 0.9952 96.79 90.60 (13.6)

0.4 0.9932 98.72 0.9962 96.15 0.9963 98.08 97.65 (1.33)

0.5 0.9970 75.64 0.9962 94.87 0.9956 84.62 85.04 (9.62)

0.6 0.9946 98.72 0.9958 82.05 0.9975 96.79 92.52 (9.11)

0.7 0.9980 96.15 0.9972 94.87 0.9969 89.74 93.53 (3.39)

0.8 0.9980 71.15 0.9961 67.95 0.9968 67.31 72.01 (4.54)

0.9 0.9965 80.77 0.9976 92.31 0.9960 74.36 82.48 (9.09)

1.0 0.9963 75.64 0.9963 77.56 0.9970 81.41 78.21 (2.93)

1.1 0.9970 72.44 0.9963 79.62 0.9969 72.44 73.93 (2.59)

1.2 0.9968 73.08 0.9974 80.77 0.9779 66.03 73.29 (7.37)

1.3 0.9973 73.08 0.9974 72.44 0.9875 71.15 72.22 (0.97)

1.4 0.9974 76.28 0.9966 69.87 0.9983 88.46 78.21 (9.44)

1.5 0.9972 83.97 0.9984 91.67 0.9971 75.00 83.55 (8.34)

1.6 0.9979 69.87 0.9972 73.72 0.9975 79.49 74.36 (4.83)

1.7 0.9973 67.95 0.9973 73.08 0.9972 67.95 69.66 (2.96)

1.8 0.9966 91.03 0.9976 69.87 0.9972 69.23 76.71 (12.4)

1.9 0.9984 70.51 0.9790 74.04 0.9979 82.05 75.53 (5.91)

2 0.9978 78.21 0.9788 79.81 0.9975 76.28 78.10 (1.76)

3 0.9977 69.87 0.9792 75.32 0.9987 78.85 74.68 (4.52)

5 0.9989 71.47 0.9608 66.35 0.9609 76.60 71.47 (5.12)

7 0.9600 75.00 0.8074 66.35 0.8313 76.60 72.65 (5.51)

9 0.8460 65.06 0.7884 67.63 0.9422 75.96 69.55 (5.69)

11 0.7115 66.35 0.7691 72.44 0.6537 72.44 70.41 (3.51)

13 0.7882 65.06 0.7307 66.35 0.7115 66.35 65.92 (0.74)

15 0.6346 71.47 0.6731 61.22 0.5768 68.59 67.09 (5.29)

20 0.5769 63.78 0.5962 66.35 0.6153 73.08 67.74 (4.88)

40 0.6923 63.46 0.4423 61.54 0.3077 62.18 62.39 (0.97)

60 0.4038 65.06 0.5000 65.06 0.3462 55.77 61.97 (5.36)

80 0.3846 61.86 0.4231 74.68 0.3462 59.94 65.49 (8.01)

100 0.4038 69.55 0.3846 60.90 0.3462 64.74 65.06 (4.33)
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Table B.6: Sensitivity parameter (β): SU Dataset (S6)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3104 82.05 0.3104 82.05 0.3104 82.05 82.05 (0.00)

0.01 0.4534 73.40 0.4474 73.08 0.4548 73.40 73.29 (0.18)

0.1 0.9691 73.72 0.9703 76.28 0.9744 78.21 76.07 (2.25)

0.2 0.9869 74.36 0.9887 72.44 0.9860 69.87 72.22 (2.25)

0.3 0.9924 69.87 0.9913 71.79 0.9919 75.00 72.22 (2.59)

0.4 0.9931 71.79 0.9926 71.79 0.9940 75.00 72.86 (1.85)

0.5 0.9945 76.92 0.9940 80.77 0.9944 70.51 76.07 (5.18)

0.6 0.9944 72.44 0.9952 69.87 0.9948 73.72 72.01 (1.95)

0.7 0.9958 73.72 0.9965 68.59 0.9963 69.87 70.73 (2.66)

0.8 0.9953 74.36 0.9960 72.44 0.9959 76.28 74.36 (1.92)

0.9 0.9961 75.64 0.9778 82.37 0.9959 69.23 75.75 (6.57)

1.0 0.9969 80.77 0.9971 73.08 0.9961 72.44 75.43 (4.63)

1.1 0.9968 74.36 0.9969 69.23 0.9965 72.44 72.01 (2.59)

1.2 0.9968 78.85 0.9782 68.27 0.9958 70.51 72.54 (5.57)

1.3 0.9972 70.51 0.9974 71.79 0.9973 75.00 72.44 (2.31)

1.4 0.9969 71.15 0.9898 71.15 0.9972 70.51 70.94 (0.37)

1.5 0.9973 73.08 0.9965 71.79 0.9967 73.08 72.65 (0.74)

1.6 0.9970 73.72 0.9970 69.23 0.9973 71.79 71.58 (2.25)

1.7 0.9975 81.41 0.9974 75.00 0.9975 76.28 77.56 (3.39)

1.8 0.9788 70.51 0.9980 72.44 0.9976 69.23 70.73 (1.16)

1.9 0.9784 75.96 0.9975 78.21 0.9982 71.15 75.11 (3.60)

2 0.9788 69.55 0.9982 69.23 0.9971 75.00 71.26 (3.24)

3 0.9790 72.76 0.9600 71.15 0.9601 69.87 71.26 (1.44)

5 0.8650 77.24 0.9034 77.88 0.9597 74.36 76.50 (1.87)

7 0.8844 68.59 0.8459 66.67 0.7306 63.46 66.24 (2.59)

9 0.7499 67.95 0.7500 66.03 0.7306 74.36 69.44 (4.36)

11 0.8076 67.63 0.7884 66.99 0.7884 64.10 66.24 (1.87)

13 0.6346 63.78 0.7500 66.99 0.6731 75.96 68.91 (6.31)

15 0.6538 68.91 0.7691 66.67 0.6923 68.27 67.95 (1.15)

20 0.6154 69.87 0.5577 70.83 0.5769 64.42 68.38 (3.45)

40 0.5961 65.06 0.4808 67.31 0.4808 71.15 67.84 (3.07)

60 0.4615 65.71 0.3846 61.86 0.5000 75.64 67.74 (7.11)

80 0.4808 65.71 0.3654 68.91 0.5000 61.86 65.28 (3.53)

100 0.3269 61.22 0.5769 66.67 0.3846 61.22 63.03 (3.14)
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Table B.7: Sensitivity parameter (β): SU Dataset (S7)

Classifier group I Classifier group II Classifier group III Average

β Energy Accuracy Energy Accuracy Energy Accuracy Mean (SD)

0.001 0.3321 83.33 0.3321 83.33 0.3321 83.33 83.33 (0.00)

0.01 0.6132 70.19 0.6221 70.19 0.6127 69.87 70.09 (0.18)

0.1 0.9903 100 0.9902 100 0.9899 100 100 (0.00)

0.2 0.9953 100 0.9953 100 0.9953 100 100 (0.00)

0.3 0.9969 100 0.9969 100 0.9957 98.72 95.57 (0.74)

0.4 0.9977 100 0.9975 99.36 0.9976 100 99.79 (0.37)

0.5 0.9982 100 0.9909 76.92 0.9921 85.26 87.39 (11.7)

0.6 0.9978 98.72 0.9979 98.72 0.9985 99.36 98.93 (0.37)

0.7 0.9949 87.18 0.9958 84.62 0.9941 69.87 80.56 (9.34)

0.8 0.9938 76.28 0.9914 70.51 0.9961 67.31 71.37 (4.55)

0.9 0.9953 78.21 0.9947 76.92 0.9958 72.44 75.85 (3.03)

1.0 0.9953 74.36 0.9988 98.72 0.9958 75.64 82.91 (13.7)

1.1 0.9953 77.56 0.9971 85.26 0.9955 80.77 81.20 (3.87)

1.2 0.9778 86.22 0.9783 85.58 0.9974 91.03 87.61 (2.98)

1.3 0.9954 74.36 0.9960 74.36 0.9964 73.08 73.93 (0.74)

1.4 0.9982 94.87 0.9780 68.27 0.9961 78.85 80.66 (13.4)

1.5 0.9781 75.96 0.9957 78.85 0.9958 73.08 75.96 (2.89)

1.6 0.9764 72.44 0.9966 74.36 0.9972 89.10 78.63 (9.12)

1.7 0.9787 81.41 0.9789 75.96 0.9963 69.23 75.53 (6.10)

1.8 0.9971 71.79 0.9782 70.19 0.9977 69.87 70.62 (1.03)

1.9 0.9768 73.40 0.9598 80.77 0.9787 79.17 77.78 (3.88)

2 0.9791 89.42 0.9782 73.72 0.9970 89.74 84.29 (9.16)

3 0.9771 82.69 0.9790 74.04 0.9775 74.68 77.14 (4.82)

5 0.9601 71.79 0.9416 66.99 0.9419 75.96 71.58 (4.49)

7 0.9226 79.49 0.9225 73.08 0.9228 72.44 75.00 (3.90)

9 0.8651 65.38 0.8843 73.40 0.8652 86.22 75.00 (10.5)

11 0.8268 77.88 0.7883 66.03 0.8845 73.08 72.33 (5.96)

13 0.7498 60.90 0.7884 73.72 0.7307 72.44 69.02 (7.06)

15 0.8076 75.32 0.6730 66.35 0.7692 73.04 71.69 (4.66)

20 0.7115 77.24 0.7500 65.71 0.7308 71.47 71.47 (5.77)

40 0.5385 73.40 0.5000 74.36 0.5577 73.08 73.61 (0.67)

60 0.4615 73.08 0.5000 70.51 0.4038 58.97 67.52 (7.52)

80 0.5000 74.04 0.3077 58.33 0.4231 63.14 65.17 (8.05)

100 0.3654 58.68 0.3462 64.42 0.3462 68.27 63.78 (4.83)
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