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ABSTRACT

SURFACE VESSEL TRACKING IN AIRBORNE INFRARED IMAGERY

Çakıroğlu, Ahmet

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. İlkay Ulusoy

February 2019, 72 pages

Target tracking can be defined as continuously locating the object of interest in con-

sequent images. Tracking surface vessels in infrared imagery is an exceptionally

challenging case of visual target tracking. In a typical scenario both the target and

imaging platform exhibit manoeuvring movement, causing the appearance of the tar-

get to change rapidly and significantly during the course of tracking. Furthermore

there are cases where target actively attempts to avoid being tracked by firing hot

flares to confuse the tracker or block the view of the tracker. In some cases target

also cools itself down to background temperatures with special equipment to blend

itself with the background and avoid being seen. In this thesis one of the popular

general object tracking algorithms is improved by transfer learning and developing

an occlusion detection mechanism. Discrimination power of the tracker is increased

by transfer learning and occlusion detection capabilities enabled the tracker to reac-

quire the target after occlusion. Performance of proposed algorithm and other several

distinguished target tracking algorithms are compared on our infrared surface vessel

image dataset. Image dataset consists of synthetic images acquired during challeng-

ing naval combat scenarios and categorized by their respective challenges such as
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confusion, low intensity and occlusion. It was seen that the proposed algorithm had

superior performance to other tested algorithms.

Keywords: Target tracking, Object Tracking, Visual Tracking, Infrared Tracking
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ÖZ

HAVADAN ALINAN KIZILÖTESİ GÖRÜNTÜLERDE GEMİ TAKİBİ

Çakıroğlu, Ahmet

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy

Şubat 2019 , 72 sayfa

Hedef takibi, istenilen bir nesnenin ardışık görüntüler üzerinde sürekli olarak yerinin

belirlenmesi olarak tanımlanabilir. Su üstü gemilerin takibi, hedef takibinin büyük de-

recede zorlu bir uygulamasıdır. Tipik bir senaryoda hedef ve görüntü alan platformun

yaptığı manevralı hareketler, görüntünün hızlıca değişmesine sebep olmaktadır. Buna

ek olarak hedefin takip edilmekten kaçınmak amacıyla havaya fırlattığı sıcak fişekler

takip algoritmasını yantılmakta veya görüntüsünü kapatmaktadır. Bazı durumlarda

ise özel ekipmanlar kullanılarak, hedef arka plan scaklığına kadar soğutulmakta ve

görülmesinin engellenmesi amaçlanmaktadır. Bu tezde popüler hedef takip algorit-

malarından bir tanesi öğrenim aktarımı ve görüntüde kaybolmanın tespiti yeteneğinin

eklenmesi ile geliştirilmiştir. Öğrenim aktarımı işlemi ile takipçinin ayırt edicilik ye-

tenği arttırılmış , görüntüde kaybolma tespiti ile ise hedef tekrar belirdiğinde takibe

devam edilebilmesi sağlanmıştır. Önerilen algoritmanın ve literatürde kendini ispat

etmiş diğer bir kaç algoritmanın başarımları kendi hazırladığımız bir kızılötesi gemi

görüntüsü veri kümesi üzerinde test edilmiştir. Görüntü veri kümesi zorlayıcı deniz

savaş ortamında elde edilmiş ve içerdikleri karıştırma, düşük parlaklık ve görüntüde

kaybolma gibi zorluklara göre kategorilendirilmiş sentetik kızılötesi gemi görüntüle-
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rinden oluşmaktadır. Elde edilen sonuçlarda önerilen algoritmanın diğer algoritmalara

göre üstün başarım gösteriği görülmüştür.

Anahtar Kelimeler: Hedef takibi, Nesne takibi, Görsel takip, Kızılötesi takip
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guidance, advice, criticism, encouragements and insight throughout my research.

I would like to give my special thanks to my friends for their encouragement, support

and above all for their friendship throughout the study.

I would also like to thank my colleagues at TÜBİTAK SAGE for their moral, technical
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objective

Object tracking is a fundamental problem in computer vision, employed in a wide

range of applications such as surveillance, target tracking in defence, human-computer

interaction and medical imaging. Object tracking has been studied for decades with

substantial progress but still remains a challenging problem.

In a typical naval warfare scenario, tracking the positions of enemy surface watercraft

is highly crucial. Apart from radars, tracking of surface watercrafts is commonly per-

formed on images gathered from an infrared camera on a flying platform. In this

thesis, employing object tracking algorithms for tracking surface watercrafts in air-

borne infrared imagery is studied.

1.2 Problem Definition

1.2.1 Object Tracking

Object tracking can be defined as the estimation of the object state in subsequent

frames, given the initial state of the object. State of the object is generally the ge-

ometric properties of the object in the image frame; such as the central position,

bounding box and silhouette of the object. But the state can also be defined as the 3D

position of the object in a real-world reference coordinate system.

If the object appears large enough in the image frame such that it exhibits distinguish-
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ing features, its appearance features can be recognized in subsequent frames. Thus, it

is required to employ a different approach for tracking small and/or faint objects that

has no distinguishing appearance feature. So, in this work, object tracking algorithms

are divided into two categories: small object tracking and visual object tracking.

Small target tracking algorithms focus on the problem of measurement origin un-

certainty. When the object being tracked is small, only information gathered from

infrared sensor is the centroid positions of small object detections. There is no distin-

guishing appearance information which can be used to discern our object from other

objects or false detections. So it is not trivial to determine the origin of small target

centroid measurements. The procedure of matching the correct measurement and the

object being tracked is called data association. Data association algorithms are being

studied for decades and there is a substantial amount of work in the field.

Visual target tracking algorithms use a representation of the object’s appearance for

locating the object in subsequent frames. Appearance representation can be simply

the intensity values or some other representation as histogram, silhouette, image gra-

dients or automatically generated feature maps by convolutional neural networks.

1.2.2 Surface Vessel Tracking

In a naval warfare environment, tracking the positions of the enemy water craft is

highly critical. This is achieved by mainly using radars. But, radar systems emits

electromagnetic waves and this conversely can be used by enemy water craft to deter-

mine the position of the radar system. Tracking the targets using infrared imagery is

a passive alternative which emits no energy. Tracking the positions of surface vessels

is generally performed on imagery acquired by a flying platform.

There are several problems which are specific to tracking surface combatants in in-

frared images acquired by a flying platform. The most encountered problem is in-

frared countermeasures used by the target. If a warship detects an incoming flying

threat, it releases decoy heat sources into the air to mislead the threat. Most visual

target tracking algorithms are robust to this kind of objects in the scene; because most

of the time, shape of the decoy differs significantly from the target. However, if the
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decoy partially overlaps with the target or completely blocks the view of the target,

tracking performance critically decreases. This scenario especially occurs when the

target uses a system called trainable decoy launcher which actively aims to block the

view of the threat by releasing multiple heat decoys to create a big hot cloud in the

direction of the incoming threat. Occlusion of the target also occurs when the plat-

form which acquires the infrared image is flying at a low altitude. This means image

is acquired with a low pitch angle. This low pitch angle causes ship targets to occlude

each other in the case of tracking ships of a fleet. Target tracking algorithms generally

detect the occlusion of the target by thresholding its confidence metric and deciding

that target being tracked is absent in the current frame. Tracker then commonly stops

updating its target appearance model to prevent the model from diverging to a non-

target object in the scene.

Modern warships also employ active cooling systems by spraying sea water onto

itself in order to reduce the temperatures of the outer body of the ship. This makes

ship appear in the infrared images with similar pixel values with the sea background.

This similar appearance with the background may cause a tracker to match with a

background region resulting in decreased tracking performance or a complete loss of

the target.

A fast manoeuvring imaging platform coupled with a manoeuvring target can cause

target’s appearance on the image change quickly over time. A tracker must adapt its

target appearance model quickly or use an appearance model which is invariant under

the changing pose of the target.

1.3 Our Approach and Contribution

In this work, performances of state of the art, visual target tracking algorithms are

evaluated on synthetic infrared imagery. Small target tracking algorithms are ex-

cluded from our tests and it is assumed that a small target tracking procedure is uti-

lized with optimal performance until the starting frame of the visual tracking algo-

rithm. Imagery dataset consists of synthetic mid-wave (MW) infrared imagery cap-

tured from a flying platform in several scenarios. These scenarios are typical naval
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warfare air engagements which typically include a flying platform approaching to a

naval surface vessel with different altitudes, angles and speeds under different atmo-

spheric and lighting conditions. These engagements may or may not occur in the

presence of other, out of interest surface vessels.

A variety of visual target tracking algorithms are selected to evaluate their perfor-

mances in our dataset. Algorithms are selected by their popularity in the visual track-

ing literature. The selected algorithms for this work are Mean Shift Tracking [14],

Normalized Cross Correlation [37], Minimum Output Sum of Squared Error Filter

[7], Structured Output Tracking [21] and Hierarchical Convolutional Features for Vi-

sual Tracking [38].

In order to measure the performances of the selected trackers, several notable visual

tracking metrics are investigated. Two tracking metrics are found to be the best suited

for our problem. Tracking metrics used in this work are named F-score [35] and

Deviation [45].

Selected algorithms are evaluated with selected metrics on our IR surface vessel im-

agery dataset. Hierarchical Convolutional Features for Visual Tracking algorithm has

outperformed the other algorithms. However, this algorithm is designed to track all

kinds of objects because it is a general object tracker. Since the main goal of this

thesis is to track watercraft, the best scoring algorithm is modified to track only spe-

cific types of objects. This modification consists of retraining the underlying feature

extracting convolutional neural network. The network is trained on a dataset which

consists of IR images of different surface vessels and different background clutter

types. An occlusion detection procedure is also employed in the matching proce-

dure to improve the tracking performance in the cases where target is occluded or

not visible by any other cause for a limited amount of time. It was seen that these

modifications improved the performance of the tracker in our dataset, which consists

of IR images of combat ships.
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1.4 Organization of the Thesis

This thesis consists of 5 chapters. Chapter 1 introduces the motivation for this the-

sis, defines the problem of focus and describes our approach and contribution to the

problem.

Chapter 2 contains literature survey for both small and visual target tracking prob-

lems. This chapter describes significant works carried through in the field.

Chapter 3 introduces theoretical background for target tracking algorithms and de-

scribes notable target tracking algorithms in detail. This chapter also lays the theoret-

ical groundwork for this thesis.

Chapter 4 describes how target tracking algorithm performances are evaluated with

our dataset. Performance evaluation metric and out dataset is described in detail.

This chapter also presents experimental results of our evaluation. Performance metric

scores and survival curves for each tracking algorithm is presented and the results are

discussed in detail.

Finally, chapter 5 concludes the thesis with discussions about experimental results

and inferences made from the results. This chapter also mentions possible future

work on the problem.
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CHAPTER 2

LITERATURE SURVEY

2.1 Small Object Tracking

Since very small targets have no distinguishing features other than appearing as small

points in the images; tracking methods such as kernel tracking and silhouette tracking

are not suitable for small target tracking. Small target tracking methods can be cate-

gorized in two main topics: detect-before-track (DBT) and track-before-detect (TBD)

algorithms.

Detect-before-track algorithms first declare target detections in each step. Target de-

tection is performed by a small target detection algorithm and detection results are

used to estimate target trajectory [52]. If there is one small target to be tracked,

Kalman filter and particle filter DBT algorithms are mainly used. An iterated ex-

tended Kalman filter is used in [10] to estimate object motion from noisy images. [4]

uses Kalman filter to estimate object location and speed in 3D coordinates in stereo

images. An extended Kalman filter is used in [44] to estimate 3D trajectory from 2D

image motion. In the case of non-Gaussian distribution of target motion state vari-

ables, Kalman filter gives poor estimation results. This problem can be overcome by

particle filters which do not assume normally distributed state variables. A randomly

generated set (particles) is used for modelling non-Gaussian distribution of target mo-

tion parameters in clutter [27]. A real-time object recognition system using particle

filter is implemented in [13].

When tracking multiple small targets, problem of corresponding detections and tracked

objects arises. The correspondence problem needs to be solved before Kalman or par-

ticle filters can be applied. Joint Probabilistic Data Association (JPDA) and Multiple
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Hypothesis Tracking (MHT) are two widely used techniques for solving the corre-

spondence problem [50]. JPDA is defined in [20], and used for tracking multiple

targets in a cluttered environment. Major limitation of JPDA algorithm is that it can-

not handle changing number of targets. In [11], a method to track variable number

of targets using JPDA is proposed. JPDA produces erroneous results when a target

exits field of view or a new target enters field of view. Multiple hypothesis algorithm

does not have this drawback [50]. [43] defines MHT as a multiple target tracking

algorithm with track initiation and deletion capabilities. MHT considers all possible

measurement-to-target associations called hypotheses in each iteration and generates

new hypotheses from existing hypothesis recursively. This branching approach gen-

erates a tree representing probabilities for all possible associations from the very first

measurement [43]. Number of hypotheses grows exponentially with new measure-

ments. Since it creates excessive amount of workload for the algorithm platform, [15]

chooses k-best hypotheses and discards other inferior hypotheses. Standard MHT ap-

proach uses a Kalman filter for state estimation of the tracks, [25] uses a particle filter

as the state estimator of the multiple hypothesis tracking. In [48], hypotheses is not

represented as a list or a tree, instead hypotheses are defined as association probabil-

ities. This approach is called Probabilistic Multiple Hypothesis Tracking (PMHT).

Track-before-detect algorithms collect the energy of target candidates before declar-

ing some of the candidates as targets. Measurement data without any thresholding is

used as an input to tracker. If any track exceeds certain target likelihood, it is declared

as a target. The main problem is that sensor image is a highly non-linear function of

the target state [17]. A method to solve this problem is to discretize the state space.

Discrete target state space makes it possible to use Viterbi algorithm, [1] uses Viterbi

algorithm with dynamic programming approach to track and detect small targets in a

heavily cluttered environment. [42] uses 3-D matched filter to detect small objects. A

set of filters with different velocity assumptions for the target and the image sequence

is multiplied in 3D frequency domain and the result is inverse transformed.
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2.2 Visual Object Tracking

If target size is large enough such that it has unique features that can be tracked,

kernel based and silhouette based trackers are suitable for tracking such targets in

image sequences. Kernel based tracking methods can be categorized in two main

topics: template-based tracking and density-based tracking.

Template matching is a common approach for template-based tracking. An intensity

based template representing the target region is searched in every new frame to find

the new location of the object in the image [50]. New location of the target is com-

puted by a similarity measure such as sum of squared distances and cross-correlation.

There are several problems for standard template matching approach. Illumination

changes on the object produces low similarity values with the template and makes it

possible for template to match with a non-target region. [5] uses intensity gradients,

which are invariant under illumination changes, for template matching. Another ap-

proach for handling changing illumination is normalizing the filter and image under

the filter window. [9] uses Normalized Cross Correlation (NCC) as the similarity

measure for template matching. Another problem for template matching is changing

appearance of the target due to scaling and/or rotation. In order to address this prob-

lem, a dynamically evolving template is used. Template is updated with the weighted

sum of the old template and the intensity values in the matched region in new frame

[39]. [7] introduces Minimum Output Sum of Squared Error (MOSSE) filter which

finds a template such that it minimizes the sum of squared error between actual cor-

relation output and desired correlation output. Desired correlation output is a strong

peak at the location of the target and zero intensity elsewhere. This technique allows

template to adapt to changing appearance of the target. Evolving template approach

can handle scale changes as long as object region is smaller than the template window.

If target becomes larger than the window, changing the size of the template becomes

a necessity. In order to find a suitable windows size for the target, some tracking

algorithms aim to estimate target scale. A scale dimension is defined on the image

in addition to horizontal and vertical spatial dimensions. Tracker searches template

in translation and scale. After finding the correct scale, tracker updates the template

size according to target scale. [34] extends MOSSE by introducing separate filters
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for scale and translation for robust estimation of the scale. This resulted a tracker

which outperforms other state-of-the-art tracking methods [16]. Standard template

matching approach is also slow in terms of computation speed because it searches

the whole image for a match with a brute search. One solution to address this prob-

lem is only searching for a match in the neighbourhood of the previous match point.

Another solution is computing the correlation in frequency domain, [37] introduces

a Fast Fourier Transform (FFT) based NCC method to track non-moving objects in

order to estimate camera motion. [24] observes that a discriminative template takes

a circulant structure when trained with large number of samples. The circulant struc-

ture is exploited to achieve very fast update of the the filter and detection of the object

in the new frame.

Another kernel based tracking method is density-based tracking. Density based track-

ers uses probability density of the object region as the feature for tracking. Probabil-

ity density of the object region is usually represented by intensity histograms. [14]

uses weighted histogram of the circular target region to track objects. Instead of

searching whole image, authors use mean-shift approach to find the best histogram

match. Mean-shift procedure is initialized from the target location found in the pre-

vious frame, circular target window then iteratively moves in the direction of the

mean-shift vector to the new location of the target. One problem of mean-shift track-

ing is that filter size is constant. [8] uses an elliptically shaped filter and adapts filter

size and orientation to the new appearance of the object. [28] uses three probabilistic

component mixture as a model for the object region. The three components defined as

static features, transient features and noise component. The static features represents

the most reliable features of the target; transient features models changing appear-

ance of the object; noise part is for modelling outlier pixels. Another density based

approach is presented in [22]. Target region is represented by a grid of multiple lo-

cal histograms and target is search around a neighbourhood by the distance between

template histograms and the region of interest.

Classification based trackers are emerging recently. These trackers employs classifi-

cation algorithms to classify each region in the new frame as target or background.

Tracker also trains classification algorithm during tracking. [21] presents an adaptive

tracker based on structured support vector machine (SVM) with online learning capa-
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bilities. Authors also introduces a control mechanism to keep the number of support

vectors at a suitable bound. [40] uses convolutional neural networks (CNN) for track-

ing. A number of layers called domain-specific layers are trained with separate an-

notated videos. Then, trained domain-specific layers are combined to obtain a shared

layer with generic target representation. The resulting tracker is very accurate and ro-

bust but slow in execution time, because online training of a CNN is a costly operation

[33]. In [49], an offline trained stacked denoising autoencoder is fined tuned online to

adapt to appearance changes of the target. TLD (Tracking-Learning-Detection) [29]

divides the localization of the object into two separate parts: tracking and detection.

A classifier detects and corrects the errors of tracking and detection while learning the

appearance of the target. In [23], authors feed the current and previous frames to two

separate convolutional neural networks. A third network is trained on the outputs of

these two networks and the object translation between the frames. No online training

is performed during tracking.

Silhouette based trackers are usable for tracking objects that has non-rigid changing

complex shape or their silhouette change because of 3D rotation. Silhouette based

trackers use object contour as the representation of the object being tracked. [26]

proposes a contour tracking algorithm with a novel approach to conditional density

propagation. Object shape and position model are represented with factored sam-

ples. [51] presents an active contour based tracker which is robust to occlusions.

Shape priors are used to recover the shape of the occluded object. A hidden Markov

model (HMM) based silhouette tracking algorithm is presented in [12] . Authors also

employs joint probabilistic data association filter to establish a region smoothness

constraint in addition to contour smoothness constraint.
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CHAPTER 3

THEORETICAL BACKGROUND

Target tracking in a machine vision scope can be described as the estimation of the

state of an object in a frame using the information about the object from previous

frames. For most applications, state of the object is simply the centroid pixel location

of the object and in most cases bounding box of the object in the frame. In applica-

tions which the outer geometry of the scene is concerned about, state is generally 3D

position of the object relative to real world or the imaging platform.

3.1 Small Target Tracking

Small Target Tracking is a case of target tracking which the only measurement about

the object is the centroid pixel location. In this case there is no discriminating features

about the object is available since the object appears only as a small point in the

image. Conditions which create this appearance is dependent on the size of the object,

distance to the object, optical and radiometric characteristics of the camera. But from

a machine vision perspective, the conditions which create the small appearance is

generally irrelevant and simply the pixel area of the object in the image frame is

considered to treat the object as a small target. In a naval combat environment tracking

of watercrafts generally starts in a distance where targets suit the definition of small

target. Since in this case camera only acts as a position detector, small target tracking

algorithms can work with position data provided with a sensor type different from a

camera such as radars or sonars.

In order to overcome the problem of discriminating the objects from each other, small

target tracking algorithms employ state estimators and data association algorithms.
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Data association algorithms compare the position measurements from the acquired

image and state predictions produced by the state estimator to differentiate objects

from each other. In following sections the most distinguished state estimator, Kalman

filter, and two popular data association techniques are explained to give a perspective

about the small target tracking methodology.

3.1.1 Kalman Filter

Kalman filter [30] is an estimator which estimates the state of a linear system. It

uses measurements that are generated as a linear function of the system state but

corrupted by additive Gaussian noise. Kalman filter employs two procedures called

time update(prediction) and measurement update(correction). Let xk be the state of

the system at time step k, then state transition at each time step can be written as a

linear combination of the previous state, a control signal and noise:

xk = Axk−1 +Buk + wk (3.1)

where A is a matrix called state transition matrix, uk is a control signal assuming the

system is controlled by another system, B is a matrix representing the control model

and wk is the process noise. Measurements from the system can be modelled as a

linear transform of the state with additive Gaussian noise:

zk = Hxk + vk (3.2)

where zk is the measurement,H is the measurement model and vk is the measurement

noise. A,B andH matrices of the system are constant and must be known or correctly

modelled for Kalman filter to work correctly.
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3.1.1.1 Time Update (Prediction)

Kalman filter makes a prediction about the state of the system in next iteration. The

prediction is simply made by using the state transition model:

x̂−k = Ax̂k−1 +Buk (3.3)

where x̂−k is the state prediction or the state prior. Since it is an estimator, Kalman

filter has a state estimation covariance matrix denoted as Pk. Prediction step also

makes a prediction about what estimation covariance will be at next iteration, in other

words it projects ahead the error covariance for one step:

P−k = APk−1A
T +Q (3.4)

where Q is the covariance matrix of the process noise wk.

3.1.1.2 Measurement Update (Correction)

In correction equations, new measurement about the system is used to update pre-

viously predicted state estimate. Firstly, Kalman gain, denoted as Kk is calculated.

Kalman gain is a weighting factor that determines how much the new measurement

affects the new estimate of the state. Kalman gain is calculated by using the state

estimation covariance matrix Pk and measurement covariance matrix R:

Kk = P−k H
T (HP−k H

T +R)−1 (3.5)

Note that R is a constant user defined value, so one must correctly define how noisy

the measurements would be. State prediction is updated with a value called the mea-

surement prediction error or the residual.

x̂k = x̂−k +Kk(zk −Hx̂−k ) (3.6)
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Hx̂−k is what would the measurement be if the state prediction is correct. Therefore

(zk − Hx̂−k ) is the difference between the measurement zk and predicted measure-

ment Hx̂−k , so it is the measurement residual. State estimate is corrected by the mea-

surement residual weighted by Kalman gain. Correction step also corrects the state

estimation covariance prediction P−k using calculated Kalman gain:

Pk = (I −KkH)P−k (3.7)

Prediction and correction procedures run at every iteration respectively. Outputs of

every iteration are used for inputs to next iteration.

3.1.2 Joint Probabilistic Data Association Filter

In a small target tracking system, Joint Probabilistic Data Association Filter (JPDAF

)[20] is an algorithm that matches measurements to existing target tracks. Following

the measurements, JPDAF calculates the probabilities of all possible joint measurement-

to-track associations. A joint association is a decision representing a joint event,

which consists of all measurement events in a time step. JPDAF defines a joint event

with following:

θ =

mk⋂
j=1

θjtj (3.8)

where

θjt , {measurement j originated from target t},

j = 1, ...,mk; t = 0, 1, ..., T (3.9)

T is the number of targets being tracked and mk is the number of measurements in

time step k (latest time step). Instead of considering all joint events, JPDAF uses

a validation matrix to eliminate associations with negligible probability in order to

reduce computational complexity. If a measurement j is outside of the validation gate

of target t, association probability of the event θjt is considered negligible. JPDAF

defines a validation matrix as follows:
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Ω , [ωjt], j = 1, ...,mk; t = 0, 1, ..., T (3.10)

where ωjt is a binary value that indicates if measurement j is in the validation gate of

target t. Validation matrix is used for generating different joint event permutations. A

joint event θ is represented in the matrix form similar to validation matrix.

Ω̂(θ) = [ω̂jt(θ)] (3.11)

ω̂jt(θ) is 1 if θjt is an association event in θ. Ω̂(θ) has one extra column for repre-

senting false alarms (i.e., measurements which are not originated from a target). A

joint event is called feasible if a measurement can only be originated from one source,

i.e.,

T∑
t=0

ω̂jt(θ) = 1, j = 1, ...,mk (3.12)

and no more than one measurement can originate from a target, i.e.,

δt(θ) ,
mk∑
j=1

ω̂jt(θ) ≤ 1, t = 1, ..., T (3.13)

δt(θ) is called target detection indicator. It indicates that target t is associated with

a measurement in the joint event θ. For the convenience of the main equation of

JPDAF, a binary measurement association indicator τj(θ) is also defined. It indicates

that measurement j is associated with a target.

τj(θ) ,
T∑
t=1

ω̂jt(θ), j = 1, ...,mk (3.14)

Using τj(θ), number of unassociated measurements can be calculated:

17



φ(θ) =

mk∑
j=1

[1− τj(θ)] (3.15)

JPDAF calculates the probability of a feasible joint event with as follows:

P{θ|Z} =
1

c

φ!

V φ

mk∏
j=1

[
Ntj [zj]

]τj T∏
t=1

(P t
D)δt(1− P t

D)1−δt (3.16)

where Z is the measurement set, zj is an individual measurement, c is a normaliza-

tion constant, V is the surveillance region volume, Ntj is the multivariate normal

distribution function generated with the covariance matrix produced by the state es-

timator of target tj . P t
D is the probability of detection of target t. After calculating

the probabilities of every feasible joint event, marginal probabilities are calculated as

follows:

βjt , P{θjt|Z}

=
∑
θ:θjt∈θ

P{θ|Z} (3.17)

State estimation of each target’s Kalman filter is performed by using a combined

innovation, which is calculated as follows:

vt =

mk∑
j=1

βjtvjt (3.18)

3.1.3 Multiple Hypothesis Filter

Multiple hypothesis filter [43] is an algorithm to resolve measurement-to-track as-

sociation problem in multi-target tracking systems. Unlike joint probabilistic data

association filter (JPDAF) which only considers latest set of measurements and al-

ready established tracks; multiple hypothesis filter generates and holds hypotheses

about all possible association decisions from the beginning, including initiation of a

new track. In each iteration, association decision is chosen as the hypothesis with the

18



highest probability while other hypotheses are retained and improved. This prevents

an incorrect association to cause a complete mix up of tracks.

Let Ωk be the set of all association hypotheses up to time step k. Ωk consists of joint

cumulative events. A joint cumulative event Θk,l at time step k can be defines as

follows:

Θk,l = {Θk−1,s,θ(k)} (3.19)

where θ(k) is a joint event in time k which consists of τ number of measurements

originated from an existing track, v number of measurements originated from new

targets and φ number of measurements that are false alarms. Following indicators are

defined for latest set of measurements zi(k), i = 1...mk

τi = τi[θ(k)] ,

1, if zi(k) originated from an existing track

0, otherwise
(3.20)

vi = vi[θ(k)] ,

1, if zi(k) originated from a new target

0, otherwise
(3.21)

δt = δt[θ(k)] ,

1, if track t is detected at time step k

0, otherwise
(3.22)

Joint cumulative events in Ωk−1 is augmented with feasible joint association events

in time srep k to create Ωk. Conditional probability of each cumulative event is

calculated as follows:

P{Θk,l|Zk} =
1

c

φ!v!

mkV φv
µF (φ)µN(v)

mk∏
i=1

[
Nti [zi(k)]

]τi
×

T∏
t=1

(P t
D)δt(1− P t

D)1−δtP{Θk−1,s|Zk−1}
(3.23)
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where Zk is the set of all measurements up to time step k, zi(k) is an individual

measurement, c is a normalization constant, V is the surveillance region volume, Ntj

is the multivariate normal distribution function generated with the covariance matrix

produced by the state estimator of target ti. P t
D is the probability of detection of target

t. µF (φ) and µN(v) are the probability mass functions of number of false alarms and

number of new targets. After calculating the probabilities of all joint cumulative

events in Ωk, MHF chooses joint cumulative event with the highest probability as the

association decision.

Number of hypotheses grow exponentially as new measurements arrive. MHT per-

forms hypothesis reduction techniques to keep the number of hypotheses at a reason-

able level. Hypotheses with negligible probabilities are eliminated and hypotheses

which have similar associations are merged.

3.2 Visual Target Tracking

Visual tracking can be defined as continuously estimating the new location of the ob-

ject in the new acquired image using the previous information about the appearance

of the target. Most of the visual target tracking algorithms can be divided into two

main parts such as target appearance model and target matching. Appearance model

is a representation of the past information gathered about the target. In this model, ap-

pearance of the target can be represented by an intensity template, intensity histogram

or feature vectors [47]. Target matching is the stage where the tracking algorithm tries

to find the most similar region in the new frame to its target appearance model in order

to locate the target. While it is also possible to take advantage of target state estima-

tors, as in the case of small target trackers, to help with the matching state; our work

concentrates on tracking using appearance information only. In the following part of

this section, several distinguished visual tracking algorithms are explained in detail.

3.2.1 Mean Shift Tracking

Mean-shift [14] is a kernel based object tracking algorithm. Mean-shift uses weighted

histogram of the target region as the kernel. Object is localized by histogram similar-
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Figure 3.1: Popular appearance models [47]. (a) Intensity template [50], (b) intensity

histogram and (c) feature vectors.

ities between the kernel and the object region in the new frame. Instead of searching

the most similar histogram exhaustively, kernel window moves from the previous

location to the new location of the object by a mean-shift procedure. Mean-shift em-

ploys Bhattacharyya coefficient to define a distance metric between two histograms.

Bhattacharyya coefficient has the following form in terms of densities:

ρ(y) ≡ ρ[p(y), q] =

∫ √
pz(y)qzdz (3.24)

Since Mean-shift uses weighted histograms as density estimates, Bhattacharyya co-

efficient takes the following form:

ρ̂(y) ≡ ρ[p̂(y), q̂] =
m∑
u=1

√
p̂u(y)q̂u (3.25)

where q̂u is the target histogram, p̂u(y) is the histogram of the region centered at dis-

crete pixel location y andm is the number of histogram bins. Based on Bhattacharyya

coefficient, a distance metric between two histograms is defined:

d(y) =
√

1− ρ[p̂(y), q̂] (3.26)
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3.2.1.1 Weighted histogram computation

Pixel locations of the region centered around y are denoted by {xi}i=1...n. Let b :

B2 → {1...m} be a function which maps xi to the index b(xi) of the histogram bin

corresponding to intensity value at the pixel location xi. The weighted histogram can

be written as

q̂u = C

n∑
i=1

k

(∥∥∥∥y − xih

∥∥∥∥2)δ[b(xi)− u] (3.27)

where C is a normalization constant, h is the scale of the region, δ is the Kronecker

delta function, k : [0,∞) → R is a function which assigns smaller weights to the

pixel locations farther away from the center.

3.2.1.2 Distance Minimization

Search procedure to find the new location y of the target starts from the location y0

of the target in the previous frame. Minimization of the distance metric is equivalent

to maximization of Bhattacharyya coefficient. Taylor expansion of ρ[p(y), q] yields:

ρ[p(y), q] ≈ 1

2

m∑
u=1

√
p̂u(y0)q̂u +

1

2

m∑
u=1

p̂u(y)

√
q̂u

p̂u(y0)
(3.28)

Since first term is independent of y, second term has to be maximized. Introducing

(4) to second term, we get

ρ[p(y), q] ≈ 1

2

m∑
u=1

√
p̂u(y0)q̂u +

C

2

nh∑
u=1

wik

(∥∥∥∥y − xih

∥∥∥∥2) (3.29)

where

wi =
m∑
i=1

δ[b(xi)− u]

√
q̂u

p̂u(y0)
(3.30)
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Maximization is achieved by Mean-shift procedure. Given the distribution q̂u and the

previous location y0 of the target:

1. Compute the weights {wi}i=1...nh
according to (7).

2. Calculate the new location of the target

y1 =

∑nh

i=1 xiwig
(∥∥y0−xi

h

∥∥2)∑nh

i=1wig
(∥∥y0−xi

h

∥∥2) (3.31)

3. If ‖y1 − y0‖ < ε Stop.

Otherwise Set y0 ← y1 and go to Step 1.

3.2.2 Normalized Cross-Correlation

Normalized Cross-Correlation (NCC) Tracking [37] is a template matching based

tracking algorithm which uses NCC to find the closes match to template in the new

frame. NCC differs from standard correlation operation by preprocessing the inputs

to have zero mean and unit variance. This property of NCC prevents the template

to match with high intensity, non-target regions. Figure 3.2 shows the result of the

same template with conventional cross-correlation and NCC. It can be seen that NCC

allows accurate template matching as it only gives high correlation output on the

location of the actual template.
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Figure 3.2: Conventional cross-correlation output (c) and NCC output (d) using the

image (a) and template (b).

NCC operation between two images that have the same size defined as follows:

N×(A,B) =

∑
i(A(pi)− Ā)(B(pi)− B̄)√∑

i(A(pi)− Ā)2
√∑

i(B(pi)− B̄)2
(3.32)

NCC operation is performed on the whole image by moving the template window

over the image. Since it is necessary to calculate the mean and variance of every

region which template moves over, NCC is a costly operation to perform. In order to

address this problem, [37] employs integral images to calculate NCC by Fast Fourier

Transform.
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After the NCC matching operation and finding the maximum of the result, region

around the newly found target location is blended with the template to generate the

new filter for the next image.

Tk+1 = αI(x) + (1− α)Tk (3.33)

where T is template, k is time step, x is the detected target location and α is the

blending ratio.

3.2.3 Minimum Output Sum of Squared Error Filter

Minimum Output Sum of Squared Error (MOSSE) Filter [7] is a template based,

adaptive correlation filter for tracking objects in images. Correlation operation in the

Fourier domain can be written as follows:

G = F �H∗ (3.34)

where F is the current frame image and H is the filter. The location of the object in

the current frame is determined by finding the maximum of the correlation output g,

which is the inverse Fourier transform of G. MOSSE defines a desired correlation

output which is a strong peak at the centroid location of the object being tracked. In

order to find a filter that produces desired correlation output, MOSSE minimizes the

distance between the actual correlation output and the desired correlation output.

min
H∗
|F �H∗ −G| (3.35)

A closed form expression for the MOSSE filter is derived by solving for H∗:

H∗ =
G� F ∗

F � F ∗
(3.36)
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A filter calculated with this approach fits exactly to current frame but will often fail

for locating the object in the next frame. To make the filter more general, an aver-

aging approach is used. Numerator and denominator of the filter extracted from the

current frame are named Ai and Bi and averaged separately with the numerator and

denominator values of the previous frame (Ai−1, Bi−1):

Ai = ηGi � F ∗i + (1− η)Ai−1

Bi = ηFi � F ∗i + (1− η)Bi−1

H∗i =
Ai
Bi

(3.37)

where η is the averaging ratio. Large η puts more emphasis on the current frame.

Initialization of the filter is performed on the initial image by sampling N different

regions around the target. The locations of the samples are determined by slightly

perturbing the location of the original target location. Initial A and B are calculated

as follows:

A =
1

N

∑
i

Gi � F ∗i

B =
1

N

∑
i

Fi � F ∗i
(3.38)

where Fi is the Fourier transform of the i th perturbed region sample and Gi is the

corresponding desired output for the region.

3.2.3.1 Occlusion Detection

One of the main features of MOSSE tracking algorithm is being able to detect if the

object of interest is not visible in the current frame. This feature aims to stop ap-

pearance template update to prevent filter from being updated by non-object regions.

Object visibility is determined by measuring the peak strength of the maximum value

in the correlation output. If the peak is not strong enough, it is decided that the object

is not present in the current frame. Peak strength is measured by a metric called Peak
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to Sidelobe Ratio (PSR). PSR measures the peak strength by dividing the correlation

output g into two seperate regions. First region is the peak which is the maximum

value of g and second region is the sidelobe which is the rest of the image excluding

a 11×11 region around the maximum value. PSR then is calculated as follows:

PSR =
gmax − µsl

σsl
(3.39)

where gmax is the maximum value of g; µsl and σsl are the mean value and standard

deviation of the sidelobe.

3.2.4 Struck: Structured Output Tracking with Kernels

Struck [21] is an object tracker which uses structured output SVM [6] for localization

of the object. Traditional SVM based trackers use a sliding window technique to clas-

sify each region of the image. Classification scores are used to determine the position

of the object in the new frame. Instead of using a classification function which maps

image samples to labels of classes, structured output SVM used in Struck employs a

classification function which maps image samples to euclidean location transforms in

the image. It eliminates the problem of incorrect labelling of the samples by directly

working on the image instead of heuristically generating binary labelled samples.

A prediction function f : X → Y is proposed to estimate the object transform be-

tween two frames, which Y is the space of all transformations. A discriminant func-

tion F : X × Y → R, which is introduced in structured SVM framework, is used to

calculate prediction function as follows:

yt = f(x
pt−1

t ) = argmax
y∈Y

F (x
pt−1

t ,y) (3.40)

A budget technique is also employed to limit the number of support vectors for real-

time execution of the tracker.
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3.2.5 Hierarchical Convolutional Features for Visual Tracking

Artificial Neural Networks (ANN) are a set of classifiers which has been inspired by

biological processes. An ANN mimics how a biological brain works by employing

interconnected atomic processing elements called artificial neurons. Each neuron has

a set of parameters such as input weights and activation rules. These parameters are

optimized in a process called training to make the neural network to perform a certain

classification task.

Convolutional Neural Networks (CNN) are a subset of ANN’s which specific con-

straints are defined on neuron connections and input weights to make each layer of

the network to correspond to a convolution operation. Convolutional layers are gen-

erally followed by unconstrained neural network layers to complete a classification

task. CNN’s are capable of automatically learning distinctive features of the training

data for improved classification performance. CNN’s are shown to be an effective

tool for image classification applications [36].

It is possible to employ CNN’s for object tracking [40, 33, 49, 29, 23]. CNN’s have the

tools to accommodate the two main parts of the tracking process: appearance model

and target matching. Hierarchical convolutional features of the CNN’s provides an

elaborate appearance representation. On the other hand, target matching is performed

by classifying each region in the current image to find the region containing the tar-

get. This classification task is performed by methods such as fully connected neural

networks, support vector machines (SVM) and correlation filters. Training a reli-

able neural network or SVM classifier requires a large amount of samples around the

target region. Correlation filters eliminates the need of sampling around the target

[38]. Correlation filters are also preferred in this work by their computational speed

in embedded systems.

In [38] it is observed that shallow layers of a CNN encode more precise position infor-

mation than the deep layers, whereas deep layers encode semantic information better

than the shallow layers. From a target tracking perspective, tracking an object using

features from shallow layers offers precise localization of the target while tracking an

object using deep layers is more robust to appearance changes.
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Figure 3.3: Hierarchical location estimation [38]

Authors uses a pre-trained general object classification CNN to extract both deep

and shallow convolutional features of an image frame. These features are then used

for tracking the object where an adaptive correlation filter bank, similar to MOSSE, is

used for each layer to locate the target. Location results are combined in a hierarchical

manner to generate a single location for the object in the current image. Figure 3.3

shows the location estimation procedure.

Correlation filter for d-th channel (d ∈ {1, ..., D}) of a layer is calculated as follows:

H∗d =
G� F ∗d∑D
i=1 Fi � F ∗i

(3.41)

where G is the desired correlation result which is a strong peak at the location of the

object and Fd is the d-th channel of the feature vector of a layer for the current frame.

The correlation result for the l-th layer of the network is calculated as follows:

fl = F−1(
D∑
d=1

Hd � F ∗d ) (3.42)

where F−1 is the inverse FFT transform. Target localization for the deepest layer is

performed by finding the maximum of the correlation result fl of size M ×N .
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(m̂, n̂) = argmax
m,n

fl(m,n) (3.43)

For earlier layers, target localization is performed as follows:

argmax
m,n

fl(m,n) + γfl+1(m,n)

s.t.|m− m̂|+ |n− n̂| ≤ r.

(3.44)

Filter update for each layer is performed as follows:

Atd = ηGt � (F t
d)
∗ + (1− η)At−1d

Bt
d = ηF t

d � (F t
d)
∗ + (1− η)Bt−1

d

(H t
d)
∗ =

Atd
Bt
d

(3.45)

3.3 Proposed Algorithm

The CNN based tracking algorithm described in 3.2.5 uses a pre-trained CNN for

feature extraction. The CNN used by authors is VGG-Net-19 [46] trained on Im-

ageNet [18]. Since the method is developed for general purpose object tracking, a

CNN trained on general objects suits the needs for this application. In our problem,

feature extraction for specific object types is needed. In this work, a transfer learn-

ing method which retrains later layers of the VGG-Net-19 employed in [38] is used.

The motivation is to extract features which are better suited for our problem and thus

increase the tracking performance of the visual object tracker.

3.3.1 Transfer Learning

Transfer learning in a general sense refers to utilizing information gathered in a prob-

lem solving procedure to solve another problem. In CNN applications, a pre-trained

CNN can be adapted to solve another but related classification problem. Insufficient
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Figure 3.4: Transfer learning training performance comparison

training data is a general problem for CNN training. While using the same training

dataset, transfer learning offers faster training times and better overall performance in

comparison to initializing a training procedure with random weights. Figure 3.4 com-

pares the training performances of training a CNN with transfer learning and without

transfer learning. It is shown that training with transfer learning has better starting

performance, better performance slope and better performance asymptote.

Employing transfer learning in CNN training is mainly performed by two methods.

First method only replaces the fully-connected layers of the pre-trained network and

train these fully-connected layers with new dataset. In this method, convolutional

layers are unchanged and used as feature extractors for the new classification prob-

lem. Second method allows training algorithm to retrain convolutional layer weights

to learn some new features which are better-suited for the new problem. Since ear-

lier convolutional layers extracts general features and later layers extracts problem-

specific features, most transfer learning applications keep the earlier convolutional

layers unchanged and retrain only the later layers.

VGG-Net-19 is a deep convolutional neural network consisting of 16 convolutional

layers and 3 fully connected layers. Figure 3.5 shows a simplified visual represen-

tation of the VGG-Net-19. As described previously, earlier convolutional layers ex-

tracts general features like edges, blobs etc. Since these features are common and not

specific to any type of image there is no need to retrain earlier layers.
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Transfer learning procedure in this work is performed as follows:

• Last two fully connected layers are removed from the VGG-Net-19.

• A fully connected layer with 1024 layers and a fully connected layer with 10

layers are added to the network adjacently. Last layer has made the network to

be able to classify between 10 classes of images.

• First 8 convolutional layer has set to keep their weights constant to remain

unchanged in retraining phase.

• The network is retrained with a smaller step size than the original training to

prevent already learned weights to diverge quickly.

Resulting CNN is used in a same manner as the tracker proposed in [38].

3.3.2 Occlusion Detection

MOSSE [7] tracker has a defined technique to detect occlusion of the target and pre-

vent intensity template to be updated with false matches. On the other hand CNN

based tracker [38] has a similar correlation based target matching stage to MOSSE

but has no mechanism to detect occlusions. In this thesis an occlusion detection tech-

nique similar to those of MOSSE is proposed for CNN based tracker.

CNN based tracker makes its final decision about the location of the target by using

the equation 3.43. This final decision gives more weight to the earliest layer. The

final decision is more about precise localization of the object and less about differ-

entiating target from other regions. When target appearance rapidly changes, it is

expected in this result that there are many similarly high values in non-target regions.

Therefore, using PSR metric from MOSSE filter on this weighted correlation output

will not yield the expected results because PSR metric tries to calculate how much of

an outlier is the peak correlation value, considering the whole image. However, max-

imum value from the latest layer will remain stable in the fast changing appearance

cases and will only decrease when target is not present in the image i.e. occluded.

Therefore it is suitable to use weight values which gives the latest layer more weight

32



for PSR calculation. Figure 3.6 shows an example correlation result of the proposed

tracker on an example image where an occlusion occurs. It can be seen that maxi-

mum correlation value in the latest layer is more close to non-target regions whereas

in other layers the output is not much distinct from a non-occlusion case.

Occlusion detection procedure is implemented by firstly checking the equation 3.39

result on the last layer. If the PSR value is below a certain threshold, it is decided that

target is not present in the image and thus the maximum correlation result is a false

match. In order to update the filter with a non-target region, correlation filter update

is disabled for that frame.

Figure 3.7 shows three frames from an experimental run of the proposed method with

occlusion detection mechanism is disabled. It can be seen that, during the occlusion,

tracker matches with the wrong target and continues to track the wrong target even

after the true target reappears. Figure 3.8 shows three frames from an experimental

run of the proposed method on the same video sequence with occlusion detection

mechanism is enabled. Crossed bounding box in the second frame represents the

best target match while being aware that the match is a wrong match. Therefore

target appearance model is not updated with the wrong match and tracker successfully

reacquires the true target after is reappears.
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(a) Conv3 result (b) Conv4 result (c) Conv5 result

Figure 3.6: Correlation results from different layers.
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(a) Just before the occlusion

(b) During occlusion

(c) Just after the occlusion

Figure 3.7: Algorithms tracks the wrong target during and after the occlusion
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(a) Just before the occlusion

(b) During occlusion

(c) Just after the occlusion

Figure 3.8: Occlusion detection and target reacquisition
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Evaluation of Surface Vessel Tracking Performances

In this work, performances of several visual tracking algorithms are tested. Tests are

performed for a situation where image acquiring platform optimally performed small

target tracking and the last estimated location of the target is used to initialized the

visual target tracking algorithm.

All the algorithms chosen and described in Chapter 3 are tested on annotated video

sequences. Video sequences are made up of synthetic IR images of surface watercraft

with sea background and annotations are provided as bounding box and centroid po-

sitions of the target of interest for each frame. Performances of the target tracking

algorithms are assessed by suitable metrics which are described in detail in 4.1.1.

Overall performances are evaluated by the average metric scores of the tracking algo-

rithms. Survival curves for the trackers are also shown in order to better demonstrate

the performances of the trackers over different video sequences. Survival curve is a

useful tool for assessing tracking performance and used in [47] to compare different

tracking algorithms on general object videos.

Tracking algorithms chosen for evaluation and their short names for ease of use is

given in Table 4.1.

Prior to the development of our algorithm, the tracker which has the best overall

performance was seen to be CNN tracker. It is observed that the tracker uses a con-

volutional neural network as a feature extractor. The neural network is pre-trained on

Image-Net [18] which is an image database comprising visual band images of gen-
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Table 4.1: Tracking algorithms chosen for evaluation

Short Name Name

Mean-Shift [14] Mean Shift Tracking

NCC [37] Normalized Cross Correlation

MOSSE [7] Minimum Output Sum of Squared Error Filter

Struck [21] Structured Output Tracking with Kernels

CNN [38] Hierarchical Convolutional Features for Visual Tracking

IRS-CNN Proposed tracker

eral objects. This neural network is too general for out dataset since our dataset only

includes IR band images of naval ships. In this thesis a convolutional neural network

which is pre-trained on IR band, naval ship images is used in CNN tracker.

4.1.1 Performance Metric

There are many metrics proposed in the literature [47, 2, 41] for the evaluation of

visual target tracking performance. These metrics generally require all frames of the

video to be annotated such that for every frame there is a bounding box provided for

the object being tracked.

F-score [35] is a very popular metric for visual tracking. A single decision is made

for each frame of the video sequence regarding the performance of the tracking algo-

rithm. There are three decisions that can be made for a frame:

• True positive: tracker successfully identifies and locates the target.

• False positive: tracker matches with a region which is not the target.

• False negative: tracker fails to find any target in the frame.
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While the false negative decision is very clear, there is an overlap criterion to differen-

tiate between true positive and false positive. The overlap criterion, called PASCAL

criterion [19], is defined as follows:

|T i ∩GT i|
|T i ∪GT i|

≥ 0.5 (4.1)

where T i is estimated target bounding box by the tracker and GT i is the ground-truth

bounding box of the target for the i th frame.

Number of each decision is counted for a video sequence. Number of true positives,

false positives and false negatives in a video sequence is represented by ntp, nfp, nfn

respectively. F-score is defined as follows [35]:

F = 2 · precision · recall
precision+ recall

(4.2)

where precision = ntp/(ntp + nfp) and recall = ntp/(ntp + nfn).

F1-score [31] is a metric similar to F-score but there is not a single decision made for

each frame based on thresholded overlap amount. Instead, overlap values is used as

is to calculate the metric:

F1 =
1

Nframes

∑
i

2 · p
i · ri

pi + ri
(4.3)

where pi = |T i ∩GT i|/|T i| and ri = |T i ∩GT i|/|GT i|.

Overall tracking accuracy (OTA) [3] metric measures tracking performance by using

the number o false negatives and false positives (nfn, nfp) in a video sequence. OTA

is calculated as follows:

OTA = 1− nfn + nfp∑
i g

i
(4.4)
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where gi is a binary value which indicates if there is a ground truth bounding box

available in the frame.

Overall tracking precision (OTP) [32] is a tracking metric which evaluates the track-

ing performance by using the mean overlap between the tracking bounding boxes (T )

and the ground truth bounding boxes (GT ). OTP is calculated as follows:

OTP =
1

|Ms|
∑
i∈Ms

|T i ∩GT i|
|T i ∪GT i|

(4.5)

where Ms is the set of frames where PASCAL overlap criterion is met.

Average Tracking Accuracy (ATA) [31] is a similar metric to OTP, but it uses all the

frames for the calculation. ATA is calculated as follows:

ATA =
1

Nframes

∑
i

|T i ∩GT i|
|T i ∪GT i|

(4.6)

where Nframes is the number of frames in the whole video sequence.

Deviation [45] is another metric which uses central pixel positions of the tracker and

the ground truth. Deviation is calculated as follows:

Deviation = 1−
∑

i∈Ms
d(T i, GT i)

|Ms|
(4.7)

where d(T i, GT i) is the normalized distance between the center pixel of the tracking

bounding box and the ground truth bounding box.

In [47], authors performed a comprehensive analysis of the metrics described above.

Metrics are tested on 315 different videos to analyse their measurement characteris-

tics. It is observed that all the metrics except deviation has over 0.9 correlation witWh

each other in their results. It is inferred that all the metrics except deviation essen-

tially measure the same aspect of tracking performance. Authors then decide to use

F-Score for their work for its ease of use over large datasets. Deviation metric is also

used, since it measures a very distinct aspect of tracking.
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4.1.2 Dataset

Target tracking algorithms are tested on synthetically generated infrared imagery of

naval ships. Images consist of 240 video sequences captured at 30 frames per second

with a resolution of 512×512. Each video has a duration of 40 seconds. 3D models of

the naval ships are obtained from open sources on internet. Synthetic image generator

is an industry standard, high radiometric fidelity infrared scene generator. Generated

imagery includes a wide variety of scenarios. Scenarios typically consists of a flying

image acquiring platform approaching a naval combat ship with different angles and

altitude profiles. There is also a second ship always visible alongside the main target

in 96 of the 240 videos. Scenarios include infrared countermeasures employed by the

ship which are generally infrared flares and infrared emission suppression systems.

Scenarios also include challenging situations for target tracking algorithms such as

occlusion of the target and rapid change of the appearance due to target or flying

platform manoeuvring.

Scenarios are divided into two main categories. First category includes scenarios

which has non-manoeuvring target and imaging platform. Both the target and imag-

ing platform has constant velocity. Second category includes scenarios which tar-

get or imaging platform or both are manoeuvring. Table 4.2 shows a list of non-

manoeuvring scenarios. The list includes different types of ships imaged under sev-

eral atmospheric conditions. Atmospheric conditions are affected by season of the

year and time of the day. All scenarios are run by different relative approach angles

and altitudes which are constant in a single run. Relative approach angle set of a

scenario includes 5 different angles and starts from 0◦and ends at 90◦with increments

in steps of 22.5◦. The altitude set includes 6 different altitudes and starts from 10ft

then goes to 100ft and ends at 500ft with increments in steps of 100ft. Therefore,

each scenario consists of 30 video sequences with differing approach angles and alti-

tudes. Each run starts with flying platform approaching the target from 10000 meters

range and end at 1000 meters away from the target. Figure 4.1 shows a geometric

representation of non-manoeuvring scenarios.

Second category of scenarios have the same basic configuration as the first category

of scenarios except the target or the imaging platform or both have manoeuvring
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Table 4.2: List of non-manoeuvring scenarios.

Id Target Ship Type Season And Time Notes

1 Destroyer Summer – 07:00
Infrared flare is used by

the ship.

2 Battleship Summer – 14:00
Washdown system is

used by the ship.

3 Littoral Combat Ship Spring – 04:00 -

4 Frigate Winter – 12:00
Target ship is partially

occluded for a while.

motion. Trajectory of the imaging platform is a horizontal sine function with constant

altitude. The trajectory deviates a maximum of 250 meters from the straight line

trajectory. Unlike the trajectory, orientation of the camera remains constant in a single

run and points towards the target. Trajectory of the target is an arc with a radius of

1000 meters. Orientation of the target changes with the trajectory and aligns with the

velocity vector. Table 4.3 shows a list of non-manoeuvring scenarios and Figure 4.2

shows a geometric representation manoeuvring scenarios where both the target and

imaging platform have a manoeuvring motion.

Figure 4.3, 4.4 and 4.5 are three example images from the dataset. Figure 4.3 is a

daylight image of a destroyer in open sea. Figure 4.4 is an image of a battleship

acquired at night conditions. Figure 4.5 shows an image of a battleship partially

occluded by an infrared flare cloud.

Figure 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 show example images from each

category from the dataset.

44



Figure 4.1: Non-manoeuvring scenario

4.1.3 Training Dataset

The ultimate goal of the retraining procedure to increase the object tracking perfor-

mance. The object tracker need discriminating features to be extracted from image,

in order to prevent confusing a different region in the image with the actual target

to be tracked. The confused region can be another surface vessel or sea surface or

background etc. The dataset classes are chosen according to the situation described

above. Classes are defined as follows:

1. Sea background

2. Sky background

3. Land background

4. Infrared countermeasure (Decoy flare)

5. Frigate type surface vessel

6. Destroyer type surface vessel

7. Battleship type surface vessel
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Table 4.3: List of manoeuvring scenarios.

Id Target Ship Type Season And Time Notes

5 Destroyer Summer – 07:00

Ship is manoeuvring.

Infrared flare is used by

the ship.

6 Battleship Summer – 14:00

Imaging platform is

manoeuvring. Wash-

down system is used by

the ship.

7 Littoral Combat Ship Spring – 04:00 Both are manoeuvring.

8 Frigate Winter – 12:00

Both are manoeuvring.

Target ship is partially

occluded for a while.

8. Littoral Combat Ship type surface vessel

9. Cruiser type surface vessel

10. Corvette type surface vessel

Figure 4.14, 4.15, 4.16 and 4.17 show example images from the training dataset.

4.2 Experimental Results

Table 4.4 shows overall performance scores of the trackers. Scores are the average

score of the tracker on all of the videos in the dataset. It was seen that IRS-CNN

out-performs all of the other tracking algorithms.

Table 4.5, 4.6 shows average F-score and Deviation scores of the trackers for differ-

ent scenario types. Figure 4.18, 4.19 shows the bar graph representation of the same

results. Manoeuvring versions of the four categories are shown as bars with darker
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Figure 4.2: Manoeuvring scenario

color in front of the non-manoeuvring versions. Decoy type scenarios are the Sce-

nario 1 and 5, where target uses a bright flare to confuse the trackers. Low intensity

type scenarios are 2 and 6 where target uses a cooling system to reduce its visibility,

resulting in low intensity values for the target region. Normal type scenarios are 3 and

7 where the target is not actively trying to confuse the tracker. Occlusion type scenar-

ios are 4 and 8 where the target is mostly or completely occluded by infrared flares

or by another ship. It should be noted that the performance results of the proposed

method for the first 6 categories does not reflect the occlusion detection mechanism

since the mechanism is not triggered at all in these categories. On the other hand

categories 7 and 8 reflects the compound effect of the both transfer learning and oc-

clusion detection mechanism. While the stand alone effect of the occlusion detection

mechanism is not directly measured, it can be inferred from the difference between

the normal and occlusion category results since the occlusion and normal categories

are the same except the occlusion of the target for a certain amount of the time.

Average scores alone can not represent all information about the performances of

the trackers. In order to better demonstrate the performances, survival curves of the

scores are given. Survival curves show the scores obtained for each video in the
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Figure 4.3: Infrared image of a destroyer in open sea

dataset and are prepared by sorting the respective scores of the trackers from 240

videos. First video in the x-axis corresponds to the highest score and the last video

corresponds to the lowest score for that tracker. Note that this means order of the

videos is different for each tracker. Figure 4.20 and 4.20 shows the survival curves of

the trackers for F-score and deviation score respectively.

Results show a distinct nature between the F-scores and Deviation scores. Therefore

their results are discussed separately. Following comments concerning the tracking

performances are about the inferences made from the F-scores. Deviation scores are

discussed in 4.2.1.

Lower overall performance of Mean-Shift tracker can be easily seen from the results.

This result can be attributed the target representation model of the algorithm. Since

Mean-Shift uses an histogram based target representation, tracker can easily be con-
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Figure 4.4: Infrared image of a battleship in open sea

fused with a region with a similar intensity distribution as the target. This situation

especially occurs in low intensity category scenarios of our dataset because target

cools itself down with sea water which is also the main background clutter in our

dataset, thus makes the target region histogram to be very similar to background.

In infrared decoy type scenarios, decoy is generally appear brighter with a distinct

histogram from the target. This results in a relatively better overall performance in

decoy type scenarios compared to low intensity type scenarios. Furthermore, upon

closer inspection it was seen that tracker failed in some cases of decoy type scenar-

ios where decoy is not as bright and has similar intensity to the target. Mean-Shift

has similar overall performance values between manoeuvring and non-manoeuvring

type scenarios because intensity distribution does not change dramatically with the

changing appearance of the target.
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Figure 4.5: Infrared image of a destroyer partially occluded by infrared flare

Normalized Cross Correlation (NCC) tracker has the second lowest overall perfor-

mance but still performs noticeably close to top-performing trackers. It is noteworthy

that as a tracker which is developed in the 90’s and has a simplistic approach to

tracking problem, NCC has such reasonable performance. It is observed that NCC

performed worse in the manoeuvring type scenarios. This can be explained by that

intensity template of NCC which is simply the normalized image of the target which

holds little semantic or discriminative information. Such type of target template is not

robust against the rapid changing appearance of the target as it tries to match nearly

exact appearance as the previous frames.

Intensity template is also the target representation for the MOSSE tracker. How-

ever, results show that performance of MOSSE in manoeuvring type scenarios is only

slightly worse and difference is not dramatic as in the case of NCC. This can be ex-
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Table 4.4: F-scores and Deviation scores of the trackers

Tracker F-Score Deviation Score

Mean-Shift 0.380 0.716

NCC 0.532 0.824

MOSSE 0.592 0.842

Struck 0.625 0.870

CNN 0.673 0.854

IRS-CNN 0.698 0.856

plained by the template generation technique of the MOSSE in the new frame. The

filter generated for the new frame correlates positively with the target region but that

has no correlation with the other regions in the frame. This means that unlike NCC,

MOSSE intensity template has discriminative properties. Thus, rapid changing of ap-

pearance affects the correlation result at the location of target negatively but this does

not generally confuse the tracker since correlation results at other locations was al-

ready much lower. Results show that discriminative template not only helps with the

rapid appearance change but also increase the overall performance in every category.

It can also be seen that occlusion detection mechanics of the MOSSE greatly helps

the occlusion type scenario performance.

Struck has very favourable performances in all categories. The generalization abil-

ity of the underlying SVM framework enables the tracker to be robust against fast

changing appearance. This results in a very little performance difference between

manoeuvring and non-manoeuvring type scenarios. In the occlusion type scenarios

Struck performs slightly worse compared to other types of scenarios but the differ-

ence is negligible. The generalization ability of the tracker, again, helps with the cases

where target is occluded for a short amount of time. In those cases Struck successfully

reacquires the target even if the target appearance is changed moderately.
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Table 4.5: F-scores of the trackers for different categories

Scenario Difficulty Mean-Shift NCC MOSSE Struck CNN IRS-CNN

Decoy (NM) 0.362 0.556 0.582 0.612 0.668 0.687

Decoy (M) 0.348 0.504 0.565 0.606 0.664 0.682

Low Intensity (NM) 0.331 0.558 0.583 0.615 0.670 0.688

Low Intensity (M) 0.321 0.505 0.565 0.605 0.662 0.681

Normal (NM) 0.460 0.602 0.630 0.662 0.725 0.727

Normal (M) 0.447 0.550 0.613 0.656 0.718 0.724

Occlusion (NM) 0.390 0.514 0.606 0.624 0.644 0.702

Occlusion (M) 0.381 0.467 0.590 0.620 0.634 0.694

The outstanding performance of CNN based tracker is also apparent in the results.

This method uses correlation filters in a similar manner to those of MOSSE. But,

unlike MOSSE, this tracker employs multiple correlation filters working on differ-

ent features extracted from the image. These features are not hand picked features

but rather automatically generated as a result of a CNN training. Since the goal of

the tracking was to classify different kinds of objects, resulting features hold a dis-

criminative quality. Features from earlier layers of the CNN are capable of extract-

ing semantic features which produce different correlation results for different objects

even when the intensity values of the objects is very similar. This helps tracker to

not confuse the target with other objects present in the scene. Therefore, overall sig-

nificant performance increase from MOSSE can be explained by the advantage of

multi-channel filters working on features optimized for classification. While being

in the second place in occlusion category, CNN based tracker has the lowest of its

scores in this category. Although the semantic awareness of the tracker compensates

substantially for the lack of an occlusion detection mechanism, this shortcoming is

still perceivable to a small extent.

Proposed method exhibits varied amounts of increase in performance compared to

CNN based tracker. This improvement can be explained by the concentrated discrim-

inative ability of the underlying tracker. Original CNN based tracker has a feature
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Table 4.6: Deviation scores of the trackers for different categories

Scenario Difficulty Mean-Shift NCC MOSSE Struck CNN IRS-CNN

Decoy (NM) 0.719 0.862 0.848 0.866 0.854 0.853

Decoy (M) 0.692 0.787 0.821 0.861 0.846 0.844

Low Intensity (NM) 0.704 0.864 0.850 0.868 0.856 0.852

Low Intensity (M) 0.675 0.787 0.822 0.862 0.849 0.846

Normal (NM) 0.765 0.878 0.865 0.889 0.875 0.872

Normal (M) 0.735 0.803 0.838 0.878 0.866 0.862

Occlusion (NM) 0.733 0.846 0.860 0.875 0.847 0.864

Occlusion (M) 0.706 0.766 0.832 0.862 0.839 0.854

extractor tailored for classifying RGB colorspace images of 1000 different object

types. Our problem requires feature extractors for grayscale colorspace images of

naval combat environment which are under-represented in the training data of the

original CNN based tracker. Most of the time, different objects in a scene from out

dataset falls into the same class of the general object dataset. This implies that dif-

ferent objects in our dataset produces similar semantic results with each other. This

effect compromises target tracking performance by causing the tracker to confuse a

non-target region with our target. Our tracker improves this shortcoming by employ-

ing a transfer learning procedure with a dataset consisting of different types of surface

vessels, common background types and countermeasures. Second improvement can

be observed on the occlusion category scores. Even though occlusion category scores

are still the worst scores of the tracker, difference with other categories is negligible

and it is a higher score than the occlusion score of the CNN based tracker. This can be

interpreted as a result of the proposed occlusion detection mechanism of our tracker.

It is also observed that none of the trackers has noticeable performance degradation

in decoy type scenarios. It can be said that, as long as it is not occluding the target,

infrared decoys has no noticeable effect on the visual tracking performance of the

modern imaging infrared sensors.
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4.2.1 Localization Accuracy

Compared to F-scores, deviation scores have less information about the ability of the

tracker to find the correct target. Deviation scores basically represent localization

accuracy. Histogram based representation of the Mean-Shift tracker causes, again,

the tracker to have the lowest scores. Small translations of the tracking window does

not change the histogram dramatically and this effect causes Mean-Shift tracker to

achieve a less sensitive localization performance compared to other trackers. On the

other hand, there is no significant difference between the performances of the other

trackers. This result is not surprising for NCC, CNN and proposed tracker since

these trackers all have an intensity template based target representation and correla-

tion based matching stages. Correlation of an intensity template is very sensitive to

translation because location of the pixels must fit almost exactly to achieve a high

correlation result. Figure 4.22 shows a comparison between the cost function of the

Mean-shift tracker (Bhattacharyya coefficient) and the correlation result of the NCC

on an example image from our dataset. Figure actually shows Bhattacharyya coef-

ficient subtracted from 1 for comparison purposes since it is a cost function and the

target located at the minimum value. It can be seen that correlation result of the NCC

tracker produces a strong peak and the cost function of the Mean-shift tracker has a

very dull peak at the target location which is marked with a small red circle in both

figures.

On the other hand, Struck tracker trains a classifier which directly maps images to

translations. Therefore, core filter update optimization procedure primarily deals with

minimizing the location error. This explains the outstanding localization performance

of the Struck tracker.
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Figure 4.6: Example image from the scenario category 1

Figure 4.7: Example image from the scenario category 2
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Figure 4.8: Example image from the scenario category 3

Figure 4.9: Example image from the scenario category 4
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Figure 4.10: Example image from the scenario category 5

Figure 4.11: Example image from the scenario category 6
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Figure 4.12: Example image from the scenario category 7

Figure 4.13: Example image from the scenario category 8
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Figure 4.14: Example image from Sky background class

Figure 4.15: Example image from Sea background class
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Figure 4.16: Example image from Infrared countermeasure class

Figure 4.17: Example image from Battleship class
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Figure 4.18: F-score bar graphs of the trackers for different categories
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Figure 4.20: Survival curves of the trackers (F-scores)
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Figure 4.21: Survival curves of the trackers (Deviation scores)
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(a) Mean-Shift Bhattacharyya coefficient (b) NCC result

Figure 4.22: Target matching stage outputs of (a) Mean-Shift and (b) NCC trackers
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CHAPTER 5

CONCLUSION

Tracking the locations of enemy watercraft is a highly crucial task in a naval combat

environment. Generally first choice for a sensor is radar, but radars are active sys-

tems and emits RF signals which can reveal our presence and location to the enemy.

Therefore, infrared imaging systems are employed for tracking enemy watercraft.

There is substantial amount of work in literature and many different models of ap-

pearance are used to differentiate the object of interest from other objects or regions

in the new image. In some works, intensity distribution of the object is utilized for

locating the object. Certain algorithms use the intensities as template and use corre-

lation to find the object. SVM and CNN based trackers intend to classify the regions

of the image to differentiate the object from its surroundings.

The main algorithm which we focus on is a CNN and template based tracker hy-

brid. This technique offers fast computation times with its use of correlation instead

of a classification task and benefits from the feature extraction capabilities of deep

convolutional neural networks.

Distinguished object tracking algorithms are either implemented by ourselves or ob-

tained from the website of the developer. It was seen in our tests that CNN based

tracker had superior performance to the other trackers.

The main motivation of this thesis is tracking combat ships only. Like any other

tracker, CNN based tracker is too general for our needs, but it also has the advantage

that can allow us to make the algorithm to track specific object types. These concen-

tration on specific object types can reduce the general object tracking performance of

the tracker, but it increases the tracking performance for our dataset.
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Underlying CNN feature extractor of the tracker has been retrained in the later layers

which are the problem specific feature extraction layers. The CNN is retrained to be

able to classify between different background and different types of combat ships.

This manner of retraining lead the network to learn discriminating convolutional fea-

tures between these object types. Therefore every convolutional layer generated dif-

ferent levels of response for different objects. This ensured tracker to not confuse

the object of interest with any other region in the image, thus increased the tracking

performance.

Tracking performances are evaluated with prevalent performance metrics found in

the literature. The algorithms are tested on a specifically tailored dataset. Dataset

comprises of infrared images of combat ships under different atmospheric situations.

Bounding-box annotations ships are also generated to be used as ground-truth data in

the performance tests.

Performances are presented by means of average metric scores of the trackers and

survival curves of the trackers over the whole dataset. Survival curve is a useful tool

to represent the performance of the tracker in detail by showing the score distribution

of the tracker over different video sequences.

It was seen that proposed algorithm had superior performance compared to the other

trackers. This result shows that convolutional features can be adapted to different

scenarios to increase tracking performance. In the future, proposed algorithm can be

experimented with different tracking problem such as tracking aircraft or surveillance

of a specific type of object.
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