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ABSTRACT 
Due to the autonomy of web databases, a major challenge for 
query translation in a Deep Web Data Integration System is the 
lack of cost models at the global level. In this paper, we propose a 
Multiple-regression Cost Model (MrCoM) based on statistical 
analysis for global range queries that involve numeric range 
attributes. Using the MrCoM, the query translation strategy for 
new global range queries can be inferred. We also propose a Pre-
processing-based Stepwise Algorithm (PSA) for selecting 
significant independent variables into the MrCoM. Experimental 
results demonstrate that the fitness of the MrCoM is good and the 
accuracy of the query strategy selection is high. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 
Software – Distributed Systems; H.3.5: Online Information 
Services –Web-based Services. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Deep Web Data Integration System, Multiple-regression Cost 
Model, query translation 

1. INTRODUCTION 
The Deep Web is a vast and rapidly growing source of 
information, which is about 500 times larger than the Surface 
Web [1]. It has become more and more difficult for users to find 
their interested information. The goal of Deep Web data 
integration is to provide a unified interface for a specified domain 
(e.g., airfares) and to automatically retrieve the relevant 
information from multiple Web databases according to the global 
query the user issued. The user does not need to know where the 
data is stored as well as how the result is obtained. Some related 
work includes Web database crawling [3, 4], interface integration 
[5, 6] and result extraction [7, 8]. Query translation which is 

responsible for translating a global query of the integrated 
interface to a local query of a Web database has not been carried 
out widely.  
Often the query translation strategy is not unique, so choosing the 
best translation strategy is the task of the global query translator. 
The crucial challenge for query translation in the Deep Web data 
integration environment is that some local optimization 
information, for example, the size of the database, the index or 
cluster index on some attributes, the profile of the database, may 
not be known or accurately known by the global query translator 
due to local autonomy. Traditional query translation techniques 
may not be suitable because precise optimization information is 
required. In other words, autonomous Web databases can be 
viewed as a black box whose optimization information is hidden 
from the global translator. What we can do is to predict the cost 
from the external characteristics of the black box. 
What we will focus on in this paper is query translation of range 
selection queries on some range attributes with numeric data type. 
As Figure 1 shows, the “Price” attribute is an attribute of this type. 
Consider a global query that contains an original range {Price, 
(8000, 12000)}, it can be translated into two local queries, one of 
which contains a sub-target range {Price Range, (5000, 10000)} 
and the other contains a sub-target range {Price Range, (10000, 
15000)}. The target range {Price Range, (5000, 15000)} is the 
union of these sub-target ranges. And then filter out the undesired 
results whose prices are between 5000 and 8000 and between 
12000 and 15000. Usually, in order to access all the desired 
results, the target range must contain the original range, i.e., the 
coverage. Meanwhile, in order to reduce the undesired 
intermediate results to the minimum, we ought to choose the 
minimum target range, i.e., the minimum coverage. In the above 
example, the target range is exactly a minimum coverage of the 
original one. But as the price range increases in the global query, 
the number of local queries will also increase, which will lead to 
higher cost because more local queries imply more invocations to 
a local Web database and more requests for network connections. 
Is it a better strategy that we translate the user query into {Price 
Range, (any/all)} and then filter out undesired results?  
The former is usually adopted currently and it will be called the 
minimum coverage strategy. Obviously, this method will lead to 
higher processing cost on the server side because usually more 
than one local query will be posed to the Web database but lower 
cost on network transmission and filtering because the 
intermediate results will contain less undesired information. On 
the other hand, the latter strategy, which will be called the 
maximum coverage strategy, needs to pose only one query to the 
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Web database but the intermediate results will contain more 
undesired information which may lead to lower processing cost 
on the server side but higher cost on network transmission and 
filtering. The question is, given a global query, how to select the 
more efficient strategy between these two options? This is exactly 
what we would like to answer in this paper. 
In some cases, there is no need to choose a query translation 
strategy. As we know, when a form is submitted, the web browser 
may use one of two methods “get” or “post” to send an HTTP 
request with the parameters and their values to the server. With 
“get”, the parameters are appended to the action and included as 
part of the URL in the HTTP request (e.g., 
http://autotrader.co.nz/UsedItemResults.aspx?N=0&sid=&Nf=P_
Price|BTWN+10000+20000 ). In this case, the query posted to the 
integrated interface can be precisely translated to a query against 
the local interface.  However with “post”, the parameters are sent 
in the body of the HTTP request, making equivalent translation 
impossible. Many web databases only support the “post” method. 
For such Web databases, selecting a more efficient translation 
strategy is desirable. 
 

 
 
The cost of a global range query may be influenced by many 
factors, for example, the range of the global query. In this paper, 
we consider these factors as much as possible. By recording and 
analyzing the costs of the two strategies (i.e., the minimum 
coverage strategy and the maximum coverage strategy) for a set 
of sample global queries against the relevant local database, the 
impact of various factors can be determined and a cost formula 
can be derived and used to select the translation strategy for any 
new global range query. 
The contributions of this paper include the following: 
1. Propose a Multiple-regression Cost Model, MrCoM, which is a 
statistical-based approach for translating the range query at the 
global level.  
2. Propose a Pre-processing-based Stepwise Algorithm (PSA) for 
selecting significant independent variables into the MrCoM. 

3. Classify the global range queries into three types. For the 
goodness of fit, we build different models for each of the query 
types. 
4. Validate the effectiveness of the method by experiments.  
The rest of the paper is organized as follows. Section 2 reviews 
some related works. Section 3 gives the definition of the two 
strategies and presents the classification of the global range query. 
Section 4 analyzes the types of factors that will affect the cost, 
proposes the Multiple-regression Cost Model (MrCoM) and 
introduces the procedure of constructing it. Experimental results 
are reported in section 5. The paper is concluded in section 6. 

2. RELATED WORKS 
Query translation at global level has been investigated in Multiple 
Database System [2] (MDS) for a long time. In spite of lacking 
the information the optimization requires, such as cardinality of 
the tables or index information of the schemas, MDS can still 
make use of the global or local catalog information to perform 
global query optimization to some extent. One similar work to 
ours is [2]. In [2], Q. Zhu proposes an optimization cost model in 
MDS on global level. Due to awareness of the local catalog 
information, the queries can be classified into some homogeneous 
classes such as unary query, join query, etc. In each class, the 
costs of sample queries were recorded for generating the cost 
model which was used to infer the cost of a new query. Compared 
to MDS, Deep Web Data Integration System has much less 
information the optimization requires due to unavailability of the 
catalog information. Hence, it is much harder to choose the better 
strategy for query translation on global level in this environment. 
In addition, we consider many factors that influence the cost 
which are not mentioned in [2], such as query range, network 
transmission and data distribution, etc. 
The other similar work to ours is [10]. In [10], Z. Zhang proposes 
an optimized query translation in Deep Web Data Integration 
System focusing on text type attribute with some constraint. The 
constraint is restriction to the query condition, for example, any, 
all or exactly. The minimum search space is computed but the 
cost of the query is not considered. 
 In this paper, we are interested in how to select the more efficient 
query translation strategy for any global query that has range 
conditions on numeric range attributes. In short, the issue we 
focus on and the method we propose are different from [2, 10].   

3. QUERY TRANSLATION STRATEGY 
Definition 3.1. A range query is a query involving a set of 
attribute-value pairs with at least one numeric range attribute.  
In this paper, we consider a global range query that contains one 
numeric range attribute, like {<Make, “Audi”>, <Model, “A6”>, 
<Price, “50000-60000”>}, here Price is a numeric range attribute 
and its value is between 50000 and 60000.  
For the rest of this paper, the range of a global query refers to the 
range values of the numeric range attribute. 
Definition 3.2. Minimum Coverage Strategy (MinCS). Given a 
global query Qi in the integrated interface, the local query Q* in a 
web database interface is a query translation using the minimum 
coverage strategy if the following conditions are satisfied at the 
same time: 

Figure 1. An example of range query translation strategy
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1. Q* is a valid query, i.e., acceptable to the local query interface. 
2. Q* semantically subsumes Qi, i.e., for any database instance Dj, 

)()( *
jji DQDQ ⊆ . The expression denotes that the retrieved 

information of Qi is a subset of that of Q*. 
3. There does not exist any query Q** which satisfies 1 and 2 and 

)()( ***
jj DQDQ ⊂ . 

Condition 2 guarantees that all the information the user needs is 
retrieved and condition 3 guarantees that the retrieved information 
is the minimum possible. This strategy minimizes the amount of 
data to be sent from the Web database and minimizes the effort to 
filter out undesired results.  
But when the original range becomes large, the cost of MinCS 
will be high because the number of local queries to the Web 
database will increase. For example, in Figure 1, if a global query 
contains an original range {price, (8000, 50,000)}, the number of 
local queries will increase to 9. 

Definition 3.3. Maximum Coverage Strategy (MaxCS). Given a 
query Qi in the integrated interface, the query Q* in a web 
database interface is a query translation using the maximum 
coverage strategy if the following conditions are satisfied at the 
same time: 
1. Q* is a valid query, i.e., acceptable to the local query interface. 
2. Q* semantically subsumes Qi, i.e., for any database instance Dj, 

)()( *
jji DQDQ ⊆ . This expression denotes that the result set 

of Qi is the subset of that of Q*. 
3. There does not exist any query Q** which satisfies 1 and 2 and 

)()( ***
jj DQDQ ⊃ .  

Usually, a range attribute has value any or all which means no 
restriction on this attribute. Under this condition, we can obtain 
the maximum result set and then filter out the undesired results. 
The advantage of this strategy is that the query needs to be 
submitted to the local database only once.  
But if the range of a query is relatively small (e.g., 50-100) 
compared to the full range (e.g., 0-10,000), the results returned by 
MaxCS will contain a lot of undesired information, which 
increases the network transmission and filtering cost. 
Note that for a given global query, the absolute cost of a query 
translation strategy (for example, using MinCS) may be quite 
different with respect to different web databases in the same 
domain due to many factors, e.g. the database size, etc. Moreover, 
our goal is to choose a proper strategy from the two strategies to 
lower the cost, not just to know the cost of MinCS or MaxCS. To 
derive a cost estimation formula for one domain, the relative cost 
between MinCS and MaxCS is computed as follows.  
Definition 3.4. Relative Cost (RC) is the ratio of the cost of 
MinCS to that of MaxCS. 

MaxCSoftthe
MinCSoftthe

cos
cos)Cost(RC Relative =          (1) 

If the cost of MinCS is higher than that of MaxCS, i.e., if RC is 
larger than 1, we will select MaxCS; otherwise we select MinCS.    

4. MrCoM for Range Query Translation 
In this section, we will construct the Multiple-regression Cost 
Model, MrCoM, for range query translation based on the analysis 
of the types of factors and the classification of the global range 
query. 

4.1 Multiple Regression Model 
Multiple regression represents a statistical relationship between 
the dependent variable and the independent variables. In our 
application, the dependent variable is the Relative Cost. The 
independent variables are the factors that affect the Relative Cost. 
Let X1, X2, …, Xk be k independent variables. If the dependent 
variable Y tends to vary in a linear manner with respect to the 
independent variables X’s, a multiple regression model [11] is 
defined as: 

ε+++++= kk XAXAXAAY 22110           (2) 

where A0, A1, …, Ak are regression coefficients, X1, X2, …, Xk 
are the values of the independent variables, and ε denotes the 
random error term. A0, A1, …, Ak are unknown constants and X1, 
X2, …, Xk are known values from sample experiments.  
To evaluate the fitness of the multiple regression model, some test 
statistics are usually estimated, e.g., standard error 2δ  and 
coefficient of determination 2R .  
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2δ  is an indication of the accuracy of estimation which is 
obtained by the multiple regression formula. iY  is an observed 

value. iY  is the corresponding fitted value. The smaller the 2δ  is, 

the more successful the regression model is. 2R  is the proportion 
of variability in the dependent variable Y explained by the 
independent variable Xi. The closer to 1 the value of 2R  is, the 
more successful the regression model is. 

4.2 The Types of Factors 
For the two different strategies, the total cost can both be divided 
into three stages: the first stage is to retrieve the tuples that satisfy 
the local query condition from the local database, the second 
stage is to transmit the retrieved tuples from the local database to 
the integrated system, and the third stage is to filter out the 
undesired tuples to obtain those that satisfy the global query 
condition. The total cost can be expressed by the formula as 
follows: 

ftrtotal TTTT ++=                              (5) 

where Ttotal represents the total cost, Tr represents the time needed 
to retrieve the tuples, Tt represents the time needed to transmit the 
retrieved tuples and Tf represents the time needed to filter out the 
undesired tuples. 
In following formulas, Ttotal(min) and Ttotal(max) represent the total 
cost time of MinCS and MaxCS respectively.  



(min)(min)(min)(min) ftrtotal TTTT ++=              (6) 

(max)(max)(max)(max) ftrtotal TTTT ++=            (7) 

Given a specific web database, we assume that the values of the 
attributes except the range attribute are fixed. Intuitively, for any 
global range query, Ttotal(max) will not change because Tr(max), Tt(max) 
and Tf(max) are independent of the query. On the contrary, Ttotal(min) 
may change greatly because Tr(min), Tt(min) and Tf(min) will change 
when some factors (e.g., the range of the global query) are 
different. Therefore the Relative Cost will be different as some 
factors change. 
According to our observations, when translating a global range 
query to a web database, the following types of factors (i.e., F1, 
F2,…) will likely affect the Relative Cost, which will directly 
influence strategy selection i.e., MinCS or MaxCS.  
F1: The range of a global query. The larger the range of a global 
query is, the higher the Relative Cost is. This is because when 
using MinCS, the number of local queries submitted to the local 
database will likely increase and the retrieving cost on the server 
side will increase consequently. Moreover, the transmission cost 
and filtering cost will also increase with the return of more results. 
On the other hand, the cost of using MaxCS remains the same. 
F2: The full range of a local attribute. The larger the full range 
of a local attribute is, the lower the Relative Cost is. This is 
because that the range of a global query may be much smaller 
than the full range. When using MinCS, the retrieving cost, 
transmission cost and filtering cost would be lower relative to 
using MaxCS. 
F3: The granularity of a local attribute range. The granularity of 
a local attribute range is the width of each of the attribute range 
value. For example, in Figure 1, the granularity of the price range 
is 5,000. The smaller the granularity of a local attribute range is, 
the higher the Relative Cost is. This is because with smaller 
granularity and when using MinCS, the number of local queries 
submitted to the local database will increase and the retrieving 
cost on the server side would increase accordingly. On the other 
hand, the cost of using MaxCS does not change. 
F4: The distribution of the attribute value or the position of the 
range. The distribution of the attribute value is denoted by the 
number of tuples in different ranges of the attribute. Usually the 
distribution of the values is not uniform. But regular distribution 
pattern may exist for some attribute in one domain. For example, 
based on our observation of 30 car Web sites, the number of the 
cars with different prices approximately follows the normal 
distribution. So the position of the range which is denoted by the 
average of the maximum and the minimum of the range will 
affect the number of tuples which the range covers. For example, 
the range {price (15000, 20000)} covers more tuples than that the 
range {price (0, 5000)} does. In this case, although the sizes of 
the ranges are the same, the positions of the ranges are different. 
The more tuples the query range covers, the higher the cost using 
the MinCS is, because more tuples will return. On the other hand, 
the cost of using MaxCS will not be affected by the value 
distribution. 
F5: The size of a local database. The larger the size of a local 
database is, the higher the cost is whatever the strategy is chosen. 
This is because that more tuples need to be processed and more 
tuples need to be transmitted and filtered. 

F6: Network transmission. The network traffic tends to follow 
some pattern. As we test the speed of the network at different time 
in a day, the speed of the network varies over time. Since the 
intermediate results need to be transmitted to the user, the 
network traffic would affect the data transmission cost and 
subsequently the total cost. When the network traffic is bad, using 
MaxCS will be affected more significantly because the size of 
intermediate result is larger. 
F7: The performance of a local database. Factors of this type 
include CPU, I/O and memory buffers, etc. of the web database 
server. These factors affect the query cost obviously but they are 
difficult to measure. 
F8: The size of the intermediate result. The smaller the size of 
the intermediate result is, the lower the transmission cost would 
be. 
F9: The length of a record. Some returned results contain 
intermediate information so the tuple size may be large. For the 
same size of the intermediate result, the larger the tuple size of the 
result, the lower the filtering cost would be because fewer tuples 
would need to be filtered. 
Some of these factors, which are verified to affect the Relative 
Cost significantly, will be kept as the independent variables X1, 
X2, …, Xk of the regression model. 

4.3 Classification of the Global Range Query 
Usually, a global range query consists of a set of attributes and 
their values. For example, {<Make, “Audi”>, <Model, “A6”>, 
<Price, “50000-60000”>}. Combination with different types of 
attributes may affect the query cost and the selection of query 
translation strategy. The attributes besides the range attribute can 
be classified into three types as follows:  
1. Functional attribute: A functional attribute does not affect 

the retrieval of results other than their display. For example, 
Order By is a functional attribute. So whether the global 
query contains functional attributes or not, the Relative Cost 
will not be affected. 

2. Categorical attribute: A categorical attribute will limit the 
result of a query. This is because, usually, categorical 
attributes are implemented as a selection list and only one 
value in the list is selected in a typical query. On the other 
hand, database designers usually create another table to store 
the categorical values in order to preserve the normalization 
of the database. If that is the case, the join operation will 
increase the retrieving cost on the server side of the web 
database. In summary, if the global range query contains 
categorical attribute, the Relative Cost may be affected. 

3. Value attribute: Such an attribute has many values and only 
one of them is used to specify an equality condition. A query 
involving a value attribute will result in very small result set, 
leading to very low transmission cost and filtering cost. 

The types of a query are defined as follows. 
Definition 3.5. The type I query is a range query that only 
contains functional attributes in addition to the numeric range 
attribute.  
Definition 3.6. The type II query is a range query that only 
contains categorical attributes in addition to the functional 
attribute and the numeric range attribute. 



Definition 3.7. The type III query is a range query that contains 
value attributes in addition to the numeric range attribute. 
In order to make the fitness of the regression model better, we 
construct one cost model for each type of query. 

4.4 Pre-processing-based Stepwise Method 
For building a multiple regression model, there are two common 
methods proposed: forward method, backward method [11]. 
Forward method firstly makes the regression model contain only a 
constant and then adds the independent variables one by one. 
However, without considering the correlated relationship between 
the independent variables, this method may make the independent 
variables that have been added to the regression model become 
unimportant later.  
Backward method is opposite to forward method. From the 
beginning, it adds all the independent variables to the regression 
model and then eliminates the independent variables one by one. 
However, some independent variables that have been eliminated 
from the regression model may become relatively important later. 
So the final regression model may miss some independent 
variables that are relatively important to the dependent variable. 
In this paper, we propose a Pre-processing-based Stepwise 
Method (PSM) to select significant independent variables into the 
regression model. PSM is illustrated in Figure 3. 

1. PSM firstly analyzes the correlations between each 
independent variable and the dependent variable by Pearson 
correlation coefficient [11]. The closer the absolute value of 
Pearson Correlation Coefficient (PCC) is to 1, the more 
highly correlated the two variables are. The correlation can 
also be observed by the scatter plot. For example, in Figure 2, 
we can see that RC and Range have a linear relationship.  

2. Then it discards those independent variables that have no 
correlation with the dependent variable and transforms some 
independent variables that have non-linear correlation with 
the dependent variable into linear correlation through some 
functional transformations as much as possible. For example, 
as we observed from the scatter plot of RC and position, 
although RC and the position of the query range have non-
linear correlation on the whole, they have positive linear 
correlation between 0 and 30000 and negative linear 
correlation between 30000 and 60000 on the position. If we 

transform the position using the following formula according 
to the symmetry of the distribution of the scatter plot, RC 
and the position will have linear correlation. 
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Figure 2. The scatter plot of RC and Range 
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Algorithm PSM for MrCoM 
Input: the initial set of independent variables (V); 
          the set of independent variables (W) in MrCoM; 
          the observed data of sample queries; 
Output: a Multiple-regression Cost Model (MrCoM) 
PSM method: 
1.  Begin 
2.     Pre-process; 
3.     W=Φ 
4.     While W is changed Do; 
5.        Add; 
6.        Eliminate; 
7.     End While 
8.     Return the current model as the MrCoM 
10.  End  
Procedure Pre-process: 
1.  Begin 
2.   FOR each variable Xj in V 
3.   Analyze the relationship with the responsible variables
4.       If absolute value of PCC is larger than 0.75  
5.           Then linear correlation and keep Xj 
6.       End If 
7.        If absolute value of PCC is between 0.25 to 0.75 
8.          Then non-linear correlation and try to transform 

Xj into linear correlation 
9.          Else discard Xj 
10.      End If 
11.    End For 
10.  End  
Procedure Add: 
1.  Begin  
2.    For each Xj in V Do 
3.        Calculate the significance (Xj)  
4.    End For 
5.    Select Max (significance (Xk))   (1<=k<=i) 
6.     If (significance (Xk) < ain 
7.        W=W + {Xk} 
8.        V=V - {Xk}         
9.     End If 
10.  End 
Procedure Eliminate: 
1. Begin  
2.   For each variables Xs in W Do 
3.    Calculate the significance (Xs) 
4.    If (significance (Xs)) > aout 
5.             W=W - {Xs} 
6.             V=V + {Xs} 
7.     End If 
8.   End For 
9. End 

Figure 3. Algorithm PSM 



3. Finally it adds the pre-processed independent variables that 
have some linear correlation with the dependent variable into 
the regression model one by one. Note that the significance 
of Xk is the P-value calculated by using a t-test of a null 
hypothesis on the correlation coefficient [11]. While a 
significant independent variable is added to the regression 
model, the old independent variables will be tested one by 
one and the independent variable that is changed into an 
insignificant one will be eliminated from the regression 
model. On the other hand, any eliminated independent 
variable that becomes important will be added. So the 
regression model will not only avoid leaving out any 
significant independent variables but also avoid containing 
any insignificant independent variables. 

It is important to select the thresholds of significance level ain and 
aout. Larger ain and aout would lead to more independent variables 
to be included in the regression model. On the contrary, smaller 
ain and aout would cause fewer independent variables to be 
included in the regression model. The values of ain and aou will 
influence the precision of prediction of the best query translation 
strategy. So the appropriate values should be selected for ain and 
aou. Our experiments show that ain = 0.05 and aout = 0.10 are 
appropriate. 

4.5 The Prototype System 
The overview of the prototype system is showed in Figure 4. The 
flow of constructing MrCoM consists of five parts: query sampler, 
query classifier, factor analyzer, MrCoM builder and MrCoM. 
The flow of selecting query translation strategy consists of four 
parts: query classifier, factor analyzer, MrCoM and strategy 
selector.  

According to the principle of stratified sampling, the query 
sampler generates a great number of sample queries. The query 
classifier analyzes the sample queries and classifies them into 
three types: type I query, type II query and type III query. The 
factor analyzer records the costs of the two strategies and the 
values of various factors such as the size of range, the submitting 
time, etc., which are the sample data for building model, and 
MrCoM builder constructs the multiple regression model for each 
class of query. When a new global query is submitted, the query 
classifier firstly determines which type it belongs to, the factor 
analyzer records its features, then the RC is computed by MrCoM 
and the strategy selector determines which strategy is better.  

5. EXPERIMENTS 
The experiment consists of two parts: (1) build the MrCoM, (2) 
use MrCoM to choose strategy for query translation.  

We manually collect 30 Web sites in cars domain mainly from 
UIUC data sets [12]. The query interfaces of these sites have 
numeric range attribute in common. In one experiment, 25 sites 
are used for building the Multiple-regression Cost Model and the 
remaining 5 sites are used for verifying the accuracy of the model.  
To improve our experimental method, we also utilize 6-fold cross 
validation to generate the final cost model. The experimental 
results verify the effective of our method.  

5.1 Building the MrCoM 
The prototype system accepts a sample query which contains a 
numeric range attribute (for example, price between 10000 to 
40000) and translates it into a local query of a Web database by 
the two strategies, MinCS and MaxCS, respectively. Then the RC 
is computed and the corresponding factors are recorded. Given 
different factors discussed in section 4.2, we adopt the stratified 
sampling method on the whole and random sampling method in 
each of the stratification for generating the query sample. 
We have discussed the classification of the global query in section 
4.3. For each type of query (i.e., type I queries, type II queries  
and type III queries), we generate about 5000 sample data 
including the factors and corresponding RC, which have been 
verified to be sufficient for building the multiple regression model 
in a previous work [11]. Then we output these sample data into 
SPSS (Statistical Package for the Social Science) for the statistical 
analysis and building the regression model. 

5.1.1 Building the MrCoM for type I queries 
The results of the MrCoM for type I queries are shown in Table 1 
and Table 2. From Table 1, we can see that the values of R2 are 
0.739, 0.780, 0.806 and 0.819, respectively, for the four cases. 
From Table 2, we can see that the standard errors are 0.064, 0.008, 
0.015 0.050 and 0.017 for the four cases, respectively. Moreover, 
in addition to R2 and the standard errors, the significance of a 
model can be tested by statistical hypothesis testing such as the t-
test. From Table 2, the significant values are 0.012, 0, 0, 0.010 
and 0.038 by the t-test. These all indicate that the fitness of 
MrCoM is good. According to the model coefficients in Table 2, 
the MrCoM for type I queries is constructed as follows: 

RC=0.162+0.192X1+0.101X2–0.129X3-0.035X4        (9) 
X1 denotes the range of a global query, X2 denotes the position of 
the global query, X3 denotes the time segment when the query is 
submitted, and X4 denotes the granularity of the local range 
attribute. From the results, X1 and X2 are positively correlated 
with RC while X3 and X4 are negatively correlated with RC. 

Table 1. Model summary for type I queries 

Model R R2 
Adjusted 

 R2 
Std. Error 

 of the Estimate
1 .850(a) .739 .738 .21088
2 .883(b) .780 .778 .19424
3 .896(c) .806 .803 .18521
4 .902(d) .819 .817 .18120
a.  Predictors: (Constant), range 
b.  Predictors: (Constant), range, position 
c.  Predictors: (Constant), range, position, granularity 
d. Predictors: (Constant), range, position, granularity, time 
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Other factors are excluded from the model, some of which cannot 
be obtained. (e.g., the performance of a local database) and some 
of which are insignificant to the model (e.g., the length of the 
records, because the styles of the tuples in most web sites are 
similar, usually providing a picture of the entity). Note that we 
reduced the range, position and granularity by 1,000 times in 
order to make the coefficients of the model not too small. 

Table 2. Model coefficients for type I queries 

 Model Coefficients Std. 
Error 

t Sig. 

1 (Constant) .154 .022 7.049 .000
  range .213 .007 29.363 .000
2 (Constant) -.030 .032 -0.952 .000
  range .186 .008 24.493 .000
  position .112 .015 7.438 .000
3 (Constant) -.095 .056 1.700 .090
  range .190 .008 24.759 .000
  position .102 .018 6.696 .000
  granularity -.136 .050 -2.719 .007
4 (Constant) .162 .064 2.518 .012
  range .192 .008 24.982 .000
  position .101 .015 6.652 .000
  granularity  -.129 .050 -2.585 .010
  time -.035 .017 -2.085 .038
a.  Dependent Variable: RC 

5.1.2 Building the MrCoM for type II queries 
Similarly, the results of the MrCoM for type II queries are shown 
in Table 3 and Table 4. The MrCoM for type II queries is 
constructed  as follows: 

RC= 0.568+0.221X1-0.142X2-0.133X3             (10) 

Table 3. Model summary for type II queries 

Model R R2 
Adjusted 

R2 
Std. Error of 
the Estimate 

1 .896(a) .802 .801 .17299
2 .911(b) .830 .828 .16067
3 .918(c) .842 .843 .15503
a.  Predictors: (Constant), range 
b.  Predictors: (Constant), range, time 
c.  Predictors: (Constant), range, time, granularity 

 
Table 4. Model coefficients for type II queries 

 Model Coefficients Std. 
Error 

t Sig. 

1 (Constant) . 128 . 019 6.653 .000
  range .220 .007 31.241 .000
2 (Constant) .449 .054 8.250 .000
  range .220 .007 33.516 .000
  time -.129 .021 -6.252 .000
3 (Constant) .568 .059 9.626 .000
  range .221 .006 34.907 .000
  time -.142 .020 -7.066 .000
  granularity -.133 .030 -4.402 .014
a.  Dependent Variable: RC 

where X1 denotes the range of a global query, X2 denotes the time 
segment the query is submitted, and X3 denotes the position of the 
local range attribute. Compared with the MrCoM of type I queries, 
the independent variable denoting the position of the global query 
is insignificant to the model. Intuitively, for different values of the 
categorical attribute, the distributions of the tuples on the numeric 
range attribute are greatly different. 

5.1.3 Building the MrCoM for type III queries 
For queries of type III, because they contain the value attributes, 
the results are usually small in size. In general, the entire results 
can usually be displayed in one page even when MaxCS is used. 
For example, the results of the query {<Keywords, 
“CHEVROLET SEDAN”>, <Price, all>} for Dealsonwheels.com 
contain only 5 records. In contrast, when using MinCS, the results 
may be displayed in several pages, one for each of the queries 
submitted to the local Web database. Because the retrieving cost 
of MinCS is usually higher while the transmission cost and 
filtering cost are not obviously lower than the costs of MaxCS for 
type III queries, the overall cost of MinCS is usually higher than 
that of MaxCS for type III queries. This is confirmed by our 
experimental results, which show that most values of RC for type 
III queries are larger than 1. 

5.1.4 6-Fold Cross Validation  
The above experimental method is the simplest kind of cross 
validation. The data set is separated into two sets, called the 
training set (25 Web sites) and the testing set (5 Web sites). 
However, the evaluation may be significantly different depending 
on how the division is made.  
We use 6-fold cross validation to improve our experimental 
method. We divide the 30 Web sites into 6 subsets, each of which 
contains 5 Web sites.  Each time, one of the 6 subsets is used as 
the test set for verifying the accuracy of the cost model and the 
other 5 subsets are put together to form a training set for 
generating the cost model. 6-fold cross validation method is 
repeated 6 times and the average model coefficients for each type 
of queries are computed. The final model is shown in Table 5. In 
the MrCoM for type I queries, X1, X2, X3 and X4 denote the range, 
the position, the time and the granularity respectively. In the 
MrCoM for type II queries, X1, X2 and X3 denote the range, the 
time and the granularity respectively. The advantage of this 
improved method is that it matters less how the data gets divided.  

Table 5. MrCoM using 6-fold cross validation 

5.2 Performance Metric for MrCoM 
For a given global query, the prototype system computes the RC 
by MrCoM and selects the better translation strategy. On the other 
hand, we summit the query to the Web database by the two 
strategies and choose the one that actually costs less. If the 
strategies chosen by the two methods are consistent, it indicates 
that the model is accurate.  

  

MrCoM  for type I queries 
RC=0.168+0.190X1+0.106X2-0.141X3-0.038X4 

MrCoM  for type II queries 
RC= 0.551+0.223X1-0.137X2-0.133X3 

queriesofnumberthe
selectionsstrategyconsistentofnumbertheaccuracy= (11)



In this paper, the accuracy metric is used to measure the 
effectiveness of MrCoM.  

5.3 Experimental Results 
For the 5 testing Web databases which are random selected from 
30 Web databases, we also adopt the stratified sampling method 
on the whole and random sampling method in each of the 
stratification for generating the query sample. We design close to 
300 global range queries of each type for a Web database (i.e., 
totally close to 4500 global queries) as illustrated in Table 6.  

Table 6. An instance of random design of the global queries 

Range 
(<) 

Position (in) Time (in) Number Total 
Number

0:00-3:00 1 
3:00-6:00 1 
6:00-9:00 1 

9:00-12:00 1 
12:00-15:00 1 
15:00-18:00 1 
18:00-21:00 1 

0-10000 

21:00-24:00 1 

8 

10000-20000 … … 8 
20000-30000 … … 8 
30000-40000 … … 8 
40000-50000 … … 8 

10,000 

50000-60000 … … 8 

48 

20000 … … … … 48 
30000 … … … … 48 
40000 … … … … 48 
50000 … … … … 48 
60000 … … … … 48 

288 

 
Figure 4 shows the result of experiments. As we can see, the 
accuracy of our model is generally high. In details, the average 
accuracy of MrCoM for type I queries, type II queries and type III 
queries are 92.9%, 91.5% and 97.6% respectively.  

 
Given that the MrCoM in our approach is constructed for one 
domain, not just for individual site, we believe it is practically 
feasible in real life Web databases. 

6. CONCLUSIONS 
A major challenge for query translation in Deep Web Data 
Integration System is the lack of cost models at the global level. 
To tackle this challenge, this paper proposed the Multiple-
regression Cost Model (MrCoM) based on statistical analysis for 
the global range queries that contains numeric range attributes. 
We also proposed the Pre-processing-based Stepwise Algorithm 
(PSA) for selecting significant independent variables into the 
MrCoM. Experimental results demonstrated that the fitness of the 
obtained MrCoM using our approach is good and the accuracy of 
the query strategy selection is high. 
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Figure 4. Strategy selection accuracy on 5 web databases


