
Enhancing Grid Service Discovery
with a Semantic Wiki and the Concept Matching Approach

Tao Guan, David Fowler, Ayomi Bandara, Ed Zaluska, David De Roure, Richard Crowder, Gary Wills
School of Electronics and Computer Science

University of Southampton
Southampton, UK

{tg2, dwf, hmab02r, ejz, dder, rmc, gbw}@ecs.soton.ac.uk

Abstract—An important challenge of realizing the vision of
Grid computing that heterogeneous resources are shared in
dynamic and multi-institutional virtual organization is that
users need to locate, find, select and invoke appropriate Grid
services on demand. However, at the current stage, both Grid
resource description and discovery mechanisms are still at an
immature stage. This paper presents a semantic solution for
flexible Grid service discovery. The service description knowl-
edge is collected by using a semantic wiki, and the proposed
service matching approach compares the semantic content of
user requests against service advertisements and provides a
ranked list of candidate service. Based on them, a service
information middleware has been developed and integrated into
the service-oriented Grid environment, facilitating an enhanced
Grid access for users.

Keywords-Grid Service Discovery, Semantic Wiki, Concept
Matching

I. INTRODUCTION

In a service-oriented Grid environment, various distributed
resources are usually wrapped as services. Three aspects
are required to be considered in order to implement the in-
teraction between service providers and service consumers:
service description, service discovery and service execu-
tion. Essentially, Grid service description, discovery and
execution are interdependent: Grid service description is a
prerequisite for Grid service discovery; the mechanism of
Grid service discovery determines how a Grid service should
be described; the service execution process depends on the
discovery of the Grid service.

Service discovery protocols simplify the interaction be-
tween service providers and service consumers. Various
existing service discovery protocols have been introduced
and widely used during the past few years. In the field of
Web Services, Universal Description Discovery and Inte-
gration (UDDI) is a platform-independent and XML-based
registry which enables businesses to publish service listings
and discover each other. However, none of existing service
discovery mechanisms support flexible matching between
service advertisements and requests, and users can only
locate services on the basis of the syntactical equivalence
of keywords or strings which must have been agreed be-
forehand.

With the proliferation of Grid services, semantic specifi-
cations of Grid services are gradually becoming a necessary
requirement of the automatic, flexible service provision and
utilization necessary for Grid clients to perform various
tasks. Semantics of Grid services abstract top-level concepts
and relationships between concepts so that both the service
discovery and the automatic conversion of interaction for-
mats for the service execution can be realized. Furthermore,
a semantic definition mechanism provides a comprehensive
representation of a variety of Grid service aspects, building
an essential foundation for possible automatic behaviors
throughout the whole Grid service development lifecycle.

In this paper, we have presented the semantic solution
for flexible Grid service discovery. Grid services are de-
scribed with defined terms under the structure of a semantic
metadata model, and the annotation of their attributes are
collected with a semantic wiki, the popular knowledge
acquisition platform. A ”back door“ of the semantic wiki
is opened so that the description knowledge can be reused
by the service matching approach. The service matching
algorithm compares the semantic content of service requests
against service advertisements and provides a ranked list
of candidate services. Based on the knowledge collection
platform of Grid services and the service matching algo-
rithm, a service information middleware has been designed
and integrated into our service-oriented Grid environment,
so that other middleware can find required Grid resources to
accomplish tasks submitted from mobile users. The perfor-
mance of the service discovery is also measured, showing
that it scales well and the service query time is within
acceptable limits.

The rest of this paper is organized as follows. Section 2
presents the general semantic methodology for service dis-
covery. Section 3 discusses the Grid service description and
the semantic wiki to be the knowledge collection platform.
Service matching algorithm is described in section 4, with
its implementation of Grid service discovery middleware
in section 5. Section 6 discusses the experiments carried
out to evaluate the performance of the service discovery
middleware, and section 7 concludes our current research
work as well as further directions.

II. SEMANTIC METHODOLOGY

A semantic knowledge management approach is adopted
to build the service discovery mechanism. Two key issues
are required to be addressed in this semantic knowledge
lifecycle: a semantic metadata model for describing services
and structuring related domain concepts, and a service
matching engine for processing service knowledge. The
service metadata model and related domain concepts are
defined using ontology, which is expressed in a logic-based
language so that detailed accurate, consistent, sound and
meaningful distinctions can be made among the classes,
properties, and relations. The service matching engine is
built based on logic reasoning mechanisms, which can be
achieved by ontology supporting tools, providing advanced
functions to intelligent applications such as semantic search
and retrieval [1]. As long as users describe their service
requirements with terms from the same ontology model
used to build the service descriptions, logical reasoning
mechanisms can find the semantic similarity between the
service descriptions and the user requirements, enabling the
matching services to be discovered and returned to users.

The service provider represents all characteristics of a
service in the service description, which are indicated and
structured based on the definition of the service metadata
model. The service attributes may be either a concept or
a restriction for existent concepts. Similar to the service
description, a service request often consists of a number of
individual requirements, specifying the service attributes to
be expected in a service. These requirements may include
service outputs, inputs, function, location or any other pos-
sible attributes in terms of different service requests. For
a specific service request, all of the requirements can be
divided into two categories, a group of strict requirements
and a set of general requirements. The strict requirements
indicate that this kind of requirements are essential for the
service request and have to be met precisely in the service
matching, while the general requirements mean this kind of
requirements are not as important as the strict ones and only
a rough matching is necessary between the user requirement
and the related service attribute.

Although we assume that the service request attempts to
describe expected requirements with terms from the same
ontology model used to build the service description, it
is impractical that every service request can acquire the
exact desired service even though the required services have
already been deployed and advertised because one service
could have a number of description formats so that there may
be the deviation in the process of the service matching. In
fact, the responsibility of the service matching engine is to
obtain all of the related services including those that differ
from the request to some defined extend. These deviation
matches should not be rejected but be classified using a
predefined rule (e.g. matching degree), enabling service to be

selected based on the information returned from the service
discovery middleware.

III. SEMANTIC WIKI FOR SERVICE KNOWLEDGE
COLLECTION

A. Semantic Wiki and Ontology

A semantic wiki [2] is an extension of the original wiki,
which uses the same wiki principle of allowing users to
not only edit the text of the pages, but also to mark up
contents in a machine-processable fashion. The marking-
up method varies in different semantic wiki platforms. But
generally speaking, the additional marking up of contents is
done using category and property/attribute mechanism. The
category system in wikis maps to the hierarchy of knowledge
structure. The property value can be assigned to an instance
by annotating the text or number value of the wiki page with
the defined properties.

The marked-up set of semantic wiki pages will implicitly
define a knowledge structure in the form of:

• a hierarchy of categories (this probably will not be a
strict hierarchy, due to the possibility of pages and sub-
categories belonging to more than one parent category)

• a network of linked pages (using the property mecha-
nism - “normal” wiki links will still be allowed, but they
do not have any semantic content that can be reasoned
with)

• property values for some pages (the property mecha-
nism that uses datatype values such as texts or numbers)

This knowledge structure is a kind of ontology [3], the
specification and conceptualization of a knowledge domain.
Whereas most knowledge projects use a tailored ontology
that is the product of a small number of authors [4], the
ontology contained in a semantic wiki can be the result of
a collaborative effort of many users.

Ontology maintenance is an important issue in ontology
engineering. Knowledge experts need to check, improve and
update the constructed ontology constantly to ensure the
concept model is not out-of-date. However, maintaining a
large vocabulary is a tough task and cannot be achieved by
a few people. An knowledge self-maintenance mechanism
with semantic wikis is an approach to offloading the ontol-
ogy maintenance burden from knowledge experts to domain
users: only a sample ontology was designed initially, which
is a template for domain users to browse, manage and update
through a Semantic Wiki [5].

B. Semantic Metadata Model

OWL-S [6] can be regarded as a semantic metadata
model for describing web services. It provides a standard
vocabulary that can be used together with other aspects of
the OWL [7] description language to create service descrip-
tions. However, the “Service Profile” does not specify all
Grid service attributes considered in our semantic matching
process. Hence, it has to be extended by adding extra service

attributes. The following is a list of service attributes for our
Grid service description:

• Service IOPEs: Inputs, outputs, preconditions and ef-
fects (IOPEs) are important functional attributes for
a web/Grid service. Inputs and preconditions define
the constrains required for a service invocation, and
outputs and effects indicate the results or the state
transformation of a service execution.

• Service Resources:Service-oriented Grid computing
architecture is an extension of current Web Ser-
vice technologies. Web Service Resource Framework
(WSRF) provide a mechanism of building the stateful
services required by OGSA. It specifies a straight-
forward solution of recording the service state: keep
the web service and its state information completely
separate, and store all the state information in an
entity named “resource”. Each resource entity in a web
service is assigned a unique key. When service clients
want to invoke a service, they submit the request includ-
ing both the URI of the service provider and the key
of the required resource. A service may have several
resource instances, which enables the state information
to be kept for different purposes.

• Service Type: Service types vary in term of different
computing environments. For example, in a service-
oriented mobile Grid environment, two main styles of
application scenario are identified from the viewpoint
of users: an information access scenario, and a work
assistant scenario [8].

• Service Context: Apart from the functional attributes,
non-functional attributes are also required to be consid-
ered in the Grid service description. The potential non-
functional service attributes involve service location,
service contributor, service access range and so on.

Figure 1 illustrates the extended service profile class and
its properties for Grid service description.

C. Annotation with Semantic Wiki

Service providers need to publish semantic service de-
scription models in order to enable their services to be
discovered and reused. A friendly and easy-to-use interface
is required so that service providers are able to manage and
update their service description information conveniently.
As discussed above, a semantic wiki uses the same wiki
principle of allowing users to not only edit the text of the
pages freely, but also to mark up page elements in a machine
processable fashion. Hence, we adopt the semantic wiki as
the platform of advertising various Grid services.

For example, a service provider creates a page in our
semantic wiki for “Printing service in the ECS Teaching
Labs”. The service provider may wish to specify that the it
is a “Printing service” with a couple of resources of “Printer”
instance. By putting the page in a category of “Printing
service” and annotate the value of “Printer” instance with

Service Profile

profile

&QN;#Parameter

&QN;#Input

&QN;#Output

&QN;#Condition

&QN;#Effect

&QN;#Resource

Functional Description

hasParameter

hasInput

hasOutput

hasPrecondition

hasResult

serviceCategory

&xsd;#URL

&xsd;#URL

name

description

Non-Functional Description
(Basic and Additional Attributes)

serviceCategory

serviceClassifcation

serviceProduct

serviceName

serviceDescription

subClassOf

hasResource

&QN;#ServiceType

hasType &QN;#Context

&QN;#Location

&QN;#AccRange

subClassOf

hasContext

&QN;#ServiceDetail

hasDetail

Figure 1. Extended Service Profile.

a property “hasResource”, the text visible to the reader will
appear the same as the original, but the “Printing service in
the ECS Teaching Labs” can easily be found by making a
search for any service in a category “Printing service” and
with the resource value of a “Printer” instance. Figure 2
shows the snapshot of the semantic wiki page of “Printing
service in the ECS Teaching Labs”.

Figure 2. Snapshot of “Printing service in the ECS Teaching Labs”.

Our wiki platform for publishing Grid service is imple-
mented using the Mediawiki tools (the underlying software
of the Wikipedia) with its semantic extension Semantic
Mediawiki [9]. As a knowledge base about Grid services
published, the stored knowledge elements are supposed to
be reused to support the matching process between service
requests and service advertisements. A “back door” to the
Semantic Wiki was opened based on the RAP (RDF API

for PHP) [10] tool to implement the real-time export of the
semantic annotation in the wiki. All RDF triples generated
from the page annotation are stored in a MySQL database.
When service providers modify a wiki page (e.g. creating
a new page, adding a new property, removing an existing
attribute), the database will update corresponding triples
simultaneously. A persistent RDFmodel is built with Jena
[11] and an automatic task is created to synchronize triples
between the wiki database and the Jena model. The Jena
model provides a REST-like web service interface so that
required triples can be extracted. For example, the following
request will be sent out to acquire the RDF statements of
the “Printing service in the ECS Teaching Labs”:

Get http://gs.org/wiki/printing/ECS

IV. SERVICE MATCHING ALGORITHM

A. Checking Semantic Similarity

The service matching algorithm is designed for comparing
the service request against each service description model
and judging whether a service should be put onto the
list of candidate results. The assessment of the semantic
similarity between concepts is a fundamental requirement
for implementing the service matching engine. Most of the
previous work adopt the subsumption reasoning to determine
the semantic distance between concepts in the request and in
the description. However, this is not sufficient for building an
effective service matching algorithm. Consider the following
example: a user tries to find a printing service in the meeting
room while a printing service is deployed in the nearby
office. When used subsumption reasoning only, the printing
service deployed in the office is not be regarded as a
candidate service returned for the user because in the defined
ontology “Meeting Room” and “Office” may be two disjoint
concepts. However, the user may select the printing service
in the office if there are no other services around the meeting
room. This means that a more comprehensive approach to
the semantic concept similarity judgment has to be adopted.

We use the method introduced in [12] to check the
semantic similarity between the individual requirement and
the related service attributes. The concepts or constrains
in a service description and request are categorized into
three types. Type one includes conceptual attributes whose
similarity can be judged using subsumption reasoning. Type
two includes conceptual attributes whose similarity cannot
be judged using the subsumption reasoning. For this type
concept, the knowledge of similarities can be acquired by
using available similarity measurement approaches such as
[13] and [14]. Type three refers to numeric attributes only.
The similarity between this type of concept can be judged
either by using a percentage deviation from the requested
value or a fuzzy membership function.

B. Service Matching Process

A service request is composed of a number of individual
requirements, specifying various attributes to be expected
in required services. The service matching engine takes a
service request and a group of service description models
as inputs, and is responsible for determining whether a Grid
service is a matching service for this service request. The
comparison between the service request and the service
description collection consists of two steps. Initially, the
service matching engine will check to judge whether each
strict requirement can be matched precisely in the service
description. If a service description does not contain the
expected attributes, it will be dismissed and the service
matching engine will compare the next service description
model to the service request. If a Grid service satisfies all of
the strict requirements, the matching engine will then turn
to estimate the general requirements.

As discussed in the above section, the service attributes
are categorized into three types in order to check the seman-
tic similarity. Type one and type two refer to conceptual
attributes. Their similarity can be checked by using sub-
sumption reasoning based on the taxonomic relation or other
semantic similarity measurements. Four expected matching
level for general requirements are defined:

• “Substitute” indicate that the user expects to find a
concept in the service description which is equal to or is
the direct superclass of the concept in the requirement.

• “Cover” indicates that a concept which subsumes the
concept in the service request is expected to be found.

• “Fuzzy” means this requirement is of little importance
for service matching. As long as a concept in the service
description can be found which has the subsumption
relationship (either superclass or subclass) with the
concept in the requirement, it will be satisfied.

• “Close” indicates that the user expects to find a concept
in the service description which has the same direct
superclass in the defined concept (ontology) structure
with the concept in the service requirement. For ex-
ample, in the ontology structure, “Regular Medical
Query” and “Emergent Medical Query” have a “Close”
relation. This expected matching level is defined for the
type 2 conceptual attribute, whose similarity cannot be
assessed with the subsumption reasoning approach.

Type three refers to numeric attributes, and its constrains
specified in a service request can be an exact, at least,
at most or a range restriction. These expected matching
levels and attribute constrains are set when the service
request is submitted to the service matching engine. The
service matching engine will check the similarity between
each general requirement in the service request and the
related service attribute in the service description. The actual
matching level is determined by the semantic relationship
in the predefined ontology structure or based on similarity

measurement approaches. If all of the expected matching
levels and attribute constrains are satisfied, this service will
be a reasonable candidate matching service for the service
request.

C. Service Matching Degree

The service matching engine may find a number of
candidate services for a specific service request. Although
the service discovery mechanism is not responsible for the
service selection, the matching degree information about
each candidate service is required to be provided as a result
for the service request. We use the term “MatchingScore”
to show the matching degree of the candidate service. For
a candidate service, its “MatchingScore” is calculated using
the following equation:

MatchingScore =
n∑

i=1

Scorei/n

The “Scorei” indicates the matching degree of every indi-
vidual general requirement in the service request against the
related service attribute in the service metadata model, which
is obtained based on the types categorized for checking the
semantic similarity. For type one, because the subsumption
relation exists between these concepts, the score can be
obtained based on the semantic distance ||Cr, Ca|| between
the individual requirement (Cr) and the related service
attributes (Ca) in the ontology structure. The following
equations are used to calculate the individual score:

Scorei =
1 if Ca = Cr

1
2 + 1

2∗(||Cr,Ca||+1) if Ca is a superclass of Cr

1
2∗(||Cr,Ca||+1) if Cr is a superclass of Ca

For type two, the knowledge of similarities between con-
cepts is assumed to be available, and the service matching
engine will take the decision according to all of close degrees
between user requirements and related attributes. Because
the concept similarity can be acquired from an available
similarity measurement approach (e.g. [13], [14]), the score
for this type concepts is based on the following equations:

Scorei = ConceptSimilarity(Cr, Ca) (1)

For type three, both the attributes and the requirements are
numeric. Their similarity score can be obtained using the
percentage deviation from the requested value or a fuzzy
membership function, depending on the individual service
description and the user requirement. An example of the
fuzzy membership function is discussed in [15], in which
authors illustrate an implementation when considering the
numeric constrains as fuzzy boundaries and define functions
for calculating similarity scores.

V. SYSTEM IMPLEMENTATION

The service metadata model and required domain concepts
for service attributes are defined with the OWL language
using the Protege toolkit (an open-source ontology editor
and knowledge-based framework). Protege can also be used
to create OWL-S services by integrating an OWL-S editor
plug-in [16].

The service matching engine takes the service request
and a group of service description collections as inputs,
and output a list of candidate matching services as well as
their matching degrees. However, we have to consider two
practical problems for the detailed implementation of the
service matching engine:

• Users who need to locate required services may not
know where the service description collections are, and
they only submit their service requests to the service
matching engine in most cases.

• It is inefficient to process all of service metadata
collections for every service request. Especially, as the
number of the service advertisements increases highly,
the time of processing a service query will increase
dramatically.

In order to solve these problems and avoid the bottleneck
of the system performance, a service information middle-
ware is built which integrates both the service matching
component and the service publishing component. During
the process of publishing services, the domain concepts
(service attributes) in a service description are extracted,
and related ontology instances are created and stored in
the ontology repository. When a service request is received,
the service matching engine only needs to parse a request
description, and check similarity between concepts in the
service request and instances in the ontology repository. The
service matching engine then collects the service information
based on the matching concepts (expected service attributes).
This pre-reasoning approach speeds up the time of process-
ing a service query request because it saves the time of
analyzing a number of service advertisements.

The service information middleware has been imple-
mented in Java with the MySQL database, the Jena frame-
work, the Racer reasoning system [17], the jUDDI toolkit
and other related techniques. Jena provides a program-
ming environment for OWL ontologies which is used to
parse OWL-S service descriptions and manage required
ontologies. The Racer system is responsible for execute
the necessary reasoning tasks during the service matching
process. Grid service description information is stored in
the Jena triple store on the top of the MySQL database,
which is captured through a semantic wiki for Grid service
registration. The service information middleware is written
as both a Java Web Service for use by other middleware
in the system architecture and a web application using
the AJAX design mode which can be accessed through a

standard web interface.
Figure 3 shows the internal modules of the service infor-

mation middleware.

Grid Service Repository
(based on MySQL database)

Query Interface
Semantic Wiki

(Service
Annotation)

Service
Query Manager

(Comparing
service requests

to service
description)

Service
Publishing
Manager

(Processing
annotated

service
knowledge)

Ontology&Instances
Repository

Storing InterfaceQuery Interface

Reasoning API

Reasoning
System (Racer)

Concept Matching Engine

Figure 3. Internal Components of Service Information Middleware.

VI. PERFORMANCE EVALUATION

The service information middleware must have a reason-
able service query time in order to be used practically. An
integrated practical service query process can be divided into
two procedures:

1) Analyzing the service request and obtaining expected
service attributes by comparing every individual re-
quirement with concepts in the ontology repository.

2) Based on the expected service attributes, collecting the
candidate services from the service repository.

We believe four key parameters affect the response time
when processing a service request: the number of individual
requirements (nir) in a service request, the size of ontology
repository (nor, indicated by the quantity of defined classes),
the number of matching services (nms) for a service request,
and the size of service repository (nsr, indicated by the
quantity of advertised services in a repository.

A. UDDI vs. Semantic Service Matching

In the first experiment, we compare our semantic service
matching middleware with UDDI, the traditional web service
registry. We use the system response time as the performance
index and focus on calculating the time required to process
a query. The time of publishing a Grid service is not con-
sidered because in the system architecture, mobile users are
usually Grid service consumers rather than service providers.

The purpose of this experiment is to obtain the measured
time of querying a Grid service. Both the advertisement
information of real Grid services and a large number of
pseudo services are published in the service repository.

Altogether, fifty services can be accessed by the semantic
service discovery middleware (nsr=50). We also set the
number of individual requirement (nir), the number of
matching service (nms), and the size of ontology repository
(nor) to be one, one, and sixty respectively. A UDDI web
service registry was built and a number of web services
are published onto it (same with nsr). Table I shows the
average time of querying a service on two different service
discovery platforms. The time of querying a Grid service
with semantic concepts is longer, because the additional
computation efforts are required to determine the concept
similarity in the logic reasoning system.

UDDI Semantic Matching Middleware
Time (ms) 37.4 52.1

Table I
TIME OF QUERYING A SERVICE

Although UDDI has a faster system querying performance
than our semantic service discovery middleware, it has
several shortcomings when used in practice for the service
discovery. UDDI does not provide sufficient technical details
of the service, does not support any inference based on the
concepts, can only support the search based on the string
comparison, and cannot identify a match between function-
ally equivalent services that are described by different key
words. Our service discovery middleware overcomes these
shortcomings by using the semantic service description and
discovery mechanism. We believe it is worth obtaining a
relatively-significant improvement in system function at the
price of a small increase in the service discovery time.

B. Scalability

In the above experiment, we keep four key parameters
(nir=1, nor=60, nms=1, nsr=50) constant and measure the
service query time using the semantic matching middle-
ware and UDDI. In this evaluation stage, we evaluate the
scalability of our semantic service matching middleware
in terms of these key parameters. The objective of the
evaluation is to acquire the variation trend of the service
query time as the number of individual requirement, the size
of ontology repository, the number of matching services, and
the size of service repository vary. The service query time
is expected not to be tightly proportional to the increase of
these parameters, and should be within an acceptable limit.

We designed two experiments to investigate the scalability
of the semantic service matching middleware. The experi-
ment platform is a desktop equipped with Intel Pentium 2.4
GHz processor and 1GB memory.

Experiment one: we keep the number of individual
requirement at 1 (nir=1) and the size of the ontology repos-
itory at 60 (nor=60). The service query time is measured
when the size of service repository (nsr) varies from 10 to
400 and the number of matching services (nms) is assigned

to be one, two, four and eight. This experiment has been
repeated twenty times and the final value is the average of
experiment results.

The values of service query time gained in each case are
listed in table II and Figure 4.

SR nms=1 nms=2 nms=4 nms=8
10 39.3ms 58.2ms 90.3ms 140.4ms
20 42.5ms 64.8ms 92.3ms 143.5ms
50 52.1ms 74.9ms 104.1ms 165.7ms

100 55.8ms 75.4ms 109.5ms 175.3ms
200 60.4ms 80.3ms 115.4ms 181.9ms
400 66.1ms 91.6ms 120.8ms 192.3ms

Table II
AVERAGE QUERY TIME WHEN INCREASING SIZE OF SERVICE

REPOSITORY AND NUMBER OF MATCHING SERVICES

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

Size of Service Repository

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
)

1 match 2 match 4 match 8 match

8 match

4 match

2 match

1 match

Figure 4. Average Service Query Time vs. Size of Service Repository and
Number of Matching Services

From table II and Figure 4, it can be observed that the
service query time increases as the size of service repository
and the number of matching services increase. However,
the service query time is loosely proportional to these two
parameters. Furthermore, the maximum value of the service
query time in our experiment is within an acceptable limit
(192ms). We believe the values assigned for both the number
of matching service (from 1 to 8) and the size of service
repository (from 10 to 400) are in a reasonable range,
especially for the practical application scenario that mobile
devices need to locate required Grid services for the task
execution from a service repository which has four hundred
available services registered and at most eight candidate
services are returned. Hence, it can be concluded that the
service query time of the semantic matching middleware is
satisfied for reasonable numbers of matching service and
the size of service repository under the practical application
scenario.

Experiment two: we keep the number of matching ser-
vice at 4 (nms=1) and the size of service repository at

100 (nsr=100). The service query time is measured when
the number of individual requirement (nir) varies from 1
to 8 and under three kinds of ontology repository, which
include 60, 150 and 250 classes respectively. In each case,
the service query process has been executed for twenty times
and the final value is the average of experiment results.

The values of service query time gained in each case are
listed in table III and Figure 5.

IR nor=60 (ms) nor=150 (ms) nor=250 (ms)
1 109.5 126.2 147.6
2 138.2 169.6 219.5
3 162.4 202.4 276.9
4 204.5 252.2 336.4
5 231.1 290.9 390.1
6 260.2 335.1 450.7
7 290.1 370.8 520.3
8 328.3 414.9 584.8

Table III
AVERAGE QUERY TIME WHEN INCREASING NUMBER OF INDIVIDUAL

REQUIREMENT UNDER DIFFERENT ONTOLOGY

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

Number of Individual Requests

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
) Ontology 1 (60 classes)

Ontology 2 (150 classes)

Ontology 3 (250 classes)

Figure 5. Average Service Query Time vs. Number of Individual
Requirement and Size of Ontology Repository

From table III and Figure 5, it can be observed that
the service query time increases almost linearly as the
number of individual requirement increases from one to
eight. This is because for each extra requirement in the
service request, it takes time to analyze and compare the
individual requirement with related concepts in the ontology
repository.

The service query time also varies under different sizes of
ontology repository. From Figure 5, it can also be observed
that the service query time increases as the concept number
of the service repository. For example, when using the
ontology one, which contains 60 classes, the service query
time is 205ms (nir=4); when using the ontology three, which
contains 250 classes, the service query time rises to 336ms
(nir=4). This is because it takes more time to check the
concept similarity in a larger size of ontology repository.

The maximum service query time in the experiment is
an acceptable value (585ms). Considering in most cases the
number of individual requirement in one service request
does not exceed eight and the ontology repository does not
contain the concept definition of more than 250 classes,
it can be concluded the service query time is within an
acceptable limit in terms of reasonable value of the ontology
repository size and the individual requirement in a service
request.

VII. CONCLUSION

In this paper, we have presented our semantic solution to
enhance service discovery in a Grid computing environment.
A number of service attributes have been defined to repre-
sent service characteristics in the service description. The
service description knowledge is collected by a semantic
wiki, which will then be used during the service matching
process. A service information middleware is built with
the knowledge acquisition platform and the semantic search
algorithm, providing the service discovery function for users
or other middleware in the system to locate required services.
The service information middleware has been integrated into
our service-oriented mobile Grid system and demonstrated
to interact correctly with other middleware. We have also
measured its performance, and the results show that the
middleware scales well and there is only a small increase
in the service discovery time compared to the traditional
service discovery mechanism in return for the significant
improvement obtained.

In the future, we plan to continue the current research
work to allow such a semantic service discovery mechanism
to be extended so that it can be more suitable for the service-
oriented mobile Grid environment. OWL-S supports not
only automatic service discovery, but also automatic service
invocation, composition and interoperation. At present, we
only refer to the “Profile model” to describe Grid services.
In the future, we will extend the system to use both the
“Process model” and the “Grounding model” to build Grid
service descriptions, enabling the vision of automatic service
discovery, composition, and invocation to be realized.

REFERENCES

[1] H. Zhuge, “Communities and emerging semantics in semantic
link network: Discovery and learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 6, 2009.

[2] M. Buffa and F. Gandon, “SweetWiki: semantic web enabled
technologies in Wiki,” in WikiSym ’06: Proceedings of the
2006 international symposium on Wikis. Odense, Denmark:
ACM, 2006, pp. 69–78.

[3] M. Uschold and M. Gruninger, “Ontologies: Principles, meth-
ods and applications,” Knowledge engineering review, vol. 11,
no. 2, pp. 93–155, 1996.

[4] J. Seidenberg and A. Rector, “The state of multi-user on-
tology engineering,” in WoMo2007, The 2nd International
Workshop on Modular Ontologies at KCAP, B. Cuenca-
Grau, V. Honavar, A. Schlicht, and F. Wolter, Eds., Whistler,
Canada, October 2007.

[5] V. Chaudhri, M. Greaves, D. Hansch, A. Jameson, F. Pfisterer,
A. Spaulding, and M. Weiten, “Using a Semantic Wiki as
a Knowledge Source for Rich Modeling and Question An-
swering,” in AAAI Spring Symposium on Symbiosis between
Semantic Web and Knowledge Engineering, 2008, pp. 21–24.

[6] C. Acuna and E. Marcos, “Modeling semantic web services:
A case study,” in Proceedings of the 6th international confer-
ence on Web engineering, Palo Alto, California, USA, 2006,
pp. 32–39.

[7] M. Smith, C. Welty, and D. McGuinness, “Web ontology
language guide version 1,” http://www.w3.org/TR/owl-guide,
2003. [Online]. Available: http://www.w3.org/TR/owl-guide

[8] T. Guan, E. Zaluska, and D. D. Roure, “Extending perva-
sive devices with the semantic grid: A service infrastructure
approach,” in Sixth IEEE Conference on Computer and In-
formation Technology, Seoul,Korea, Sep. 2006.

[9] M. Krötzsch, D. Vrandecic, and M. Völkel, “Wikipedia and
the Semantic Web – The Missing Links,” in Proceedings of
Wikimania 2005, 2005.

[10] R. Oldakowski, C. Bizer, and D. Westphal, “RAP: RDF API
for PHP,” in Proceedings International Workshop on Inter-
preted Languages. Erfurt, Germany: MIT Press, September
2004.

[11] B. McBride, “Jena: Implementing the rdf model and syntax
specification,” in Proceedings of the 2001 Semantic Web
Workshop, S. Decker, D. Fensel, A. Sheth, and S. Staab, Eds.,
Hong Kong, China, May 2001.

[12] A. Bandara, T. Payne, D. D. Roure, and T. Lewis., “A seman-
tic approach for service matching in pervasive environments,”
in Technical Report in IAM group shool of ECS, 2007.

[13] A. Schwering, “Hybrid model for semantic similarity
measurement,” Lecture Notes in Computer Science, vol.
3761/2005, pp. 1449–1465, 2005.

[14] A. Tverski, “Features of similarity,” Phychological Review,
vol. 8, no. 2, pp. 327–352, 1977.

[15] A. Bandara, T. Payne, D. DeRoure, and T. Lewis., “A prag-
matic approach for the semantic description and matching of
pervasive resources,” in 3rd International Conference on Grid
and Pervasive Computing, China, May 2008.

[16] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri,
S. Sadaati, and R. Senanayake, “The owl-s editor - a de-
velopment tool for semantic web services,” in Proceedings of
the Second European Semantic Web Conference, May 2005.

[17] V. Haarslev and R. Moller, “Racer: a core inference engine
for the semantic web,” in Proceedings of 2nd International
Workshop on Evaluation of Ontology-based Tools, Sanibel
Island, Florida, USA, Oct. 2003, pp. 27–36.

