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Abstract—Knowledge and information management sys-
tems are usually supported by wireless networks that strongly
rely on reliable received signal strength. The interruption
and outage of such system may lead to significant perfor-
mance disruption. In order to deal with one of the major
contributors: noise, this paper investigates the fundamentals
of wireless signals and proposes a method to identify and
model the noise components quantitatively. We investigate
the theoretical method and empirically study two wireless
system configurations - one with omnidirectional antennas and
one with directional antennas. Results based on real-world
experiments confirm the existence and exact contributions of
coloured noise components. Based on the preliminary results
of this study, future information management systems can be
designed with enhanced network support to cope with the
variation of signals for improved performance.

Index Terms—Information management system, wireless
signal, coloured noise, modelling, Allan variance

I. INTRODUCTION

The convergence of knowledge and information man-
agement systems with networks has significant potential
to provide services anytime and anywhere. However, the
performance of a system can be severely affected if the
network cannot provide sufficient bandwidth and reliability.
Networks often utilize received signal strength (RSS) as a
performance index because its value indicates the signal
quality and suggests whether the system can properly func-
tion or not [1]-[4]. For example, a management system with
inaccurate RSS may lead to the failure in sending important
commands or the loss of key data. Such problem becomes
more severe with the prevalence of wireless networks.
Because of the dynamic propagation features of radio
frequency channels and transceiver electronic system noise,
we can observe that RSS measurements vary irregularly
in practical scenarios. Therefore the accurate identification
and modelling of RSS noise components is an important
topic. !

The Friis transmission equation can be used to char-
acterise and model the received wireless signal strength
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under ideal conditions of free space [5], however, the
practical propagation environment where wireless signals
are generated and propagated is usually far from ideal.
In [6], the authors modelled RSS as the combined effect
of three major factors: antenna gain, transmitting power
and free space path loss, with an additional loss factor
to capture randomness. This random factor was modelled
to follow a white Gaussian process with zero mean: the
additional white noise in Friis equation [7], [8]. This model
has been broadly accepted and applied in communications
and wireless networks [9]-[11].

If the noise power approximately equally spreads the
whole bandwidth, such assumption fits the practical case
very well. However, this noise type cannot characterise
the components with different power spectral densities
(PSD). For example, the noise associated to some physical
instruments has both short and long term correlations due to
circuit drifts, and the corresponding components thus have
different PSDs [12]. The use of a white process to model
noise may oversimplify the problem. The noise components
which do not equally span over the full bandwidth can
be named as coloured noise, which is commonly found
in systems such as measuring instruments [12]. From
this observation, it is necessary to identify different noise
types, model them and reduce their malignant effects when
designing future knowledge management systems.

This paper first demonstrates the time and system-
dependency features of RSS measurements from practi-
cal system set-ups. As an effective instrument to analyze
coloured noises, Allan variance (AVAR) is then introduced
with the focus on characterising different types of noise
[13]. Theoretical analysis shows that RSS noises have
exponential identities and can be processed explicitly if
they are handled correctly. In order to apply the modelling
method in practical applications and utilize RSS values
without considering every potential component individually,
we highlight the coloured noise components from the
RSS measurements with the focus on their corresponding
parameters, which are obtained through Least Squares (LS).
Two typical experiments - one from an omnidirectional
antenna and another from a directional one - are conducted



and analyzed. The obtained results can be used as refer-
ences and guidance for designing knowledge management
systems.

The remainder of the paper is as follows: Section II
discusses RSS modelling, and the calculation method for
AVAR and noise components; Section III presents two
different experiments based on wireless systems with om-
nidirectional and directional antennas respectively; Section
IV discusses the relevant issues of RSS measurement and
noise modelling; Section V concludes this paper.

II. RSS NOISE ANALYSIS
A. RSS and Time Dependency

A wireless system generates signals using its internal
circuit and transmits them from its antennas. The ra-
dio frequency signals are broadcast through propagation
medium using electromagnetic waves. The major causes
to the degradation of the received signal strength include
thermal noise, antenna features and channel propagation
loss. According to [7], the received signal strength can be
given by

Py(d)[dB] = P, — PL(dy) — 10n log(d%) +X,. (1)
where n is the path loss factor whose value is associated
with the propagation environment [9], P, is the transmitting
power, d and dy are the transmitter-receiver distance and
reference distance respectively. As described before, X, is
the random noise term. Given a fixed position of transmitter
and receiver, we can rewrite (1) to describe the time varying
relationship as

Py(0)ldB] = P, — PL(do) ~ 10nlog(1) + X (0). @)
where the first three terms on the right hand side are not
time varying.

In the literature (e.g. [6], [14]), X, (¢t) is modelled as
a zero-mean Gaussian distributed random variable (in dB)
with standard deviation o and its power spectral density is
given by

where Ny = 202.

Using a white process to model the random variable is
convenient in describing its movements driven by random
forces and has the advantage of simplicity in mathematical
expression and analysis. However, it can be an over-
simplified makeshift in describing practical systems where
the noise is due to complicated sources and shows different
behaviours at different correlation times [15]. In order
to verify that the noise present in RSS measurements is
actually coloured, we tested a dataset of N = 15000 RSS
measurements from a 802.11g receiver (The experimental
conditions are given in Section III-A.) against the null hy-
photesis of whiteness of the noise. We employed the Ljung-
Box Q-test [16] for the sample autocorrelation coefficient

of the noise process X,(j),j=1,...,N:
S k1 Xo ()Xo G = )
> X2(5)
with null and alternative hypothesis:
Ho(white noise) : p(k) =0 Vk#0
‘H1(coloured noise) : p(k) # 0 for some k # 0.

plk) = keZ

Under the null hypothesis, the statistic

Qu=NN+2)) ]@2%

k=1

asymptotically follows a Chi-squared distribution with m
degrees of freedom (x?2,). Figure 1 shows the obtained Q,,
values for m = 1,2,...,100 together with the threshold
values at which, we would reject the null hypothesis at o =
0.05 significance level. The obtained values are far above
the thresholds which means that the null hypothesis can be
rejected with a very low error probability. Actually, the p
values obtained from our data are all below 2.22 - 10~1¢
(MATLAB floating point accuracy).
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Fig. 1. Ljung-Box Q-test statistics obtained for m = 1,2, ..., 100 time

lags from N = 15000 RSS samples. Threshold values for o« = 0.05 are
also presented

The results of this test show that the noise present in
the RSS measurements has a time-dependant statistical
behaviour. In order to analyze this noise, the instrument
of AVAR will be introduced as an effective tool to identify
the noise components.

B. Allan Variance

Allan variance (AVAR) was proposed by David W. Allan
to characterise the underlying noise processes of clock sys-
tems in 1966 [13] and, together with some modifications,

it has been recommended as a standard for such purpose
[17]. Let X (t) be the noise signal under study. The AVAR



is obtained for different time stamps ¢, as:

i %Var{Y(tm +7) = X(tm)} = %Var{ymﬂ - X}
3

where

. 1 tm+T7
X, = / X(t)dt )
t

T

and, for stationary processes, is only a function of 7.
With this in mind, the AVAR can be easily estimated by
numerically computing (4) as a sample average for different
time instants t,,, m = 1,...M — 1 and the AVAR as
a sample variance (note that F{X,,.1 — X,,} = 0 for
stationary processes:

1 M-1
~2 _ 2
Or = 2(M N 1) mzzjl(’um-kl Mm) (5)

where

K
1
o = 72 ’;X(tm + kT's)

with T the sampling time and K = |7/7s]. The number

of available points M to calculate the sample variance is

a function of the total length of the signal N - T and the

integration interval 7:

NT,
T

M= |22

An example figure can be seen in Fig.3.

It is worth noting here that the error of the AVAR esti-
mator, usually decreases as the averaging time 7 increases.
Confidence intervals for the estimation can be established
by considering the distribution of the sample variance.
Thus, we can use the Chi-squared distribution to establish
its confidence interval as follows
2, Fo?

2
0-7'

X

where o2 is the true variance value and f is the number of
degrees of freedom (DOF) of the estimator’. x? denotes
the cumulative distribution function of the chi-squared
distribution. Given a confidence of ¢, the confidence interval
for the Allan variance estimation is given by

~2 ~2
x*(e) X*(1—¢)

Because the noise term X, (¢) in (2) is composed of
multiple noise components, it is important to know the con-
tribution of each component and model these noise given its
contributing terms. Therefore, we apply the AVAR tool in
this paper in order to not only obtain their contributions but
also to apply them in practice. Let us consider a (one-sided)
power-law spectral density (PSD) which can be reasonably
used to model the random fluctuations in RSS signals (see

<
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2The number of DOF should be specifically estimated since the samples
used for computing AVAR are seldom uncorrelated.

Section II-C):
Sx(f) = haf® 6)

In practice, these random fluctuations can often be rep-
resented by the sum of five noise processes —2 < o < 2
assumed to be independent [13], [17]. Specifically, for the
model in (6), and considering the bounds for «, the time-
domain measure can be expressed as:

Cho n Dhy + Ehy

02~ Ah_o7 + Bh_1 + h (7)
T
with the mapping coefficients given by
22 1
A=— B=2In(2),C=-
3 ) n( )7 2 )
1.038 4+ 31n(wy,T) 3fn
D = y = —F,
472 472

where f, = wy,/(27) is the bandwidth of the measurement
system.

The h_, coefficients can be estimated using Least
Squares (LS) algorithms [18]. The introduction of AVAR
to characterise the noise PSD may be preferable to (for
instance) directly fitting (6) using the periodogram. To illus-
trate this, we conducted a simple experiment: We generated
1000 realizations (where each one has N = 24 = 16384
samples) of a noise process whose power spectral density
is given by (6) with h_o = 0.01,h_; = 1, hy = 100, h; =
0, hy = 0 as in [18]. For each of them, we estimated the two
sets of h, values using LS to fit the AVAR curve (Eg) and
the PSD directly estimated with the periodogram (h2S5P),
respectively, for the sake of comparison. The histograms
for the relative errors e/, = (h!, — hy)/he are presented
in Figure 2, where lower values and dispersion from the
AVAR estimations can be easily observed.

C. Noise Components and Sources

As described in [13], coloured noise is a combination
of several types of components which cover different
frequency bands of the noise spectrum. Similar to [13]
and the IEEE standard [17], we only consider the major
components which contribute the most part of the noise
spectrum and AVAR values. Specifically the following 5
components: —2 < « < 2 are analyzed. Some details of
these noise components are introduced below [19]:

e Brow(nian) noise (o« = —2): This type of noise
corresponds to a random walk behavior of the received
signal [8] . Its origin is actually Brownian motion in
the receiver circuitry.

o Pink noise (o« = —1): This component, also referred to
as flicker noise, shows a 1/f pattern. It has a variety
of different causes, usually related to the flow of direct
current.

« White noise (o« = 0): Named by analogy to white light,
with a flat frequency spectrum. As a wideband noise,
RSS measurements have the equivalent component
of white noise denoted by (2). The source of this
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estimation using periodogram are also presented which are denoted as PSD in the above figures.

noise can be thermal noise from the antennas and
transceiver circuit or random shadowing effects [7] of
the propagation channel.

¢ Blue noise (a 1): With a f increasing law, this
term is sometimes loosely used to describe a noise
with minimal low frequency components. The specific
origin is not well known, but one possible source is
from the interference mitigation circuit which helps
combat interference and improve the wireless signal
quality [20].

« Violet noise (o« = 2): This noise presents a f2 law
and is also referred to as purple noise or differen-
tiated white noise. Our results are aligned with no
previously reported evidence of its presence in RSS
measurements (to the best of our knowledge).

As we will show in the experimental section, the power-
law identities present in RSS noise components can lead
to simpler analyses if they are handled correctly. We will
use the Least Squares (LS) algorithm to characterise the
noise components through a parametric estimation of the
AVAR as a power series (7). As studied in Section II-B
(see Figure 2), the estimation method based on AVAR is
preferable to direct estimation in the frequency domain
based on the PSD. The noise characterisation is performed
by taking advantage of the one-to-one relationship between
the parametrization of AVAR and the noise PSD (see (7)).

We treat RSS coloured noise components as power-
law processes so that they can be identified and analyzed
even without the details of each noise source. Usually it
is not a trivial task to identify the exact origin of each
noise component. For example, [20] found that the wireless
signal processing module of some peripheral cards can
generate coloured noise. Specifically these network chip-
sets automatically increase the operational signal level and
carrier sense threshold in order to ensure a certain level
of signal to interference and noise ratio and the successful
demodulation of incoming signals. Thus their RSS mea-
surements usually follow a random walk behaviour, but
statistically drift towards higher values with the increase
of running time. The AVAR tool employed in this paper is
able to analyze such time dependent behaviour even if such

mechanism of the inner circuit is unknown.

III. EXPERIMENTS

In this section, we study two groups of RSS datasets
from 802.11 systems and characterize the noise components
using the AVAR tool and LS algorithm. The first group was
collected by using an omnidirectional antenna and contains
four datasets; the second one is from Phillips et al’s work
and was collected using directional antennas [21]. For the
sake of comparison, we have simulated reference datasets
with only white noise whose mean and standard deviation
are directly calculated from the data. In each figure, we
show the result of the two datasets simultaneously in
order to highlight the different characterisation of coloured
and white noise. We also introduce the LS algorithm to
fit the curve of the RSS datasets in order to obtain the
corresponding coefficients h,,.

A. Omnidirectional Antennas

The first group of datasets were collected by using om-
nidirectional antennas on both the transmitter and receiver.
We set the experiments in a 4mx6m laboratory surrounded
with brick walls. The positions of the transmitter and
receiver were fixed with the distance of 100cm and both of
them were equipped with a WiFi interface (Gigabyte GN-
WIO1GT). The carrier frequency (central frequency) was
set to 5.22GHz (WLAN Channel 44) which was known and
tested to be free from any adjacent frequency interferences.

The transmitter constantly broadcasts BEACON signals
every 100ms, which were received and demodulated by
the receiver. We used an off-line application to extract
the RSS measurements with time stamps from the original
received packets. The noise in the RSS measurements was
analyzed and its components were identified and illustrated
in the figures. In total, we conducted four experiments
each of them including about 60 minutes of measurements
(Dataset1 to Dataset4).

The coloured noise coefficients h, of these data were
calculated by the LS algorithm and are listed in Table 1.
Fig.3-6 show the AVAR values of the datasets with coloured
noise and the artificial white noise respectively, together
with the LS fitted curve.
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Fig. 4. AVAR and the LS fitted line of the second data set.

Analysis of the results

From Fig.3-6 and Table I, we can see that because of the
existence of coloured noise, the AVAR curves of the RSS
measurements do not decrease linearly with the increase of
correlation time 7 on the log-log diagram, whereas the ones
with artificial white noise do follow this linear law. We can
thus conclude that the traditional white noise assumption is
inaccurate (X, in (2)).

Furthermore, the contributions from different noise com-
ponents are stable as the results from all the four datasets
have similar trends and coefficients. The three major con-
tributions to RSS measurement noise are from Brownian
(h_2), flicker (h_1) and white (hg) types of noise (See
Table I). Theoretically we cannot exclude the other two
components - hy and ho, however, the overall AVAR and
noise of RSS measurements is dominated by the three types
mentioned before. In practice, the complexity to model and
process coloured noise can be simplified [22], [23]. From
the experiments, we can infer that if the transmitter sys-
tem, receiver system and propagation environment remain
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Fig. 5. AVAR and the LS fitted line of the third data set.
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Fig. 6. AVAR and the LS fitted line of the fourth data set.

unchanged, the combination of coloured noise should be
stable.

We can also see from the figures that the fluctuations
in the curve become more intensive for higher 7 values.
The explanation for this comes from the intrinsic nature of
AVAR calculation: the larger the correlation lag, the lower
the number of samples available to estimate the variance
[see (5)], and thus the curve becomes less smooth.

B. Directional Antennas

The next group of datasets were collected by Caleb
Phillips and Eric W. Anderson from the University of
Colorado [21]. In their experiments, the transmitter sys-
tem used a directional antenna which was mounted to a
geared triaxial head with the ability to rotate precisely. The
receiving antenna was 100 feet (= 30.48m) away from the
transmitter, fixed to its seat and omnidirectional. Both the
transmitter and receiver work on the 2.4GHz band and have
an Atheros-based MiniPCI-Express radio interference.

Different from the previous indoor experiments, the data



TABLE I
PARAMETER ho OF THE MEASUREMENTS FROM OMNIDIRECTIONAL
ANTENNA.(THE VALUES OF h1 AND ho SUGGEST THE TRIVIAL
CONTRIBUTION FROM HIGHER ORDER NOISE COMPONENTS.)

rections shows an interesting pattern. A possible reason
is that when the received signal is strong, some of the
noise components are dominated by the main one, and thus

the AVAR of RSS measurements demonstrates outstanding
white noise features (the AVAR curve has a linear decreas-

ing rate). However, when the correlation time becomes
greater, the random walk noise is averaged by (5) and
becomes less significant. Then, the other types of noise
stand out, e.g. Brownian and flicker noise. This trend
becomes more obvious when the signals are not received

AVAR h  Datasetl Dataset2 Dataset3 Dataset4
h_s 0.000459 3.169e-14 2.337e-14 2.287e-14
h_q 0.000398 0.010600  0.020693  0.016444
ho 1.51436 1.46363 0.984316  0.848535
h1 9.999¢-7 1.878e-10  1.060e-7 9.996e-7
ha 9.998¢e-7 3.032e-14 7.545e-10  9.997e-7
TABLE II
PARAMETER ha OF THE MEASUREMENTS FROM DIRECTIONAL
ANTENNA.
AVAR h 0° 90° 180° 270°
h_s 0.000075 0.000096 0.000576 0.000459
h_q 0.014009  8.138e-8 0.155812  4.765e-7
ho 0.017734 0.026985 0.013213 0.042719
h1 1.046e-12 9.999e-7 9.997e-7  9.998e-7
ho 2.402e-14  9.997e-7 9.998e-7  9.999e-7

were collected in an open flat flood plain which is free from
obstacles in all directions and radio interferences at the
2.4GHz band. The researchers recorded RSS measurements
received at each 5 degree azimuth position. In order to
control the length of this article, we picked the four typical
azimuth angles - 0,90,180 and 270 degrees, and processed
the datasets at these directions.

Each of these datasets contains 80s of measurements.
Comparing with the datasets collected in the previous
experiment, the length is shorter. The AVAR calculations
only cover a short correlation time interval, e.g. up to
80s. Nevertheless, the effects of coloured noise can still
be observed from the results. Fig.7 - Fig.10 show the RSS
measurements and the corresponding AVAR values for the
transmitting antenna at the azimuth direction of 0,90,180
and 270 degrees, together with the comparable datasets with
artificial white noise. The coefficients of the five types of
noise components are listed in Table II.

Analysis of the results

From the results we can see that the antenna direction
not only affects the receiving signal strength which is
common known, but also significantly changes the variation
and noise components. Antenna theory suggests that the
main lobe (0-degree) of a directional antenna provides the
strongest RSS values, the two side lobes (90- and 270-
degrees) are less powerful in emitting energy and the back
lobe (180-degrees) is obviously the weakest.

Fig. 7 (0O-degree) shows that this dataset has higher
average strength than the ones from other directions. Fur-
thermore, the RSS values are more stable with the change
of time. The largest variation observed corresponds to the
dataset received at 180-degrees (Fig. 9), with higher noise
content than the others.

The variation of noise combination from different di-

from the main lobe. Especially for the data received at 180-
degrees, its pink noise component is significantly stronger
than for the other datasets. The fitted coefficients & also
show such behaviour. Similar to omnidirectional antennas,
the curves of this experiment become less smoothed with
the increase of correlation time because of less samples for
the average function.

This experiment suggests that in order to mitigate the
noise effects (both white and coloured noise), we should
try to receive as high RSS as possible, thus the main lobe
of directional antenna should always be used. However, in a
mobile scenario, precise direction between transmitter and
receiver is usually difficult to achieve. If there are only
directional antennas, we would observe large strength varia-
tions at the receiving power. Practical mobile systems either
use omnidirectional antenna or simulate an omnidirectional
antenna by combining several directional antennas [24].
Therefore, for the directional antenna, we will only consider
the noise components from the data collected at near 0-
degrees (Table II), which have two major members: Pink
(h—1) and white (hg), and one minor component (h_s).

IV. DISCUSSION

This paper focuses on the analysis of noise with distinc-
tive AVAR or PSD. Results from our experiments using an
omnidirectional receiving antenna, (Fig.3-6), show that if
the transmitter, receiver and environment remain the same,
the combination of noise components is stable, and thus
they can be modelled by the coefficients h,. Such treatment
provides a tangible method in modelling and processing
each noise component and their various combinations. This
method provides a good tool for designing the network
module of knowledge management systems. For example,
if a mobile station of a knowledge management system is
using omnidirectional antennas, the coloured noise com-
ponents can be cancelled based on their coefficients. The
details of hardware implementation is beyond this paper
and will be provided in our follow-on work.

We experimentally study the noise components using
802.11 signals in this paper, however, the proposed method-
ology can be directly applied to analyze other wireless
signals whose strength can be modelled by the propagation
model (2). As long as the noise of wireless signals follow
the power-law property, similar techniques can be devel-
oped to identify and mitigate the corresponding coloured
noise components. The methodology of this paper provides
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a tangible solution for developing knowledge management
system infrastructure

V. CONCLUSION

In order to develop advanced networking infrastructure
for future knowledge management systems, this paper stud-
ied the noise components of wireless signals that may affect
the network performance. We first introduced the radio
frequency signal propagation model and analyzed the noise
term in detail. Theoretically, five noise components were
defined, however, our experiments found only three ma-
jor coloured noise components. The estimated coefficients
from experiments, which denote the contributions of each
component, can be clearly identified using the proposed
methodology. The analyzing method and results are useful
in practical scenarios requiring accurate modelling and
processing of RSS.
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