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Abstract—Image segmentation is a fundamental step for image
processing of medical images. One of the most important tasks in
this step is border reconstruction, which consists of constructing
a border curve separating the organ or tissue of interest from the
image background. This problem can be formulated as an opti-
mization problem, where the border curve is computed through
data fitting procedures from a collection of data points assumed
to lie on the boundary of the object under analysis. However,
standard mathematical optimization techniques do not provide
satisfactory solutions to this problem. Some recent papers have
applied evolutionary computation techniques to tackle this issue.
Such works are only focused on the polynomial case, ignoring the
more powerful (but also more difficult) case of rational curves. In
this paper, we address this problem with rational Bézier curves
by applying the firefly algorithm, a popular bio-inspired swarm
intelligence technique for optimization. Experimental results on
medical images of melanomas show that this method performs
well and can be successfully applied to this problem.
Index Terms—medical images, image segmentation, border

reconstruction, skin lesions, swarm intelligence, firefly algorithm,
rational curves, Bézier curves

I. INTRODUCTION
A. Motivation
Computer-aided detection and reconstruction of the bound-

aries of objects and areas in images has been a hot topic
of research for decades. It is a recurrent problem in fields
such as image processing, pattern recognition, artificial vision,

Work funded by EU Horizon 2020 research and innovation programme
(PDE-GIR project, MSCA grant agreement No 778035) and grant #TIN2017-
89275-R of Spanish Agency of Research (AEI) and European Funds EFRD.

and virtual and augmented reality, among many others. It is
also a popular and increasingly used technology for medical
applications. For instance, it is widely applied to identify
and discriminate different tissues and organs for medical
visualization in popular non-invasive diagnostic procedures
such as computer tomography, magnetic resonance imaging,
infrared imaging, positron emission tomography, ultrasonog-
raphy, spectroscopy, and so on.
One of its most interesting applications in medicine arises

in dermoscopy, for early detection and efficient treatment of
melanoma and other skin lesions [19], [23]. This is critical
issue in current medical and healtcare systems all over the
world. According to some reliable studies of the International
Agency for Research Cancer of the World Health Organiza-
tion, one in 5 men and one in 6 women worldwide will develop
cancer during their lifetime, and one in 8 men and one in 11
women will die from the disease. It has also been reported
that more than 90 million people has been affected by cancer
in 2015, with more than 15 million cases arising every year.
These figures are still raising, with 18.1 million new cases and
9.6 million deaths in 2018.
Skin cancer is one of the most frequent types of cancer

for both men and women. According to the World Cancer
Report 2014, melanoma is the most frequent and dangerous
type of skin cancer. In this case, the classical reasons for cancer
(population growth, ageing, bad habits, etc.) are strengthened
by new social customs. For instance, the popularity of sunlight
exposure is linked to a dramatic increase in the number of
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cases of skin cancer and other skin diseases. According to a
report from the Australian Cancer Council: “Almost all skin
cancers (approximately 99% of non-melanoma skin cancers
and 95% of melanoma) are caused by too much UV radiation
from the sun or other sources such as solaria (solariums,
sunbeds, and sun lamps).”
As a result, healthcare systems are stringently asked for

diligent and accurate diagnosis and treatment of skin lesions.
Time is a key factor in this process, as early detection is critical
for an efficient treatment of melanoma and other malignant
skin lesions. It has been widely reported that the five-year
survival rate is about 99% for stage 0 melanoma (in situ),
when the tumor is confined to the epidermis, while it is only
7% � 20% for stage 4 melanoma, when the cancer has spread
to other parts of the body.
Visual inspection by a specialist is the most common

diagnostic procedure. However, it is difficult to distinguish the
melanoma from other skin lesions. Other diagnosis procedures
include the ABCDE method, the Menzies scale, the 7-point
checklist, and different types of biopsy [8], [22]. These proce-
dures rely heavily on human intervention, leading to diagnostic
results that can vary significantly even among very experienced
dermatologists. Image-based methods are gaining popularity in
the field in recent years. The most classical one is dermoscopy.
where images are digitally captured in an process called digital
epiluminescence dermoscopy. Dermoscopy is more precise
than naked eye examination in about 20% for detection of
melanomas and about 10% for percentage of non-melanomas
correctly diagnosed as benign [3]. Unfortunately, it is also
prone to errors due to the difficulty and subjectivity of visual
interpretation of images.
The standard approach in automatic medical image pro-

cessing of skin lesions consists of three stages: 1) image
segmentation; 2) feature extraction and feature selection; and
3) lesion classification. Image segmentation aims to identify
the area of the skin lesion and separate it from the background.
This stage is very important, as it represents the starting point
for the whole pipeline and it affects the accuracy of the next
stages. Popular segmentation approaches include thresholding
methods [4], [16], edge-based methods [2], clustering methods
[25], [29], level set methods [21] and active contours [20],
among others.
An important task in segmentation is the border detection

of the skin lesion from the image. This is a valuable source
of information for accurate diagnosis, as several clinical fea-
tures can be computed directly from the detected border (for
instance, irregular borders are a good indicator of possible
malignant tumors). Until recently, the border detection was
handled manually by dermatologists by clicking with the
mouse on different parts of the image on a computer screen to
obtain an initial collection of feature points joined with linear
segments. However, the resulting polyline is not well suited for
this process, as the border of skin lesions rarely happens to be
piecewise linear, but smooth. Given the input data, parametric
approximation schemes are clearly better suited for this task.
This is the main motivation of the present work.

A previous paper by some of the authors presented a swarm
intelligence approach for dealing with this problem using
Bézier curves [15]. The method works well and provides
satisfactory results in many cases. However, it was pointed
out that the accuracy and applicability of the process can
be improved by using more powerful and sophisticated basis
functions. In this work, we follow this approach by replacing
the polynomial basis functions by rational ones. In this case,
we have extra parameters called weights, which allows the
user to modify the shape of the curve locally by simply
changing the weight of one or several poles of the curve
without moving the location of the poles at all. This is an
interesting and valuable feature, as it makes it possible to
reduce the degree of the curve significantly without penalizing
the approximation accuracy. The resulting parametric curve is
no longer a polynomial but a rational function.
Unfortunately, using rational curves is by far much more

difficult than the polynomial case, because some extra vari-
ables (the weights) have also to be computed. In addition, the
different variables (data parameters, poles, and weights) are
strongly related to each other in a highly nonlinear way [5].
As a result, we have to solve a difficult continuous multivariate
nonlinear optimization problem that cannot be properly solved
in the general case through traditional mathematical optimiza-
tion techniques. Our method to solve this problem is based
on a nature-inspired metaheuristics called firefly algorithm,
introduced by Prof. X.S. Yang to solve difficult optimization
problems [26]. To the best of our knowledge, this method has
never been used so far for border reconstruction of medical
images with rational curves.
The structure of this paper is as follows: the problem to be

solved is discussed in detail in Section III. The fundamentals
and main features of the firefly algorithm are discussed in
Section III. The proposed method to solve the border recon-
struction problem is presented in Section IV. To illustrate
the performance of our method, it is applied in Section V
to perform border reconstruction of two medical images. The
paper closes in Section VI with the main conclusions of this
contribution and our plans for future work in the field.

II. THE PROBLEM
The problem to be solved in this paper can be formulated as

follows: suppose that we are provided with a sorted collection
of feature points t∆iui�1,...,κ in R

2 obtained from medical
images by a trained dermatologist. Such feature points corre-
spond to the boundary curve between a skin lesion or tumor
and the skin background. Note that in this paper vectors are
denoted in bold. Since the feature points are collected in a
manual way, they are subjected to measurement noise, irregu-
lar sampling, and other artifacts. Therefore, an approximation
scheme based on a smooth mathematical curve is generally
more suitable for border detection than the linear interpolation
given by a polyline connecting the feature points through
simple straight lines. Consequently, our goal is to compute
a parametric curve Φpτq performing discrete approximation
of the feature points t∆iui in the least-squares sense.
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Several families of approximation functions can be used
for this task. Among them, the free-form parametric curves
(such as Bézier and B-spline curves) are popular choices,
because of their flexibility and wide applicability in academia
and industrial settings [5], [24]. Some previous papers have
addressed the case of Bézier curves using different swarm
intelligence methods, such as the bat algorithm [14] and the
cuckoo search algorithm [15]. However, in all these cases, only
the polynomial case has been considered, while surprisingly
the (more powerful) rational case has been ignored so far. This
paper aims at filling this gap. In particular, in this work we
focus on the case of rational Bézier curves [7], [24].
Mathematically, a free-form rational Bézier curve Φpτq of

degree η is defined as:

Φpτq � η̧

j�0

ωjΛjφ
η
j pτq

η̧

j�0

ωjφ
η
j pτq (1)

where Λj are vector coefficients called the poles, ωj are their
scalar weights, φ

η
j pτq are the Bernstein polynomials of index

j and degree η, given by:

φ
η
j pτq � �η

j



τ j p1� τqη�j

with
�

η

j


 � η!

j!pη � jq! , and τ is the curve parameter, defined

on the finite interval r0, 1s. By convention, 0! � 1.
Now, our optimization problem consists of computing all

parameters (i.e. poles Λj , weights ωj , and parameters τi

associated with the ∆i, for i � 1, . . . , κ, j � 0, . . . , η) of the
rational Bézier curve Φpτq approximating the feature points
better in the least-squares sense. This means minimizing the
least-squares error, Υ, defined as the sum of squares of the
residuals:

Υ � minimizetτiuitΛjujtωjuj

������� κ̧

i�1

������∆i � η̧

j�0

ωjΛjφ
η
j pτiq

η̧

j�0

ωjφ
η
j pτiq �ÆÆÆÆ2

������� . (2)

Now, taking:

ϕ
η
j pτq � ωjφ

η
j pτq

η̧

k�0

ωkφ
η
kpτq (3)

Eq. (2) becomes:

Υ � minimizetτiuitΛjujtωjuj

�� κ̧

i�1

�
∆i � η̧

j�0

Λjϕ
η
j pτq�2

�� , (4)

which can be rewritten in matrix form as:

Ω.Λ � Ξ (5)

called the normal equation, where:

Ω � rΩi,js � ��� κ̧

k�1

ϕ
η
i pτkqϕη

j pτkq�
i,j

��,

Ξ � rΞjs � ��� κ̧

k�1

∆kϕ
η
j pτkq�

j

��,

Λ � pΛ0, . . . ,ΛηqT , for i, j � 0, . . . , η, and p.qT means the
transposition of a vector or a matrix. In general, κ ¡¡ η

meaning that the system (5) is over-determined. If values are
assigned to the τi, our problem can be solved as a clas-
sical linear least-squares minimization, with the coefficientstΛiui�0,...,η as unknowns. This problem can readily be solved
by standard numerical techniques. On the contrary, if the
values of τi are treated as unknowns, the problem becomes
much more difficult. Indeed, since the polynomial blending
functions φ

η
j pτq are nonlinear in τ and so are the rational

blending functions ϕ
η
j pτq, the least-squares minimization of

the errors is a nonlinear continuous optimization problem.
Note also that in many practical cases the number of data
points can be extremely large, meaning that we have to
deal with a large number of unknowns. In other words, we
are dealing with a high-dimensional problem. It is also a
multimodal problem, since there might be more than one set
of parameter values leading to the optimal solution.
To summarize, the interplay among all sets of unknowns

(data parameters, poles, and weights) leads to a very difficult
over-determined, multimodal, multivariate, continuous, non-
linear optimization problem. In this work, we are interested
to solve this general problem. Therefore, instead of making
assumptions about the values of the free parameters, we are
aimed at computing all of them in an integrated way.
Unfortunately, it has been proved that the classical mathe-

matical optimization methods are not able to solve this difficult
problem. As a consequence, there has been a great interest to
explore other alternatives, including artificial intelligence tech-
niques. Among them, the evolutionary computation methods
of biological inspiration are very powerful tools for continuous
optimization [1], [6], [28], including medical applications [18].
For instance, as discussed above, swarm intelligence methods
have already been applied to quite close (but simpler) prob-
lems, such as the border detection problem with polynomial
curves [12], [14], [15] and more complicated problems [9]–
[11], [13], [17]. Encouraged by these positive results, we
follow a similar strategy here for this (more difficult) rational
problem. In particular, we address our optimization problem by
using a powerful bio-inspired method called firefly algorithm
and described in next section.

III. THE FIREFLY ALGORITHM

The firefly algorithm (FFA) is a nature-inspired metaheuris-
tic algorithm introduced in 2008 to solve optimization prob-
lems [26], [27]. The algorithm is based on the social flashing
behavior of fireflies in nature. The key ingredients of the
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method are the variation of light intensity and formulation of
attractiveness. In general, the attractiveness of an individual is
assumed to be proportional to their brightness, associated with
the objective function of the given optimization problem.

A. Basic rules
In the firefly algorithm, there are three particular idealized

rules, which are based on some of the major flashing charac-
teristics of real fireflies [26]. They are:
1) all fireflies are unisex, so that one firefly will be attracted

to other fireflies regardless of their sex;
2) The degree of attractiveness of a firefly is proportional to

its brightness, which decreases as the distance from the
other firefly increases due to the fact that the air absorbs
light. For any two flashing fireflies, the less brighter one
will move towards the brighter one. If there is not a
brighter or more attractive firefly than a particular one,
it will then move randomly;

3) The brightness or light intensity of a firefly is deter-
mined by the value of the objective function of a given
problem. For instance, for maximization problems, the
light intensity can simply be proportional to the value
of the objective function.

The distance between any two fireflies i and j, at positions
si and sj at time instance t, respectively, can be defined as a
Cartesian or Euclidean distance as follows:

rt
ij � ||st

i � s
t
j || �gffe ḑ

k�1

pst
i,k � st

j,kq2 (6)

where st
i,k is the k-th component of the spatial coordinate s

t
i

of the i-th firefly and d is the number of dimensions.
In the firefly algorithm, as attractiveness function of a firefly

j one should select any monotonically decreasing function of
the distance to the chosen firefly, e.g., the exponential function:

β � β0e
�γprt

ijq2 (7)

where rt
ij is the distance defined as in Eq. (6), β0 is the initial

attractiveness at t � 0, and γ is an absorption coefficient at
the source that controls the decrease of the light intensity.
The movement of a firefly i at time t� 1 which is attracted

by a more attractive (i.e., brighter) firefly j is governed by the
following evolution equation:

s
t�1

i � s
t
i � β0e

�γprt
ijq2pst

j � s
t
iq � α

�
σ � 1

2



(8)

where the first term on the right-hand side is the current
position of the firefly, the second term is used for considering
the attractiveness of the firefly to light intensity seen by
adjacent fireflies, and the third term is used for the random
movement of a firefly in case there are not any brighter ones.
The coefficient α is a randomization parameter determined by
the problem of interest, while σ is a random number uniformly
distributed on the interval r0, 1s.
From Eq. (8), the firefly algorithm is driven by three

parameters: the randomization parameter α, the attractiveness

Require: (Initial Parameters)
Population size: NP

Maximum number of iterations: Tmax

Randomization parameter: α0

Initial attractiveness: β0 // for eq. (7)
Absorption coefficient: γ

Dimension of the problem: d

Fitness function: ϕpsq
1: t � 0

2: Initialize the firefly population P0 � ts0

i ui�1,...,NP

3: while t   Tmax do
4: Generate αt � AlphaNew()
5: Evaluate s

t
i � EvaluateFFApPt, ϕq

6: Sort the s
t
i according to ϕ

7: s
� � BestpPtq

8: Compute s
t�1 // eqs. (6)-(8)

9: t � t� 1

10: end while
11: return s

�
Algorithm 1: Firefly algorithm pseudocode

β and the absorption coefficient γ. Depending on their values,
the algorithm exhibits two asymptotic behaviors, for γ Ñ 0

and γ Ñ 8. In the former case γ Ñ 0, we have β � β0

according to Eq. (7), meaning that the attractiveness is constant
throughout the search space. This behavior is a special case of
the particle swarm optimization (PSO) method, in particular,
the accelerated particle swarm optimization if we replace sj

by s
�. In the later case γ Ñ 8, the second term in Eq.

(8) vanishes and the algorithm becomes essentially a random
walk, kind of a parallel version of simulated annealing (SA).
This behavior also happens for β0 � 0 regardless of the value
of γ. Furthermore, if we set γ � 0 and β0 � 1, the algorithm
becomes a simplified version of differential evolution (DE)
without mutation with the crossover rate controlled by β0.
This means that the firefly algorithm includes PSO, SA, and
DE as particular cases, and therefore, have all the advantages
of these three algorithms. This is one of the main reasons to
explain why we choose the firefly algorithm in this paper.

B. The pseudocode
Algorithm 1 shows the pseudocode of the original firefly

algorithm. The firefly algorithm considers an initial population
P0 of NP individuals ts0

i ui�1,...,NP initialized randomly. This
population size is maintained along the iterations. The firefly
search is performed within the while loop (lines 3-10 in
Algorithm I), where the following steps are carried out: firstly,
the function AlphaNew() modifies the value of parameter α

(line 4), although this step is optional in the algorithm, and a
constant value can be considered instead. Then, the function
EvaluateFFA evaluates the quality of the solution (line 5). All
solutions at time t are sorted according to the fitness function
(line 6) and the best value is selected and assigned to the global
best s

� (line 7). The new positions are computed according
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to the Eqs. (6)-(8), where the fireflies move towards the more
attractive individuals of the swarm (line 8). The process is
repeated iteratively until the maximum number of iterations is
reached. Finally, the best individual at final iteration is selected
as the solution of the optimization problem (line 11).

IV. PROPOSED METHODOLOGY

A. Our Method
Our method consists of applying the firefly algorithm de-

scribed in previous section to the border detection prob-
lem described in Sect. II. Solving this optimization problem
requires to define some important issues. Firstly, we need
an adequate representation of the problem. Each individual
(firefly), representing a potential solution, corresponds to a
vector of the form: Sg

i � tPg
i ,W

g
i u, (i � 1, . . . , NP ) with

P
g
i � tτg

i,1, . . . , τ
g
i,κu P r0, 1sκ, where the tτg

i,juj�1,...,κ are
strictly increasing parameters, and W

g
i � tωg

i,0, . . . , ω
g
i,ηu Prωmin, ωmaxsη�1, and the superscript g denotes the gener-

ation index. The parametric vectors P0

i , W0

i are initialized
with random values; then, the elements in P0

i are sorted in
increasing order. Secondly, we consider the fitness function
described by the error functional in (2). We remark however,
that this fitting error does not take into account the number of
data points. To overcome this drawback, we also compute the
RMSE (root-mean squared error), given by:

RMSE �Υ

κ
(9)

Application of our method according to Algorithm 1 yields
new fireflies at each generation, representing the new solutions
of our optimization problem. The procedure computes the final
values of feature point parameters and weights. Then, inserting
them into Eq. (3), we apply least-squares minimization to
compute the values of tΛiui�0,...,η according to Eq. (4).
The process is performed iteratively for a given number of
iterations Tmax, until the convergence of the minimization of
the error is eventually achieved. The firefly with the best global
value for our fitness function is taken as the final solution of
our problem.

B. Parameter Tuning
It is well-known that metaheuristic techniques require

proper parameter tuning for good performance [6]. Unfortu-
nately, the choice of suitable parameter values is also strongly
problem-dependent. Consequently, our choice is mostly based
on a large collection of empirical results. These parameters
are: the population size, NP : this value is set up to NP � 100

fireflies in all examples of this paper. We also tried larger
populations of fireflies but found that our results do not
change significantly. Since larger populations mean larger
computation times with no remarkable improvement, we
found this value to be appropriate in our simulations. the number of iterations, Tmax. In our simulations, we
found that Tmax � 40, 000 is more than enough enough
to reach convergence for our examples.

 the initial attractiveness, β0: some theoretical results sug-
gest that β0 � 1 is a good choice for many optimization
problems. We also take this values in this paper, with
good results, as it will be discussed in next section. the absorption coefficient, γ: it is set up to γ � 0.5 in
this paper, as this value provides a quick convergence of
the algorithm to the optimal solution. the potential coefficient, µ: although any positive value
can be used for this parameter, the light intensity varies
according to the inverse square law. Therefore, we choose
µ � 2 accordingly. the randomization parameter, α. This parameter varies
on the interval r0, 1s, and allow us to determine the
degree of randomization introduced in the algorithm.
This stochastic component is necessary in order to allow
new solutions appear and avoid to getting stuck in a
local minimum. However, larger values introduces large
perturbations on the evolution of the firefly and, therefore,
delay convergence to the global optima. Consequently, it
is advisable to select values in between. In this work, we
take α � 0.5.

After the selection of those parameters, the firefly algorithm
is executed for the prescribed number of iterations. The firefly
with the best (i.e., minimum) fitness value is selected as the
best solution to the problem.

C. Implementation Details
Regarding the implementation, our computational work has

been performed on a personal PC with a 3.4 GHz Intel Core
i7 processor and 16 GB of RAM. The source code has been
implemented by the authors in the programming language of
the popular numerical program Matlab, version 2018b.

V. EXPERIMENTAL RESULTS

A. Benchmark and Results
Our method has been applied to several examples of skin le-

sion images obtained from a digital image repository publicly
available for research purposes. In this paper we analyze only
two of them (labelled as Example I and Example II) because of
limitations of space. They correspond to two medical images
of melanomas, displayed in the (top-left) pictures of Figs.
1 and 2, respectively. From the images, a collection of 75

and 127 feature points respectively have been selected by a
specialist and joined with a polyline. The medical images
along with the feature points connected with the polylines
are displayed in the (top-right) pictures of Figs. 1 and 2. We
applied our method to these examples by using rational Bézier
curves of different degrees, and selecting those minimizing the
least-squares functional in Eq. (2). The best fitting rational
Bézier curves obtained with our method are displayed as blue
solid lines in the (bottom-left) pictures of Figs. 1 and 2,
respectively. The pictures also display the original and the
reconstructed feature points as empty red circles and blue stars,
respectively. Finally, the convergence diagram of the RMSE
given by Eq. (9) over the generations is shown in the (bottom-
right) pictures of both figures.
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Fig. 1. Example I: (top-left) original melanoma image; (top-right) melanoma image and polyline connecting the feature points; (bottom-left) original and
reconstructed feature points; (bottom-right) convergence diagram.

From the pictures we can see that the method yields a
good fitting of the feature points for both examples. This
fact is particularly evident in the bottom-left pictures, where
the good matching between the original and the reconstructed
feature points for both examples is clearly visible. Our vi-
sual observations of this good fitting are confirmed by our
numerical results, where we obtain an error value of 7.0324

for the first example and 16.2938 for the second one. We also
noticed that the approximation is not optimal yet, as expected

from an approximation method. In particular, the original
data are visually more oscillating than the reconstructed curve
in both cases. We remark, however, that a perfect matching
(i.e. interpolation) between the original and the reconstructed
features points is not actually required for clinical diagnosis
at this stage.
B. Comparative Analysis
It is always convenient to perform a comparative analysis of

our method with other approaches described in the literature.
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Fig. 2. Example II: (top-left) original melanoma image; (top-right) melanoma image and polyline connecting the feature points; (bottom-left) original and
reconstructed feature points; (bottom-right) convergence diagram..

Unfortunately, no previous references addressed this problem
with rational curves, so our analysis is based on the compari-
son with the polynomial case with the firefly algorithm. Table
I shows the values of the RMSE obtained with the polynomial
approach and our rational approach for the two examples in
this paper. For fair comparison, both approaches are addressed
with the firefly algorithm for the same parameter configuration,
including the number of iterations and the degree of the curve.
As shown in the table, the rational approach outperforms the
polynomial one for the two examples in this paper. Although

the benchmark used here is too small to draw firm conclusions
on a general basis, these results have also been validated by
other examples from the same digital repository not discussed
here because of limitations of space.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we address the problem of obtaining the border
curve of melanomas and other skin lesions from medical im-
ages through rational Bézier curves. This is an important task
for image segmentation with relevant applications in medical
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TABLE I
COMPARATIVE RESULTS OF THE RMSE WITH THE POLYNOMIAL

APPROACH AND THE RATIONAL APPROACH (OUR METHOD) FOR THE TWO
EXAMPLES IN THIS PAPER.

Example I Example II
Polynomial approach: 10.6212 19.5744
Rational approach: 7.0324 16.2938

diagnosis of skin diseases. To the best of our knowledge, this is
the first work in the field considering rational functions instead
of the classical (and much simpler) polynomial functions. Our
method is based on the firefly algorithm, a popular bio-inspired
swarm intelligence approach for optimization. Experimental
results on two examples of medical images of melanomas
obtained from a public medical imaging repository show that
the proposed method performs well, yielding approximating
shapes with an acceptable accuracy from the practical ap-
plications. Our results also show that this rational approach
outperforms the polynomial approach and can be applied to
medical images without further pre/post-processing.
In spite of these good results, the method has also some

limitations. For instance, the method requires many iterations
to converge, leading to large CPU times. From the convergence
diagrams, we can see that the method is stuck in local minima
for long periods of time without any improvement. We think
the coupling of this method with a local search procedure
could be helpful to avoid stagnation, thus reducing the com-
putation times significantly. In addition, we are interested to
expand our benchmark for a more detailed analysis of our
method. Our future work also includes carrying out a larger
and deeper comparative work involving other evolutionary
computation methods in the pool of methods for comparison.
Application of this technique for other problems in medical
imaging is also part of our plans for future work in the field.
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