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ABSTRACT

In this paper we propose partially specified dialogue sgiasefor
dialogue strategy optimization, where part of the stratisggpec-
ified deterministically and the rest optimized with Reifement
Learning (RL). To do this we apply RL with Hierarchical Abmtt
Machines (HAMs). We also propose to build simulated usefs us
ing HAMSs, incorporating a combination of hierarchical deteis-
tic and probabilistic behaviour. We performed experimersinig a
single-goal flight booking dialogue system, and compare diee
logue strategies (deterministic and optimized) usingetiypes of
simulated user (novice, experienced and expert). Ourteeshbw
that HAMs are promising for both dialogue optimization anms
lation, and provide evidence that indeed partially spetifimlogue
strategies can outperform deterministic ones (on averagéewer
system turns) with faster learning than the traditional Rinfework.
Index Terms: reinforcement learning, spoken dialogue systems.

1. INTRODUCTION

A dialogue strategy is a key component for a spoken dialogae s
tem because it governs the control flow of the conversatideally,
dialogue strategies should lead dialogue systems towaodessful,
efficient and natural conversations. However, designirah slia-
logue strategies is a challenging task without a simplet&siuOn
the one hand, dialogue strategies must collaborate witteifagt
components such as the automatic speech recognizer (ASRHO
other, dialogue strategies must consider all possiblatsitos in the
conversation taking into account the ASR performance, tfpeser,
database content, etc. Furthermore, whilst designinggiie strate-
gies for system-initiative and small-scale dialogue systenay be
straightforward, the opposite occurs for mixed-initiatand larger-
scale dialogue systems. This means that as the dialogudextyp
increases, dialogue strategies designed by humans arenooieto
errors, labour-intensive and non-portable. These fact$vate the
topic of semi-automatic dialogue strategy design.

Previous research efforts have proposed several methods fo

for mixed-initiative dialogue systems; however, it is cartgiion-
ally expensive since it requires many dialogues to learn-apimal
dialogue strategies. Potential solutions for this probiectude re-
duced search spaces (before learning) [2,3], functioncqupiation
[4] and dialogue simulation [5,6]. However, there is a lathk prin-
cipled methodology for reducing search spaces to manageatas.

In this paper we propose to design dialogue strategies wsing
combination of Finite State Machines (FSMs) and Reinformeim
Learning (RL) in the context of Markov Decision Processe®@s).
The basic idea is to design dialogue strategies using FShsi-s
fying obvious actions deterministically and specifyindfidult ac-
tions stochastically; the latter are the ones to be optichiEer such
purpose we apply RL with Hierarchical Abstract Machines (W
[7,8]. This method offers the following benefits among othea)
partially specified dialogue strategies, because thermsydéveloper
decides what to hand-craft and what to optimize; b) fastamnle
ing, because the RL agent uses reduced search spaces die to th
prior knowledge incorporated in the HAMSs; c¢) potentiallygroved
performance, because RL optimizes parts of the dialogagesly;
and d) knowledge transfer, because the HAMs may be reushble.
addition, we propose to build simulated user models using/isA
incorporating hierarchical deterministic and probabi®ehaviour.

In this paper we assume the reader is familiar with the funda-
mentals of FSMs, MDPs and RL.

2. REINFORCEMENT LEARNING WITH
HIERARCHICAL ABSTRACT MACHINES

A Hierarchical Abstract Machine (HAM) is a program that con-
strains the actions that an RL agent can take in each sta&g [7,
HAMs are similar to non-deterministic FSMs whose transisionay
invoke lower-level machines. When a hierarchical mactsrealled,
control is transferred to the start state, where machiriestae vis-
ited until reaching a stop state, which returns control ® ¢hller,
and then determines the next machine state, and so on watfing
the stop state of the root machine.

alogue strategy design. The most basic methods are basee-on d A HAM is a collection of three-tupledl; = (11, 1,68), wherey

terministic finite state machines, where the states reptesges-
tions and the transitions control the flow of the conversafit].

These methods have been successful for system-initiaiieguie
systems, but are impractical for mixed-initiative dialegsystems.
A more recent approach applies the reinforcement learmangé-
work [2], in which an agent learns the best actions for evéty
uation in the conversation. This approach is a promisingtimi
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is a finite set of machine statelis the initial state, and is the tran-
sition function determining the next state using eitheeduatnistic

or stochastic transitions. The main types of machine statastart
(execute the current maching)tion (execute an actionkall (ex-
ecute another maching)hoice(select the next machine state), and
stop (halt execution and return control). A machifg is abstract
(or partially specified) if it specifies non-deterministiwoice states.

For any MDPM and any HAMH, there exists an induced MDP

M’ = H o M [7]. The solution defines an optimal policy that max-
imizes the expected total reward by an RL agent execuiirig M.
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Fig. 1. Hierarchical deterministic and abstract machines for twengric dialogue strategies: Deterministic (left) and @mtied (right).
Notation: Ellipses=call states, rectangles=choice sgtéghtly shaded circles=action states.

A brief description of the induced MDR{' =< S’ A" T' R’ >
is as follows: a) the set of state¥ is the cross-produttbetween
the choice states dff and the states af/, b) the set of actionsl’
for a given state corresponds to the action states (or caéistthat
change only the machine component, c) the transition fand’
corresponds to executing the transition functidhand in paral-
lel, and d) the reward functio®’ is the same a# for single-step
actions, otherwise the reward is zero.

The aim of the induced MDP is to work with a reduced search

space using single-step and multi-step (or high-leveljoast the
latter correspond to call states. As a consequence, theedddDP
is in fact a Semi-Markov Decision Process (SMDP), becauserec
can take more that one time-step to complete.

A learning algorithm for the induced SMDP is a variation of Q-
learning called SMDP Q-learniAg This algorithm can be applied
to the HAMs framework using an extended Q-tab)€[s, m],a),
which is indexed by an environment statemachine staten, and
actiona taken at a choice state. In this way, the algorithm applies
the following update rule from choice state to choice state:

Q([Svm]va) — Q([Svm]va)+
afr +77 max Q([s',m'],a")] = Q([s,m],a)],

wherer = ri 1 +yrer2 + ... 97 tree ., andr is the number of
time steps elapsed between statnd states’.

3. DIALOGUE STRATEGY OPTIMIZATION

3.1. Designing Partially Specified Dialogue Strategies

The idea of partially specified dialogue strategies semvesmpor-
tant purposes. First, to give freedom to the system developehat
to specify manually and what to optimize; and second, to cedu
search spaces due to the fact that they grow exponentiaflg tise

1parr and Russell [7] propose a method to reduce large induvic®ls,
but we used the following conditions: a) parent transitiohghoice states
are taken into account, b) environment states that did nethvamy choice
state are removed, and c) states with an empty set of actierads® removed.

2SMDP Q-Learning converges under similar conditions as @ehieg.

Table 1. State-action space representatiof.
STATE ACTIONS
(dialogue history , slot in focus

g0.ugl.yg2.4yg3.uqg4.u,qo req,apo,sec,sic,mec,mic,a¢c
g0.I|91.ug2.ug3.4yg4.u,ql req,apo,sec,sic,mec,mic,a¢c
g0.mqgl.ug2.ug3.yg4.u,q2 | req,apo,sec,sic,mec,mic,acc
g0.hgl.yg2.4g3.uqg4.u,q3 req,apo,sec,sic,mec,mic,a¢c

g

90.dq1.4g2.dg3.dq4.c,q4

standard RL framework. We propose the following methodplimy
design optimized dialogue strategies: 1) Desigh an MDP lopsh
ing an appropriate representation of states, actions avardeunc-
tion; 2) design a dialogue strategy using HAMs, 3) genefadrt-
duced (S)MDPM’ = H o M, 4) learn a dialogue strategy usifg’

and simulated usetsand 5) test the learnt dialogue strategy.

As an illustrative case study, consider a single-goal flgduk-
ing dialogue system with sIdt€) = {0, ¢1, ¢2, ¢3, ¢4}, state vari-
able describing the slot stafu¥y = {u,,m,h,c} and action®
A = {regq, apo, sec, sic, mec, mic, acc}. Assume that the environ-
ment states are compounded by dialogue history and slotustg,
where the former has combinations@fand V" separated with the
character |” (see table 1). The size of this state space is computed as
IS| = [V|'9!l x |Q| plus the terminal state. Thus, the size of the full
state-action space correspond$dox A| = 109376 state-actions.

The rest of this section focuses on step two of our methogplog
which describes the design of two dialogue strategies uditigls,

3Learning dialogue strategies with real users is possitiénpractical.

4Slots: gO=departure city, gl=destination city, g2=dapartdate,
g3=departure time, g4=flight offer. The last slot within aldgue goal is
referred to as the terminal slot, the others are non-teimina

Svalues of the state variable slot status: u=unknown, |=lonfidence,
m=medium confidence, h=high confidence, c=confirmed.

6Actions: reg=request, apo=apology, sec=single explicitficmation,
sic=single implicit confirmation (with request), mec=nipii explicit con-
firmation, mic=multiple implicit confirmation (with requgsacc=accept slot
in focus (and move to the next unfilled slot, from left to rigly=goal.
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Fig. 2. A simulated user model using hierarchical abstract machinéhere sequences of action states correspond to usemsspo

illustrated in figure 1. The first strategy uses a determmisSAM,

handcrafted, this is useful in the absence of training dgtaodels

labelled as HO. Notice that this machine has only deterministic tran-can be fully learnt from data, this is useful in the preserfceain-

sitions, meaning that no optimization is required at allt iBwe per-
form the cross product of this machine and the state spaa# cbse
study, the size of the induced state-action spatg’is A’| = 2261,

ing data; ¢) models can be partially specified, this is udefghuse
the combination of hierarchical deterministic and probstic be-
haviour may yield more coherent user responses; and d) HA8&db

representing onl2.06% of the full search space. However, there user models assume that they know the current state anch aftio

may be better dialogue strategies than deterministic arebrein-
forcement learning with HAMs aim to find those ones.

The second strategy for our case study uses a HAM with deter-

ministic and stochastic transitions, labelled as machiheltihmeans
that whilst deterministic transitions of choice statesregpond to
one action per environment state, stochastic transitiooduyee a re-
duced action set that will be optimized using RL. For instartbe
action set for environment state= ¢0.m|ql.u|q2.u|q3.u|q4.u, ¢O

is a = {sec, apo, acc}, because the slot in focup is filled and
there is a single slot to confirm, corresponding to the ttarscon-
dition “s=ntfsif+sstc”. The cross product of the machine &id
the state space of our case study yields a state-action spatze

|S" x A’| = 5261, representing only.81% of the full search space.

Obviously, the quality of the learnt dialogue strategy d#ébend on
the constraints specified in the HAM, but there are benefithat
same time: a) tailored dialogue optimization, b) fasterraw, c)
reduced computational demands, and d) reusable HAMs.

3.2. User Simulation Using HAMs

Most of the previous work in user simulation for optimizingldgue
strategies uses statistical techniques [5]. Such methedsszful
because they explore a vast amount of user behaviour due tarth
domness in the models, but they can yield incoherent usponsss.
In this paper we propose hierarchical behaviour modellorguer

the environment, which may yield more consistent responfbs
makes HAM-based user models different from previous aptres
Figure 2 illustrates a hand-crafted HAM-based simulategt us
model using intentiorfs suitable to interact with the spoken dia-
logue system described in the previous section. This modaides
three types of user: novice, experienced and expert. Thaugga
of the HAM H2 generates a user response given by the sequénce o
visited action statés As an example, consider the environment state
s = q0.ul|ql.u|q2.u|g3.ulg4.u, q0, actiona = req, and type of user
um = 1. The machine H2 invokes the child machine H20 (because
the action is a request), then it invokes the machine H200a{lee
the user type is novice), then it chooses between an in-ubagb
or out-of-vocabulary response, the former takes into autcthe slot
in focus to observe action states, and so on until the stop stdhe
root machine is found. Notice that machines H200-H202 (cotip
illustrated) have different probabilities for each typeuser. These
machines model user behaviour according to the followirsyiap-
tions: a) novice users behave with more confusion and |ésstive,
b) expert users behave with less confusion and more inigiat) ex-
perienced users behave between novice and experts, anditiygo
confirmations are more likely to higher confidence levels.

The justification for building a hand-crafted simulatednusedel
is due to the lack of richly annotated dialogue corpora faning
models. For instance, the DARPA Communicator corpora doés n
include annotations for ASR confidence levels. Nevertlseldse

simulation, and use HAMSs such a purpose. HAM-based user modRroposed user model utilizes empirical knowledge to mouteple

els are attractive for the following reasons: a) models aafubly-

7Abbreviations: s=state, a=action, ntus=non-terminal lledfi slots,
ntfs=non-terminal filled slots, ntcs=non-terminal confarslots, ntsif=non-
terminal slot in focus, tsif=terminal slot in focus, usif¥illed slot in fo-
cus, fsif=filled slot in focus, csif=confirmed slot in focusstc=none slots
to confirm, sstc=single slot to confirm, mstc=multiple slods confirm,
cl=confidence level, ntusif/ntfsif=non-terminal unfilléitled slot in focus.

reasonable behaviour of real users. Furthermore, the useocd
complex hierarchies could describe more complex behavemal
they may be reusable and/or task independent, facilitatiagpti-
mization of dialogue strategies in new domains.

8Level of communication above words, analogous to dialogie a
9Intentions: yes, no, cl=departure city, c2=destinatioyy da=departure
date, ti=departure time, oov=out-of-vocabulary respprsaeprovide slots.
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4. EXPERIMENTS AND RESULTS

Novice Experienced Expert ALL

4.1. Experimental Setup Test User Model

Our experiments used a single-goal flight booking spokelogiiee
system, as described in section 3.1. The aim was to invéstiba
performance of deterministic and optimized dialogue stjigs us-

Fig. 4. Test results of dialogue strategies on different user nsdel

ing different types of user, by applying the proposed apgirad par- 5. CONCLUSIONS AND FUTURE WORK
tially specified dialogue strategies. In our experimenty time op-
timized dialogue strategy required learning. These erpants uti-  |n this paper we proposed partially specified dialogue egias for

lized a simulated environment including a simulated usedehand  dialogue strategy optimization. For this purpose we usddfRee-
an ASR confidence level model. Whilst the simulated user mod%ent Learning (RL) with Hierarchical Abstract Machines (MA)
was described in section 3.2, the ASR confidence level masisl U \we also proposed to build simulated user models using HAMS. O
the HAM illustrated in figure 3. This HAM observes confidence findings are as follows: a) HAMSs are useful to reduce Searab@
levels given the type of user, and its stochastic transitapply the  for dialogue optimization, b) HAMs are useful for modellinger
following assumption: ASR performance is better (i.e.heigcon-  pehaviour in a hierarchical way, c) user simulation muse fako ac-
fidence |eVe|S) for expert users than for novice users. Timasin- count different user types, and d) partia”y Specified (gamstrate_
duced MDP was generated as follows: a) states and actions-as dies are promising due to the fact that they can outperfortarde
scribed in sections 2 and 3.1, but we only used single stépract  ministic ones (on average 4.7 fewer system turns using theized
and leave mUlti'Step actions as future Work; b) the tramsifinction Strategy with all users) with fewer Computationai demahds stan-
used deterministic transitions, based on the current @mvient-  gard RL (less thai% of the full search space in our case study).

machine state, action, user response and confidence lewtic)a Recommended future work is as follows: a) more complex and
the reward function evaluated dialogue length, consisiing100if  |arger-scale spoken dialogue systems, b) hierarchicalargement
all slots were confirmed arfilotherwise. learning of dialogue strategies using SMDPs and partiaiiseov-

Our experiments used the following learning setup: albatit able SMDPs, c) comparison with function approximation rodth
= SMDP Q-Learning, equivalent to Q-Learning when using @ingl e) evaluation of task-(in)dependent/hand-crafted/kedmM-based
time steps; step size = 100/(100 + t), with ¢ elapsed time-steps; user models, and f) experiments with real users.
discount factory = 0.9; selection strategy= e-greedy, with20%
exploration; initial Q-values 0; and learning episodes10°. 6. REFERENCES
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