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ABSTRACT degree of interaction by participants who are trying to get the floor”.

Indexing, retrieval, and summarization in recordings of meeting{}lthoth it was shown in [4] thaERSION2 hotspots, whose

have, to date, focused largely on the propositional content of whal m_poral e_xtent Isa functlon_of involved utterar_lce _duratlon, are as-
gouated with the degree of simultaneous vocalization from multiple

participants say. Although objectively relevant, such content ma; . .
not be the sole or even the main aim of potential system users. | articipants (overlap), no evidence was presented to show that the

stead, users may be interested in information bearing on conversgpserved @ﬁeren;es are dlscrlmlnat!ve. )
tion flow. We explore the automatic detection of one example of such, _ OUr objective ;1” the current workis to present a bﬁsel'ne hotspot
information, namely that of hotspots defined in terms of participanl®t€ctor. Using the extensive annotationveiRSION2 hotspot in-

involvement. Our proposed system relies exclusively on low-level’0lveément (described in Section 2), but with the less subjective

vocal activity features, and yields a classification accuracy of 84%€mporal support ofVERSIONL hotspots, we propose a system

representing a 39% reduction of error relative to a baseline whicHVhiCh classifies 60-second inter\{a!s of.meetings as either containing
selects the majority class. involved speechX) or not containing involved speech-T), and

) ) ~which relies only on very low-level vocal interaction features as
Index Terms— Speech processing, Meetings, Pattern classifimight be available from a vocal activity detector. These features are

cation, Information retrieval. described in Section 3, and the experiments presented in Sections 4
and 5 demonstrate that laughter is almost solely responsible for
1. INTRODUCTION our reduction in error of 39.2% relative to a majority class base-

line. Section 6 compares automatic versus human performance,

Indexing, retrieval, and summarization in recordings of meetings andnd the impact of our results is briefly discussed in Section 7 and
conversations have, to date, focused largely on the propositional cosummarized in Section 8.
tent of what participants say. Although objectively relevant, such
content may not be the sole or even the main aim of potential system
users. Instead, users may be interested in information bearing on 2. DATA
meeting or conversation flow. An example of this type of informa-
tion is the varying degree dfivolvement exhibited by participants, The current work makes use of the ICSI Meeting Corpus [5], which
individually or as a group. consists of 75 naturally occurring meetings with betwe&eand

Involvement in meetings has been defined as a meeting- anl{m.. = 9 participants per meeting. The corpus is accompanied by
speaker-specific, prosodically marked, utterance-level chaiscter orthographic transcription, as well as lexical forced time-alignment,
tic [1], and shown to correlate with automatically computed acousdialog act annotation, andeRsION2 hotspot annotation [6]. Also
tic cues. Human agreement on the perception of involvement wagvailable for the entire corpus is a segmentation of laughter [7], and
shown to be significantly above chanee € 0.59). Furthermore, an annotation of laughter as either voiced or unvoiced [8].
involvement was determined to associate significantly with several For each meeting, we have excluded the unconversational cali-
dialog act subclasses, such as suggestions, jokes, and floor grdiyation intervals known as thii gi t s task and retained only the
bers [2]. The authors of [1, 2] showed that such detailed dialogsingle longest contiguous portion of each meeting, amounting to
act knowledge yields chance-corrected accuracies of almost 40% f63 hours of multichannel audio. Division of the 75 meetings into
per-utterance classification of involvement; it was not stated whethex TRAINSET, a DEVSET, and an EAL SET was motivated as fol-
this outperforms guessing the majority class. lows. There are two sets of manually produced hot spot labels avail-

In a practical information retrieval setting, single utterances mayable for excerpts from 11 meetings. To enable comparison with
be too short a unit to remain interpretable without a broader temporaiuman performance (cf. Section 6), we placed these 11 meetings,
neighborhood. In [1], the authors proposed the notionatdpots, or ~ Which we subsequently refer to avAL SUBSET, in EVAL SET; we
“intervals of about half a minute to one minute”, exhibiting “high in- further augment EAL SET with 4 meetings of groups which are
volvement on the part of two or more participants”. However, underunder-represented inVEL SUBSET relative to the rest of the cor-
this definition (hencefortikERsI10NL), high involvement is neithera pus Br 0010, Br 0012, Br 0016, andBns002). Of the remaining
necessary nor a sufficient condition for the inclusion of an utteranceneetings, those whose numerical identifier ends with 1, 3, 5 or 7
in a hotspot. It is therefore not known to what extemtrsionNl ~ were placed in BVSET, and the remainder inRAINSET.
hotspots can be detected automatically. VERSION2 hotspots differ fronvERSIONL hotspots in duration;

In more recent work [3], an alternate definition of hotspots wasthe former have an approximately log-normal distribution, with a
proposed (hencefortveRSION2) as “parts in conversations” in most likely duration of 7 seconds and only one hotspot as long as
which “participants are more involved” [and/or] “there is a higher 30 seconds. As suggested in the introduction, we appeal to the



VERSIONL hotspot duration guidelines (of 30-60 s) and detect not  First, b and W are estimated from the entirety of the duration
whether a dialog act contains involved speech, but whether a 60 secf Q. During this pass, thpseudo-temperatures 7}, are clamped to
ond interval of meeting time does so. Reference labels for each iran arbitrary but fixed constafli..; = 1. The estimated values of
terval are produced from theeRSION2 hotspot utterance tag [3]; an b and W can be said to represent long-observation-time norms of
interval is given the labed only when it contains lexical productions vocalization timing; they are specific to both the meeting, and to the
marked as involved (with or b-). Intervals are extracted from each individual participants. In a second pagsand W are kept fixed
meeting every 15 seconds. The resulting total number of intervals iat their long-observation-time values and, for a particular 60 s inter-
the corpus is 15649; of these, 26.6% contain involved speech. Thel of interest, thel}, are allowed to vary to account for (transient)
priors across the two labelGand—Z are near-identical for all three departure from long-observation-time norms. As can be seen from

of TRAINSET, DEVSET, and B/AL SET. Equation 1,7} represents a non-linear interpolation parameter of
the probabilitiesP, () with 1/2 (i.e., randomness). F& > Ty,
3. VOCAL INTERACTION FEATURES each probability in Equation 1 is pulled towart)e, whereas for

T < T,y each is pulled away. In the current work, we use the
We propose to perform classification using features extracted frorffiferred7i, 1<k<K, as our dynamic features. In both passes, we

the vocal interaction record [9] of each meeting, ie. the time-alignednfer parameters using gradient descent in the negative logarithm of
record of vocal activity from allk meeting participants; for this the likelihood ofQ given Ms¢, where

work, we use reference as opposed to automatic segmentations. We T T
define vocal interactio® = {qi,q2, - ,qn}, Where each col- P(QMsg) = H H Py (qi [K] | Qi—1, Msa) . (2)
umngq; is a K-element vector i{0, 1} representing the binary vo- =1 k=1

calization state of each participantl <k<K, andN is the number o~ \ve assume that participants are conditionally independent and

of frames.Q is obtained by discretizing a continuous segmentationy, o the conversation is first-order Markovian. We note that the prob-
such as implied by forced-alignment start and end times of spokefy, o parameter inference can be reformulatetbgistic regression

lexical items. The discretization process is described in [10]; heregnq the parameters of{sc can be identically inferred using the
we use a frame step and frame size of 10 ms and 20 ms, reSpeCtivehSNeighted least squares algorithm [14].

We consider 5 different binary reference segmentation types: In the current setting, we explore 2 typesTf features:

e S : speech (words and word fragments) versus non-verbal o {77} : K participant-specific measures of departure from a

vocalization and silence, obtained from the forced-alignments participant-independent (P1) norm (iéx = b, wirr = w4,

in the ICSI MRDA Corpus [6]; andwy; = w_, Ik, for 3 degrees of freedom), sorted by
e £ : laughter versus verbal and other non-verbal vocalization decreasing magnitude and padded with zeroKtg., = 9;

and silence, as in [7]; and

e {1} : K participant-specific measures of departure from
participant-specific (PS) norms (ie. untiba&andW, for K +

o ] K? degrees of freedom), sorted by decreasing magnitude and
e S U L : speech or laughter versus other vocalization and si- padded with zeros t& e = 9.

lence, computed fron§ and£; and

e Ly : voiced laughter versus unvoiced laughter, verbal and
other non-verbal vocalization, and silence, as in [8];

Both dynamic feature types are meeting-specific, as they are inferred
e SNL: “laughed speech” [11] versus other speech, non-verbafrom long-observation-time norms of each meeting separately.
vocalization, and silence, computed fréfrand L.

For a particular segmentation type, and a particular 60 s interval, we 4. EXPERIMENTS
extract both static and dynamic features. Our static features are of
two types: Since no previous experimental results are available, we select as our

e {p¥} : the proportion of interval duration for which each baseline simply choosing the majority class (i.e., no involvement).

participant vocalizes, sorted by decreasing magnitude angn EvAL SET, the resulting accuracy is 73.67%. We note that chance
padded with Zeros t&as = 9: and uessing, informed by theRIAIN SET majority class prior, yields an

EVAL SET accuracy of 61.23%.

e {0/} : the proportion of interval duration for which at legist Our factorial experiment is shown in Table 1. All 4 feature types
participants vocalize simultaneously, foxj<9. (of 9 features each) are drawn from all 5 segmentation types, re-
Zero-padding allows for length-consistent feature vectors wher$ulting in 20 cells. For each cell, we train a support vector ma-
meetings contain fewer thai,n.. — 9 participants. chiné' (SVM) on TRAINSET, and perform single feature forward

In computing dynamic features, we wish to consider variationsS€lection to maximize accuracy oreRSET; all feature values are
in the transition probabilities governing entry and egress out of vari<-normalized to facilitate SVM learning. Table 1 showsAE SET
ous multiparticipant vocal activity states. We measure this variatioccuracies only, together with the number of features selected for
using a parametrispin glass[12] model M s¢ of vocal interaction, that cell. ) ) )
proposed in [13]. The model estimates the conditional probabilities Ve make 4 broad observaggns regarding these results. First, we
that each particular participaht 1<k<I, vocalizes attime given ~ Note that, except for one cef{; ” } for 5), all feature and segmen-
a:1, the vocalization state of all participants at the previous instant!tion types yield accuracies which exceed majority class guessing,

and all outperform chance guessing by 31.7% to 59.3% relative.

1 -
Po(ai[k] =V ]qi-1) = . (1) lWe use SVMi9"t  available from Thorsten Joachims at

1+ e~ (e 4SS, wirar—a1 )/ T http://svmight.joachi ms.org/ (downloaded on 5 August
. ) 2008 at 1430hrs GMT). Only a linear kernel with a biased hglaare was
The model is thus entirely governed by the parametdss =  explored; all other toolkit parameters were left at theiraidf values to
{bx}, W = {ww }, T = {Tx }}, which are estimated as follows. enable subsequent trend analysis.




Second, looking at the static feature types only, there exists a | # SVM Segm. Feat. . | Acc, %abs
clear progression in accuracy towards increasingly smaller subsets Weight Rank| Type Type alone [ cum.
of the laughter segmentatiof. We note tha{£L NS) C Ly C 1 0.39 3[ £ns pY 1| 835]| 835
L C (LUS) O S. The best single-cell accuracy of 83.0% can be | 2 0.16 18| Ly T].PI 3| 816 83.7
found for just two features ir{p}’} from £ N S, and this accuracy 3 0.03 105| £ p}’ 7 75.0| 845
decreases as supersets of fhe S segmentation are considered. 4 0.07 56| Ly 799 8| 73.8| 83.9

Third, dynamic features outperform static features only infre- | g 0.04 92| S TS 8| 737| 840

quently, and only by small amounts. In particular, ws} fea-
tures appear to be uncompetitive as a whole. This is due to their poor

generalization to EAL SET. However, as we will show in the next Taple 2. Feature ranking for the 5 features judged as optimal, and
section, dynamic features appear complementary even alongside thg/\ weights and weight ranks. VEL SET accuracies (‘Acc”) for
best-performing static features. each feature alone and in combination with more relevant features
Finally, feature combination frequently results in improved («cum) are given in % absolute. Features are identified by their
EVALSET performance. Table 1 shows the effect of combiningsorted) positiony in the 9-element vector representing features of

across feature types in the rightmost column, and across segmefeat. Type” drawn from segmentation of “Segm. Type”.
tation types in the bottom row; feature selection in these cells is

performed on 36 and 45 features, respectively. Cases in which

feature combination results in a degradation GRESET accuracy gy individual accuracies which are in the same range, most of

rEepreséent ri\:mlsmatcf: of featur(fa rele\éance lllt)ig/;/)e;anSBT and | those appear to be redundant given the first feature, and are-not se
VAL SET. Feature selection performed on a eatures, resultyy veq Only one other selected feature yields an individual accuracy

ing in 84.0%, is only 0.2% absolute lower than the best accuracy g1 589%; all subsequently selected features have individual accu-
observed anywhere in the table. We treat 84.0% as the final pef; jas<75 0o

formance measure on unseen data; it represents a 39.2% relative \,,_ , . .
reduction of error over guessing the majority class, and a 580/‘7th

relative error reduction over chance informed bg ATN SET priors.

We note also that features ranked 3 through 5 in the table are the
or 8th largest features in their respective 9-element vectors, indi-
cating that they are useful for meetings with 7 or more participants.

This suggests that accuracies may be improved when classification

Segm. Static Featur%;)r/]gi]ic decisions are conditioned on meeting group size.
Type Y v PI PS all

{7} fo7 7y T 6. COMPARISON WITH HUMAN PERFORMANCE
S 75.2((3) 73.9(3)| 75.3(1) 73.5(4)| 75.5(7)
LUS | 77.7 (4) 80.1(9)| 77.1(1) 76.5(1)| 80.0(3) The detection of involvement is known to be a difficult and sub-
L 80.6 (1) 81.2(6)| 80.8(1) 75.5(1)| 80.0 (5) jective task, as shown in an analysis of 13 meetings in which the
Ly 81.4(2) 82.1(6)| 81.6 (1) 75.9(6)| 81.9(8) majority of speech was contributed by 6 same participants [1].
LNS | 83.0(2) 821(6)| 78.1(1) 79.0(4)| 84.2(7) Utterance-level agreement between any two native English-speaking

834 (9) 826 (2)| 82.7(8) 754 (3)| 84.0 (5) | labelers (out of 6) who were familiar with the meeting participants
was shown to b& = 0.63; non-native labelers, also familiar with
the participants, appeared to agree at anby 0.52.

Table 1. Classification accuracy onvEL SET using a linear-kernel Subsequent analysis orvk SUBSET (a more varied subset of
SVM, for static and dynamic feature types (in columns) computedhe corpus than used in [1]) using two labelers showed that per-
from different segmentation types (“Segm.”, in rows). Each cellutterance agreement on involvementsis= 0.63, while that for
shows the accuracy achieved in % by an optimal feature subset ider8fown” hotspot intervals [15] isc = 0.67. In this section, we ex-

tified using DEVSET; the number of selected features, out of a totalPlore the agreement of the same two labelers (hémnd B) and on
of Kmaz = 9 available in each non-“all” cell, is shown in parenthe- the same data as [15], on whether a 60 s intervalas—Z. For each

ses. interval in EVAL SUBSET, we extract4d and B labels as described in
Section 2 for the final consensus labels; we also comguteB and

AN B to gain insight into consensus creation on this task. All four
sets of labels, the final consensus labels, and those produced by our
final system are shown in Table 3.

We briefly explore the relative merits of the 5 best features responsi-

[ all

5. FEATURE ANALYSIS

ble for our final E/AL SET accuracy of 84.0%, in Table 2. Features B AUB  AnB ref hyp
are ranked according to the sequence in which they were incremen- A 068 091 077 0.84 059
tally selected. Because selection is not based RRINSET accu- B 0.78 090 0.83 0.7
racy, each feature’s rank reflects to some extent how well it general- AUB 0.69 0.85 0.58
izes. For comparison, we also show the magnitude of the weighted ANB 0.81 0.57
sum of all learned support vectors in column 2 (and its rank in col- ref 0.54

umn 3), a function of RAINSET only.

The table shows that thén S segmentation offers the most dis-
criminating feature, namely the vocalization proportion of the mostTable 3. Pair-wise inter-labeler agreement measurgsof EVAL -
(£ N 8)-vocalizing participantp}’. This feature alone is responsi- SUBSET between two human judgesi @nd B), their logical com-
ble for 95% of the absolute accuracy improvement of all five fea-binations AUB and ANB), the final consensus labelsef ) used
tures over majority class guessing. Although many other featureds reference, and our automatic system latigfj.



As Table 3 shows, inter-labeler agreement on our task is 0.68,
similar to that for utterance-level involvement. We note that because

agreement betweeB and ANB is near unity, and that betweeh

and AUB is near unity,B’s involvement judgments appear to be a

subset ofd’s. However, comparison betweehuB, ANB, and the

consensus labelsef indicates that the latter are a relatively com-

plex combination of the two annotators’ labels.

Table 3 also shows that agreement between our automatic

system and the human-produced consensus labets #s 0.54,

and that between our system and either human taken alone i
k € [0.57,0.59], slighly higher. We note that 54% is also the
chance-corrected accuracy measure used in [2], where the maxi-
mum attained using detailed dialog act knowledge was shown to bel4]

just below 40%.

7. DISCUSSION

The experiments presented here, using reference speech and Iaugfﬁ]
ter segmentations, indicate that laughter is temporally collocated
with prosodic involvement and thus important for its detection. This
presents a strong motivating case for technological advancement ir7]
laughter detection for meetings [16, 17, 18, 19]. At the current time,
meeting laughter detectors contrast between speech and laughter,

renderingZL N'S = (). However, as we have showd, yields

features with quite similar hotspot detection performance. Cursory
analysis in [19] suggests that voiced laughter is easier to detect
than all laughter, primarily because unvoiced laughter is frequently

confused with breath and contact noise.

For vocal activity systems which do not discriminate between
laughter and speech, but do discriminate between vocalization and
silence (cf. results fo U S in Table 1), our vocal interaction fea- [10]
tures yield an accuracy of 80.0% on unseen data, representing a 24%
reduction of error over majority class guessing. This makes them
more informative than detailed dialog act tagging; preliminary ac{11]
curacies for our features drawn from &segmentation containing
only speech found in hotspot-correlated dialog act types [2] are 1-2%
absolute above majority class guessing. However, current state-of-
the-art dialog act taggers consider only coarse dialog act classes. [12]

8. CONCLUSIONS

We have presented a system for the classification of 60 s intervals as
either containing or not containing involved speech. The system i
suitable for real-time deployment and relies on only low-level fea-
tures, as may be extracted from the output of a vocal activity detec-
tor. The most informative features are those pertaining to “laughe
speech”, voiced laughter, and laughter in general, in descending or-
der. On 12.5 hours of unseen meeting data, the system yields an ac-
curacy of 84.0%, representing a relative reduction in error of 39.2%16]
over a majority class baseline. Chance-corrected agreement between
our automatic labels and labels produced by human annotators
10% absolute lower than that between annotators, and 6% absol
higher than agreement among non-native annotators on the corre-

sponding per-utterance task with a similar range of agreement.
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