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ABSTRACT

Indexing, retrieval, and summarization in recordings of meetings
have, to date, focused largely on the propositional content of what
participants say. Although objectively relevant, such content may
not be the sole or even the main aim of potential system users. In-
stead, users may be interested in information bearing on conversa-
tion flow. We explore the automatic detection of one example of such
information, namely that of hotspots defined in terms of participant
involvement. Our proposed system relies exclusively on low-level
vocal activity features, and yields a classification accuracy of 84%,
representing a 39% reduction of error relative to a baseline which
selects the majority class.

Index Terms— Speech processing, Meetings, Pattern classifi-
cation, Information retrieval.

1. INTRODUCTION

Indexing, retrieval, and summarization in recordings of meetings and
conversations have, to date, focused largely on the propositional con-
tent of what participants say. Although objectively relevant, such
content may not be the sole or even the main aim of potential system
users. Instead, users may be interested in information bearing on
meeting or conversation flow. An example of this type of informa-
tion is the varying degree ofinvolvement exhibited by participants,
individually or as a group.

Involvement in meetings has been defined as a meeting- and
speaker-specific, prosodically marked, utterance-level characteris-
tic [1], and shown to correlate with automatically computed acous-
tic cues. Human agreement on the perception of involvement was
shown to be significantly above chance (κ = 0.59). Furthermore,
involvement was determined to associate significantly with several
dialog act subclasses, such as suggestions, jokes, and floor grab-
bers [2]. The authors of [1, 2] showed that such detailed dialog
act knowledge yields chance-corrected accuracies of almost 40% for
per-utterance classification of involvement; it was not stated whether
this outperforms guessing the majority class.

In a practical information retrieval setting, single utterances may
be too short a unit to remain interpretable without a broader temporal
neighborhood. In [1], the authors proposed the notion ofhotspots, or
“intervals of about half a minute to one minute”, exhibiting “high in-
volvement on the part of two or more participants”. However, under
this definition (henceforthVERSION1), high involvement is neither a
necessary nor a sufficient condition for the inclusion of an utterance
in a hotspot. It is therefore not known to what extentVERSION1
hotspots can be detected automatically.

In more recent work [3], an alternate definition of hotspots was
proposed (henceforthVERSION2) as “parts in conversations” in
which “participants are more involved” [and/or] “there is a higher

degree of interaction by participants who are trying to get the floor”.
Although it was shown in [4] thatVERSION2 hotspots, whose
temporal extent is a function of involved utterance duration, are as-
sociated with the degree of simultaneous vocalization from multiple
participants (overlap), no evidence was presented to show that the
observed differences are discriminative.

Our objective in the current work is to present a baseline hotspot
detector. Using the extensive annotation ofVERSION2 hotspot in-
volvement (described in Section 2), but with the less subjective
temporal support ofVERSION1 hotspots, we propose a system
which classifies 60-second intervals of meetings as either containing
involved speech (I) or not containing involved speech (¬I), and
which relies only on very low-level vocal interaction features as
might be available from a vocal activity detector. These features are
described in Section 3, and the experiments presented in Sections 4
and 5 demonstrate that laughter is almost solely responsible for
our reduction in error of 39.2% relative to a majority class base-
line. Section 6 compares automatic versus human performance,
and the impact of our results is briefly discussed in Section 7 and
summarized in Section 8.

2. DATA

The current work makes use of the ICSI Meeting Corpus [5], which
consists of 75 naturally occurring meetings with between3 and
Kmax = 9 participants per meeting. The corpus is accompanied by
orthographic transcription, as well as lexical forced time-alignment,
dialog act annotation, andVERSION2 hotspot annotation [6]. Also
available for the entire corpus is a segmentation of laughter [7], and
an annotation of laughter as either voiced or unvoiced [8].

For each meeting, we have excluded the unconversational cali-
bration intervals known as theDigits task and retained only the
single longest contiguous portion of each meeting, amounting to
63 hours of multichannel audio. Division of the 75 meetings into
a TRAINSET, a DEVSET, and an EVAL SET was motivated as fol-
lows. There are two sets of manually produced hot spot labels avail-
able for excerpts from 11 meetings. To enable comparison with
human performance (cf. Section 6), we placed these 11 meetings,
which we subsequently refer to as EVAL SUBSET, in EVAL SET; we
further augment EVAL SET with 4 meetings of groups which are
under-represented in EVAL SUBSET relative to the rest of the cor-
pus (Bro010, Bro012, Bro016, andBns002). Of the remaining
meetings, those whose numerical identifier ends with 1, 3, 5 or 7
were placed in DEVSET, and the remainder in TRAINSET.

VERSION2 hotspots differ fromVERSION1 hotspots in duration;
the former have an approximately log-normal distribution, with a
most likely duration of 7 seconds and only one hotspot as long as
30 seconds. As suggested in the introduction, we appeal to the



VERSION1 hotspot duration guidelines (of 30-60 s) and detect not
whether a dialog act contains involved speech, but whether a 60 sec-
ond interval of meeting time does so. Reference labels for each in-
terval are produced from theVERSION2 hotspot utterance tag [3]; an
interval is given the labelI only when it contains lexical productions
marked as involved (withb orb-). Intervals are extracted from each
meeting every 15 seconds. The resulting total number of intervals in
the corpus is 15649; of these, 26.6% contain involved speech. The
priors across the two labelsI and¬I are near-identical for all three
of TRAINSET, DEVSET, and EVAL SET.

3. VOCAL INTERACTION FEATURES

We propose to perform classification using features extracted from
the vocal interaction record [9] of each meeting, ie. the time-aligned
record of vocal activity from allK meeting participants; for this
work, we use reference as opposed to automatic segmentations. We
define vocal interactionQ ≡ {q1,q2, · · · ,qN}, where each col-
umnqt is aK-element vector in{0, 1} representing the binary vo-
calization state of each participantk, 1≤k≤K, andN is the number
of frames.Q is obtained by discretizing a continuous segmentation,
such as implied by forced-alignment start and end times of spoken
lexical items. The discretization process is described in [10]; here,
we use a frame step and frame size of 10 ms and 20 ms, respectively.

We consider 5 different binary reference segmentation types:

• S : speech (words and word fragments) versus non-verbal
vocalization and silence, obtained from the forced-alignments
in the ICSI MRDA Corpus [6];

• L : laughter versus verbal and other non-verbal vocalization
and silence, as in [7];

• LV : voiced laughter versus unvoiced laughter, verbal and
other non-verbal vocalization, and silence, as in [8];

• S ∪ L : speech or laughter versus other vocalization and si-
lence, computed fromS andL; and

• S∩L : “laughed speech” [11] versus other speech, non-verbal
vocalization, and silence, computed fromS andL.

For a particular segmentation type, and a particular 60 s interval, we
extract both static and dynamic features. Our static features are of
two types:

• {pV
j } : the proportion of interval duration for which each

participant vocalizes, sorted by decreasing magnitude and
padded with zeros toKmax = 9; and

• {oVj } : the proportion of interval duration for which at leastj
participants vocalize simultaneously, for1≤j≤9.

Zero-padding allows for length-consistent feature vectors when
meetings contain fewer thanKmax = 9 participants.

In computing dynamic features, we wish to consider variations
in the transition probabilities governing entry and egress out of vari-
ous multiparticipant vocal activity states. We measure this variation
using a parametricspin glass [12] modelMSG of vocal interaction,
proposed in [13]. The model estimates the conditional probabilities
that each particular participantk, 1≤k≤K, vocalizes at timet given
qt−1, the vocalization state of all participants at the previous instant:

Pk (qt [k] = V |qt−1) =
1

1 + e−(bk+
P

K

l=1
wklqt−1[l])/Tk

. (1)

The model is thus entirely governed by the parameters{b =
{bk},W = {wkl},T = {Tk}}, which are estimated as follows.

First, b andW are estimated from the entirety of the duration
of Q. During this pass, thepseudo-temperatures Tk are clamped to
an arbitrary but fixed constantTref ≡ 1. The estimated values of
b andW can be said to represent long-observation-time norms of
vocalization timing; they are specific to both the meeting, and to the
individual participants. In a second pass,b andW are kept fixed
at their long-observation-time values and, for a particular 60 s inter-
val of interest, theTk are allowed to vary to account for (transient)
departure from long-observation-time norms. As can be seen from
Equation 1,Tk represents a non-linear interpolation parameter of
the probabilitiesPk (·) with 1/2 (i.e., randomness). ForT > Tref ,
each probability in Equation 1 is pulled towards1/2, whereas for
T < Tref each is pulled away. In the current work, we use the
inferredTk, 1≤k≤K, as our dynamic features. In both passes, we
infer parameters using gradient descent in the negative logarithm of
the likelihood ofQ givenMSG, where

P (Q|MSG)
.
=

T
Y

t=1

T
Y

k=1

Pk (qt [k] |qt−1,MSG) . (2)

ie. we assume that participants are conditionally independent and
that the conversation is first-order Markovian. We note that the prob-
lem of parameter inference can be reformulated aslogistic regression
and the parameters ofMSG can be identically inferred using the
reweighted least squares algorithm [14].

In the current setting, we explore 2 types ofTk features:

• {T PI
k } : K participant-specific measures of departure from a

participant-independent (PI) norm (ie.bk = b, wkk = w+,
andwkl = w−, ∀l 6=k, for 3 degrees of freedom), sorted by
decreasing magnitude and padded with zeros toKmax = 9;
and

• {T PS
k } : K participant-specific measures of departure from

participant-specific (PS) norms (ie. untiedb andW, for K +
K2 degrees of freedom), sorted by decreasing magnitude and
padded with zeros toKmax = 9.

Both dynamic feature types are meeting-specific, as they are inferred
from long-observation-time norms of each meeting separately.

4. EXPERIMENTS

Since no previous experimental results are available, we select as our
baseline simply choosing the majority class (i.e., no involvement).
On EVAL SET, the resulting accuracy is 73.67%. We note that chance
guessing, informed by the TRAINSET majority class prior, yields an
EVAL SET accuracy of 61.23%.

Our factorial experiment is shown in Table 1. All 4 feature types
(of 9 features each) are drawn from all 5 segmentation types, re-
sulting in 20 cells. For each cell, we train a support vector ma-
chine1 (SVM) on TRAINSET, and perform single feature forward
selection to maximize accuracy on DEVSET; all feature values are
Z-normalized to facilitate SVM learning. Table 1 shows EVAL SET

accuracies only, together with the number of features selected for
that cell.

We make 4 broad observations regarding these results. First, we
note that, except for one cell ({T PS

j } for S), all feature and segmen-
tation types yield accuracies which exceed majority class guessing,
and all outperform chance guessing by 31.7% to 59.3% relative.

1We use SVMlight, available from Thorsten Joachims at
http://svmlight.joachims.org/ (downloaded on 5 August
2008 at 1430hrs GMT). Only a linear kernel with a biased hyperplane was
explored; all other toolkit parameters were left at their default values to
enable subsequent trend analysis.



Second, looking at the static feature types only, there exists a
clear progression in accuracy towards increasingly smaller subsets
of the laughter segmentationL. We note that(L ∩ S) ⊆ LV ⊆
L ⊆ (L ∪ S) ⊇ S. The best single-cell accuracy of 83.0% can be
found for just two features in{pV

j } from L ∩ S, and this accuracy
decreases as supersets of theL ∩ S segmentation are considered.

Third, dynamic features outperform static features only infre-
quently, and only by small amounts. In particular, the{T PS

j } fea-
tures appear to be uncompetitive as a whole. This is due to their poor
generalization to EVAL SET. However, as we will show in the next
section, dynamic features appear complementary even alongside the
best-performing static features.

Finally, feature combination frequently results in improved
EVAL SET performance. Table 1 shows the effect of combining
across feature types in the rightmost column, and across segmen-
tation types in the bottom row; feature selection in these cells is
performed on 36 and 45 features, respectively. Cases in which
feature combination results in a degradation of EVAL SET accuracy
represent a mismatch of feature relevance between DEVSET and
EVAL SET. Feature selection performed on all 180 features, result-
ing in 84.0%, is only 0.2% absolute lower than the best accuracy
observed anywhere in the table. We treat 84.0% as the final per-
formance measure on unseen data; it represents a 39.2% relative
reduction of error over guessing the majority class, and a 58%
relative error reduction over chance informed by TRAINSET priors.

Feature Type
Segm. Static Dynamic
Type

{pV
j } {oVj } {T PI

j } {T PS
j }

all

S 75.2 (3) 73.9 (3) 75.3 (1) 73.5 (4) 75.5 (7)
L ∪ S 77.7 (4) 80.1 (9) 77.1 (1) 76.5 (1) 80.0 (3)
L 80.6 (1) 81.2 (6) 80.8 (1) 75.5 (1) 80.0 (5)
LV 81.4 (2) 82.1 (6) 81.6 (1) 75.9 (6) 81.9 (8)
L ∩ S 83.0 (2) 82.1 (6) 78.1 (1) 79.0 (4) 84.2 (7)

all 83.4 (9) 82.6 (2) 82.7 (8) 75.4 (3) 84.0 (5)

Table 1. Classification accuracy on EVAL SET using a linear-kernel
SVM, for static and dynamic feature types (in columns) computed
from different segmentation types (“Segm.”, in rows). Each cell
shows the accuracy achieved in % by an optimal feature subset iden-
tified using DEVSET; the number of selected features, out of a total
of Kmax = 9 available in each non-“all” cell, is shown in parenthe-
ses.

5. FEATURE ANALYSIS

We briefly explore the relative merits of the 5 best features responsi-
ble for our final EVAL SET accuracy of 84.0%, in Table 2. Features
are ranked according to the sequence in which they were incremen-
tally selected. Because selection is not based on TRAINSET accu-
racy, each feature’s rank reflects to some extent how well it general-
izes. For comparison, we also show the magnitude of the weighted
sum of all learned support vectors in column 2 (and its rank in col-
umn 3), a function of TRAINSET only.

The table shows that theL∩S segmentation offers the most dis-
criminating feature, namely the vocalization proportion of the most
(L ∩ S)-vocalizing participant,pV

1 . This feature alone is responsi-
ble for 95% of the absolute accuracy improvement of all five fea-
tures over majority class guessing. Although many other features

SVM Segm. Feat. Acc, %abs#
Weight Rank Type Type

j
alone cum.

1 0.39 3 L ∩ S pV
j 1 83.5 83.5

2 0.16 18 LV T PI
j 3 81.6 83.7

3 0.03 105 L pV
j 7 75.0 84.5

4 0.07 56 LV T PS
j 8 73.8 83.9

5 0.04 92 SS T PS
j 8 73.7 84.0

Table 2. Feature ranking for the 5 features judged as optimal, and
SVM weights and weight ranks. EVAL SET accuracies (“Acc”) for
each feature alone and in combination with more relevant features
(“cum.”) are given in % absolute. Features are identified by their
(sorted) positionj in the 9-element vector representing features of
“Feat. Type” drawn from segmentation of “Segm. Type”.

show individual accuracies which are in the same range, most of
those appear to be redundant given the first feature, and are not se-
lected. Only one other selected feature yields an individual accuracy
of 81.58%; all subsequently selected features have individual accu-
racies≤75.0%.

We note also that features ranked 3 through 5 in the table are the
7th or 8th largest features in their respective 9-element vectors, indi-
cating that they are useful for meetings with 7 or more participants.
This suggests that accuracies may be improved when classification
decisions are conditioned on meeting group size.

6. COMPARISON WITH HUMAN PERFORMANCE

The detection of involvement is known to be a difficult and sub-
jective task, as shown in an analysis of 13 meetings in which the
majority of speech was contributed by 6 same participants [1].
Utterance-level agreement between any two native English-speaking
labelers (out of 6) who were familiar with the meeting participants
was shown to beκ = 0.63; non-native labelers, also familiar with
the participants, appeared to agree at onlyκ = 0.52.

Subsequent analysis on EVAL SUBSET (a more varied subset of
the corpus than used in [1]) using two labelers showed that per-
utterance agreement on involvement isκ = 0.63, while that for
“grown” hotspot intervals [15] isκ = 0.67. In this section, we ex-
plore the agreement of the same two labelers (here,A andB) and on
the same data as [15], on whether a 60 s interval isI or¬I. For each
interval in EVAL SUBSET, we extractA andB labels as described in
Section 2 for the final consensus labels; we also computeA∪B and
A ∩ B to gain insight into consensus creation on this task. All four
sets of labels, the final consensus labels, and those produced by our
final system are shown in Table 3.

B A∪B A∩B ref hyp
A 0.68 0.91 0.77 0.84 0.59
B 0.78 0.90 0.83 0.57
A∪B 0.69 0.85 0.58
A∩B 0.81 0.57
ref 0.54

Table 3. Pair-wise inter-labeler agreement measures (κ) on EVAL -
SUBSET between two human judges (A andB), their logical com-
binations (A∪B andA∩B), the final consensus labels (ref) used
as reference, and our automatic system labels (hyp).



As Table 3 shows, inter-labeler agreement on our task is 0.68,
similar to that for utterance-level involvement. We note that because
agreement betweenB andA∩B is near unity, and that betweenA
andA∪B is near unity,B’s involvement judgments appear to be a
subset ofA’s. However, comparison betweenA∪B, A∩B, and the
consensus labelsref indicates that the latter are a relatively com-
plex combination of the two annotators’ labels.

Table 3 also shows that agreement between our automatic
system and the human-produced consensus labels isκ = 0.54,
and that between our system and either human taken alone is
κ ∈ [0.57, 0.59], slighly higher. We note that 54% is also the
chance-corrected accuracy measure used in [2], where the maxi-
mum attained using detailed dialog act knowledge was shown to be
just below 40%.

7. DISCUSSION

The experiments presented here, using reference speech and laugh-
ter segmentations, indicate that laughter is temporally collocated
with prosodic involvement and thus important for its detection. This
presents a strong motivating case for technological advancement in
laughter detection for meetings [16, 17, 18, 19]. At the current time,
meeting laughter detectors contrast between speech and laughter,
renderingL ∩ S = ∅. However, as we have shown,LV yields
features with quite similar hotspot detection performance. Cursory
analysis in [19] suggests that voiced laughter is easier to detect
than all laughter, primarily because unvoiced laughter is frequently
confused with breath and contact noise.

For vocal activity systems which do not discriminate between
laughter and speech, but do discriminate between vocalization and
silence (cf. results forL ∪ S in Table 1), our vocal interaction fea-
tures yield an accuracy of 80.0% on unseen data, representing a 24%
reduction of error over majority class guessing. This makes them
more informative than detailed dialog act tagging; preliminary ac-
curacies for our features drawn from anS segmentation containing
only speech found in hotspot-correlated dialog act types [2] are 1-2%
absolute above majority class guessing. However, current state-of-
the-art dialog act taggers consider only coarse dialog act classes.

8. CONCLUSIONS

We have presented a system for the classification of 60 s intervals as
either containing or not containing involved speech. The system is
suitable for real-time deployment and relies on only low-level fea-
tures, as may be extracted from the output of a vocal activity detec-
tor. The most informative features are those pertaining to “laughed
speech”, voiced laughter, and laughter in general, in descending or-
der. On 12.5 hours of unseen meeting data, the system yields an ac-
curacy of 84.0%, representing a relative reduction in error of 39.2%
over a majority class baseline. Chance-corrected agreement between
our automatic labels and labels produced by human annotators is
10% absolute lower than that between annotators, and 6% absolute
higher than agreement among non-native annotators on the corre-
sponding per-utterance task with a similar range of agreement.
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[4] Ö. Çetin and E. Shriberg, “Overlap in meetings: ASR effects
and analysis by dialog factors, speakers, and collection site,”
in Proc. MLMI, 2006, vol. 4299 ofSpringer LNCS.

[5] A. Janin et al., “The ICSI Meeting Corpus,” inProc. ICASSP,
2003, pp. 364–367.

[6] E. Shriberg, R. Dhillon, S. Bhagat, S. Ang, and H. Carvey,
“The ICSI Meeting Recorder Dialog Act (MRDA) Corpus,” in
Proc. SIGdial, 2004, pp. 97–100.

[7] K. Laskowski and S. Burger, “Analysis of the occurrence of
laughter in meetings,” inProc. INTERSPEECH, 2007, pp.
1258–1261.

[8] K. Laskowski and S. Burger, “On the correlation between per-
ceptual and contextual aspects of laughter in meetings,” in
Proc. ICPhS WS on Phonetics of Laughter, 2007, pp. 55–60.

[9] J. Dabbs and R. Ruback, “Dimensions of group process:
Amount and structure of vocal interaction,”Advances in Ex-
perimental Psychology, vol. 20, pp. 123–169, 1987.

[10] K. Laskowski and T. Schultz, “Modeling vocal interaction for
segmentation in meeting recognition,” inProc. MLMI, 2007,
vol. 4892 ofSpringer LNCS 4892, pp. 259–270.

[11] E. Nwokah, H.-C. Hsu, P. Davies, and A. Fogel, “The inte-
gration of laughter and speech in vocal communication: A dy-
namic systems perspective,”J. Speech, Language & Hearing
Research, vol. 42, pp. 880–894, 1999.

[12] K. Fischer and J. Hertz,Spin Glasses, Cambridge University
Press, Cambridge, UK, 1991.

[13] K. Laskowski, “Quantifying transient departure from
conversation- and participant-specific norms of talkspurt de-
ployment timing,” in preparation.

[14] L. Wasserman,All of Statistics: A Concise Course in Statistical
Inference, Springer, 2004.

[15] B. Wrede and E. Shriberg, “Reliability analysis for hot spot
annotations in the MRDA Corpus,”Internal document, ICSI,
Berkeley CA, USA, 11 April 2005.

[16] L. Kennedy and D. Ellis, “Laughter detection in meetings,” in
Proc. ICASSP Meeting Recognition WS, 2004, pp. 118–121.

[17] K. Truong and D. van Leeuwen, “Automatic discrimination
between laughter and speech,”Speech Communication, vol.
49, no. 2, pp. 144–158, 2007.

[18] M. Knox and N. Mirghafori, “Automatic laughter detection
using neural networks,” inProc. INTERSPEECH, 2007, pp.
2973–2976.

[19] K. Laskowski and T. Schultz, “Detection of laughter-in-
interaction in multichannel close-talk microphone recordings
of meetings,” inProc. MLMI, 2008, vol. 5237 ofSpringer
LNCS, pp. 149–160.


