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ABSTRACT
One of the major difficulties related to German LVCSR is

the rich morphology nature of German, leading to high out-

of-vocabulary (OOV) rates, and high language model (LM)

perplexities. Normally, compound words make up an es-

sential fraction of the German vocabulary. Most compound

OOVs are composed of frequent in-vocabulary words. Here,

we investigate the use of sub-lexical LMs based on different

approaches for word decomposition, namely supervised and

unsupervised decomposition, as well as decomposition de-

rived from grapheme-to-phoneme (G2P) conversion. In the

later approach, we augment a normal word model with a set

of grapheme-phoneme pairs called graphones used to model

the OOV words. A novel approach is proposed to select the

representative graphone sequences for OOVs based on unsu-

pervised decomposition and word-pronunciation alignment.

We obtain relative reductions in word error rate (WER) from

4.2% to 6.5% with respect to a comparable full-words system.

Index Terms— Speech recognition, language model,

sub-lexical, graphone, German

1. INTRODUCTION

German is characterized by high lexical variety as a large

number of distinct lexical forms can be generated due to dif-

ferent factors like word compounding, inflection, and deriva-

tion. This high lexical variety causes data sparsity problems,

and leads to high OOV rates, and high LM perplexities. The

traditional way to overcome this problem is to use a large

recognition lexicon typically having several hundred thou-

sands of full-words. However, relatively high OOV rates are

still measured. In addition, the ASR system suffers from high

resource requirements such as CPU time and memory.

For the above reasons, sub-lexical LMs based on word

decomposition into fragments are used in order to lower

the OOV rate and perplexity, reduce data sparsity, decrease

the resource requirements, and improve the final WER as

well. Broadly speaking, There are two main approaches to

word decomposition, namely, supervised and unsupervised

approaches. Normally, the supervised approaches are based

on linguistic knowledge like in [1], where a set of about

340 decomposition rules has been manually developed for

splitting compound German words. While, in [2], a hand

corrected lexicon is used for recognition, where compound

words are manually decomposed. Other supervised methods

rely on morphological analysis based on lexical and syntactic

knowledge like in [3, 4, 5]. Although the supervised splitters

are normally optimized for high performance, they require

labor-intensive work and still suffer from the so-called un-
known word problem, that is, words that are not coded into

the system. Moreover, a morphology-based splitter may not

be readily available. On the other hand, the unsupervised ap-

proaches are data-driven statistical-based approaches like in

[6], where a set of 800k decomposition rules are automatically

extracted. While in [7], a compound splitting algorithm is de-

veloped that uses sorting, word length, and word frequency

information. In [8], a compound word splitting algorithm is

proposed that splits compounds according to the statistical

relevance of the resulting constituents. Other unsupervised

methods are based on the minimum description length prin-

ciple (MDL) like in [9]. On the contrary, the unsupervised

approaches do not require any language specific knowledge

and can be applied to any language.

Another approach used to cope with the high OOV rates,

is to augment the traditional word model with a specialized

model for OOVs. The goal of this OOV modeling is to be

able to spell new words. Moreover, the presence of the OOV

words can affect the adjacent words leading to more mis-

recognition. According to [10], each OOV causes 1.5 to 2

errors on average. The augmenting OOV model can be a

phone-based model, so that any OOV word can be recognized

as an arbitrary sequence of phonemes like in [9, 11]. In [12],

multi-phoneme fragments are automatically constructed and

integrated into the lexicon and the language model, but no

attempt is made to convert phoneme sequences into proper

words. Alternatively, in [13], a set of automatically derived

fragments joint with their pronunciations is augmented to the

word model leading to small improvements in WER. While,

in [10] a graphone-based model is used, where every OOV

word is represented as a joint sequence of constrained-size

grapheme-phoneme pairs called graphones, which are auto-

matically derived from (G2P) conversion [14].

In this work, we investigate the use of sub-lexical LMs for

German large vocabulary and continuous speech recognition

(LVCSR). We try both supervised and unsupervised word de-

composition. On the other hand, we examine LMs built on se-
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quences of in-vocabulary words with interspersed sequences

of graphones replacing the OOV words. We examine both

constrained-size as well as free-size graphones.

The paper is organized as follows: In Section 2, we

present the details of our methods. In Section 3, we describe

our experimental setup. Experiments are discussed in section

4, while Section 5 draws conclusions.

2. METHODOLOGY

2.1. Pronunciation generation

For words and fragments whose pronunciations are unknown,

we use a statistical G2P approach to get the missing pronun-

ciations. Our approach is based on joint-sequence models as

shown in [14]. Therein, we search for the most likely pronun-

ciation ϕ ∈ Φ∗ for a given orthographic form g ∈ G∗, where

Φ and G are the sets of phonemes and letters respectively:

ϕ(g) = arg max
ϕ́∈Φ∗

p(ϕ́, g) (1)

We refer to the joint probability distribution p(ϕ, g) as a

“graphonemic” joint sequence model. We assume that for

each word, its orthographic form and its pronunciation are

generated by a common sequence of graphonemic units called

graphones. Each graphone is a pair q = (g, ϕ) ∈ Q ⊆
G∗ × Φ∗ of a letter sequence and a phoneme sequence of

possibly different lengths. The joint probability distribution

p(ϕ, g) is reduced to a probability distribution over graphone

sequences p(q) which are modeled by a standard M -gram:

p(qN
1 ) =

N+1∏

i=1

p(qi|qi−1, ..., qi−M+1) (2)

This model has two parameters: the order of the M -gram

model, and the allowed size of graphones. The number of

letters and phonemes are allowed to vary between zero and an

upper limit L. Such a model can be trained using maximum

likelihood (ML) training via expectation maximization (EM)

algorithm as presented in [14]. To produce a pronunciation

for a given word, we use the maximum approximation over

the set S(g, ϕ) of all joint segmentations of g and ϕ:

p(ϕ, g) ≈ max
q∈S(g,ϕ)

p(q1, ..., qL) (3)

2.2. Word decomposition approaches

2.2.1. Supervised word decomposition

Here we perform German word decomposition based on a

predefined set of around 100 common German prefixes and

suffixes, along with a set of additional unsupervised splittings

for around 17k compound words automatically performed

using frequency-based splitting proposed in [15]. It should

be noted that this is not a complete supervised approach

since some unsupervised decomposition takes place. The

frequency-based splitting is done in the following way:

• Each word which consists of two or more in-vocabulary

words is considered as a compound word;

• For each compound word w:

– compute frequency N(w) and component fre-

quencies N(w1), ..., N(wK).

– compute geometric mean of component frequen-

cies GM(w1, ..., wK) = [
∏K

k=1 N(wk)]
1
K

– split word w if GM(w1, ..., wK) > N(w)

All the LM training corpora are processed such that the

predefined prefixes and suffixes are stripped off, and the com-

pound words are decomposed.

2.2.2. Unsupervised word decomposition

Here we perform German word decomposition based on un-

supervised techniques implemented by Morfessor [16, 17].

It is a tool that works in an unsupervised manner, and au-

tonomously discovers segmentations for the words in unan-

notated text corpora. Moreover, it is a general model for un-

supervised induction of morphology from raw text. It is de-

signed to cope with languages having predominantly a con-

catenative morphology, and where the number of morphemes

per word is varying so much and not known in advance. Al-

though Morfessor is successfully used for various languages

[9], its application to German is not sufficiently investigated.

We train an unsupervised model using a vocabulary of

unique words that occur more than 5 times in the training data,

this gives about 0.5 Million words. We do not include less fre-

quent words in order to avoid noisy words which are harmful

to the training process. Nevertheless, the trained model can

be used to fragment more unseen words. In addition, the re-

sulting segmentations are adapted to remove noisy fragments,

this is found very helpful to improve the final WER.

2.2.3. Graphone-based decomposition

We model the OOV words using hybrid graphone-augmented
word models which are originally inspired by the work of

[10]. The graphone-based component of the model is a sub-

lexical model dedicated to deal with OOV words. This ap-

proach is strongly related to G2P conversion described in Sec-

tion 2.1. The set of graphones inferred during G2P training

constitutes a graphone-based model that can be easily inte-

grated with the standard word model. This forms a so-called

hybrid graphone-augmented word model. Thus, we combine

lexical in-vocabulary entries with sub-lexical graphones for

OOV words derived from G2P conversion to form a unified

set of recognition units. Since the allowed size of graphones

is determined via the parameter L (see Section 2.1), we call

these constrained-size graphone-based models.

Alternatively, we propose a novel version of graphone-

based models, where the size constraints are lapsed allowing

for free-size graphones. Specifically, the full OOV words and
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their pronunciations are recovered back from the proposed

(constrained-size) graphone sequences. Then, the words are

re-split again based on unsupervised Morfessor decomposi-

tion to form the graphemic components of the new graphone

sequences. While, the phonemic components are obtained af-

ter aligning the words to their pronunciations using dynamic

programming (DP), and expectation maximization (EM) as

proposed in [18]. In other words, we readjust the traditional

graphones, which are optimized to give the best context de-
pendent pronunciation, by using our unsupervised decompo-

sition, which is expected to produce better fragments suitable

for recognition. It is worth noting that practically free-size

graphones can be generated by setting L to a large value, but

according to [10], this increases the size of the graphone in-

ventory during G2P model training, which causes data sparse-

ness, leading to worse G2P performance.

The main step in building free-size graphones is the letter-

phoneme alignment. For that, we need a matrix A indexed

by all letters and all phonemes, the entries of A give the de-

grees of association between each letter and each phoneme.

To find the best alignment, we use two other matrices B and

C. Where, B is a matrix of accumulated associations up to

some point in the matrix, and C holds trace-back pointers in-

dicating from which cell the DP moves. The B and C matrices

are filled left-to-right, top-to-bottom using the following form

of recursive maximization equations [18]:

Bi,j = max

⎧
⎨

⎩

Bi−1,j−1 + Al(i),p(j),
Bi−1,j ,
Bi,j−1

⎫
⎬

⎭
1 ≤ i ≥ L
1 ≤ j ≥ P

(4)

where L and P are the letter and phoneme lengths of the

word respectively. The functions l(), p() provide the letter

and phoneme identity at the given index respectively. The

entries of C are filled according to the chosen maximum. In

order to estimate the association matrix A, we use the entries

of our pronunciation dictionary as training examples along

with an EM algorithm that works in the following steps:

• 1. Let k = 0, initialize Ak such that, for every word-

pronunciation pair in the dictionary, the entry ak
lp is in-

cremented if the letter l and phoneme p appear in the

same pair.

• 2. Use Ak in DP to align all the word-pronunciation

pairs of the dictionary, increment k = k + 1
• 3. Compute Ak such that, for every word-pronunciation

pair in the dictionary, the entry ak
lp is incremented if

the letter l and phoneme p appear in the same aligned

position.

• 4. Go to step 2 until having no change between Ak and

Ak−1 (convergence).

2.3. Partial vocabulary decomposition and OOV rate

As previously shown in our earlier work [3], It is useful for

sub-lexical LMs to not decompose the top N most frequent

decomposable full-words. This prevents the most impor-

tant words from being confused with other less frequent

fragments. Here, we optimize the value of N over the devel-

opment corpus. In addition, we compute the OOV rate of any

test set such that a word is considered an OOV if and only

if it is not found in the vocabulary and it is not possible to

compose it using vocabulary fragments.

2.4. Word recombination

To allow for easy and deterministic recovery to full-words in

the recognition output, we attach a ’+’ sign to the end of ev-

ery non-boundary fragment. An example is the word ’ab-
sicherung’ which is decomposed into ’ab+ sicher+ ung’.

3. EXPERIMENTAL SETUP

Our acoustic models are triphone models trained using about

343h of audio material taken from broadcast news (BN), Eu-

ropean parliament plenary sessions (EPPS), read articles, di-

alogs, and some web data. The acoustic models are trained

based on maximum likelihood (ML) method.

Our LM training corpora consist of around 306 Million

running full-words including data from TAZ newspaper, and

web collected German news articles. The vocabularies are

selected out of the text corpora by choosing the N top most

frequent words, where N ranges from 100k to 300k. The same

text corpora are used to estimate back-off N-gram LMs by the

SRILM toolkit [19].

Our speech recognizer works in 2 passes. In the first

pass, across-word acoustic models are used with no speaker

adaptation. The second pass uses the same acoustic mod-

els with speaker adaptation based on both Constrained Max-

imum Likelihood Linear Regression (CMLLR), and Maxi-

mum Likelihood Linear Regression (MLLR). In each pass,

a 4 or 6-gram LM is used to construct the search space.

To evaluate the recognition performance, we use the

Quaero 2009 development and evaluation corpora (dev09:

7.5h; eval09: 3.8h). Each corpus consists of audio material

from EPPS sessions and web sources. Additionally, eval09

has some BN data.

4. EXPERIMENTS

4.1. Baseline recognition experiments

In Table 1, we summarize the results of our baseline recogni-

tion experiments using traditional LMs based on full-words.

Table 1. Baseline word error rates [%] using language mod-
els based on full-words (voc: vocabulary).

voc Dev09 Eval09
size OOV [%] WER [%] OOV [%] WER [%]

100k 4.98 33.85 4.79 29.73

200k 3.76 32.67 3.53 28.79

300k 3.26 32.19 2.99 28.36
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4.2. Sub-lexical language models based on supervised and
unsupervised decomposition

In Table 2, we summarize the results of our recognition ex-

periments using sub-lexical LMs based on supervised word

decomposition as shown in Section 2.2.1. The total vocabu-

lary size is fixed to 100k, and the LM order is fixed to 4-gram.

We get the best results with supervised decomposition using

a vocabulary of 40k full-words + 60k fragments. We achieve

limited WER reductions of [dev09: 0.13% absolute (0.38%

relative); eval09: 0.29% absolute (0.98% relative)] compared

to the 100k baseline in Table 1. While, no improvement could

be achieved over higher vocabulary baseline systems.

Table 2. Word error rates [%] for sub-lexical LMs based on
supervised decomposition (frgs: fragments, wrds: words).

#full # OOV WER
corpus wrds frgs [%] [%]

Dev09 10k 90k 4.45 34.39

20k 80k 4.55 34.21

30k 70k 4.62 33.73

40k 60k 4.71 33.72
50k 50k 4.77 33.78

60k 40k 4.77 33.85

Eval09 40k 60k 4.48 29.44

In Table 3, we record the recognition results using sub-

lexical LMs based on unsupervised decomposition described

in Section 2.2.2. We use a vocabulary size of 100k, and a 4-

gram LM. We can see that almost all the recognition results

are even better than the 300k baseline system. We achieve the

best results for unsupervised decomposition using a vocabu-

lary of 5k full-words + 95k fragments. Significant WER re-

ductions of [dev09: 2.19% absolute (6.47% relative); eval09:

1.28% absolute (4.31% relative)] are achieved compared to

the 100k baseline system. On the other hand, compared to

the 200k baseline, we get WER reductions of [dev09: 1.01%

absolute (3.09% relative); eval09: 0.34% absolute (1.18% rel-

ative)]. And compared to the 300k baseline, we get WER im-

provement of [0.53% absolute (1.64% relative)] for the dev09

corpus, and only slightly worse results for the eval09 corpus.

In Table 4, we record more recognition experiments using

larger vocabulary sizes (200k and 300k), and a higher order

LM (6-gram). We use the best system configuration as pre-

viously optimized in Table 3, fixing the number of full-words

to 5k. We can see that using a 6-gram LM does not help.

This is caused by the poor LM probability estimates due to

sparse data problem. Using a vocabulary of 200k, we get

more WER reduction of [dev09: 0.67% absolute (2.17% rel-

ative); eval09: 0.21% absolute (0.74% relative)] compared to

the 300k baseline. For a 300k vocabulary, we achieve a little

more improvement in WER [dev09: 0.76% absolute (2.36%

relative); eval09: 0.29% absolute (1.02% relative)] compared

to the 300k baseline.

Table 3. Word error rates [%] for sub-lexical LMs based on
unsupervised decomposition.

#full # OOV WER
corpus wrds frgs [%] [%]

Dev09 0 100k 2.99 32.18

2k 98k 3.00 31.76

5k 95k 3.02 31.66
7k 93k 3.04 31.70

10k 90k 3.07 31.76

20k 80k 3.19 31.76

30k 70k 3.32 31.85

Eval09 5k 95k 2.76 28.45

Table 4. More word error rates [%] for sub-lexical LMs
based on unsupervised decomposition (#full-words = 5k).

voc OOV WER
corpus size LM [%] [%]

Dev09 100k 6-gram 3.02 31.62

200k 4-gram 2.62 31.49

300k 4-gram 2.40 31.43
Eval09 100k 6-gram 2.76 28.48

200k 4-gram 2.33 28.15

300k 4-gram 2.13 28.07

4.3. Graphone-augmented word models

In Table 5, we record the recognition results using graphone-

augmented word models illustrated in Section 2.2.3. The orig-

inal word model consists of 100k full-words. The LM or-

der is set to 4 or 6-grams, while the graphone size limit L
ranges from 2 to 4. We could not set L to higher values as

this increases the graphone inventory leading to impractically

very large resource requirements. Nevertheless, we optimize

L over the dev09 corpus. We see that the 6-gram LM does not

improve over the 4-gram LM. Using 4-gram LM with L = 4,

we achieve WER reductions of [0.29% absolute (0.89% rel-

ative)] for dev09 compared to the 200k baseline. For eval09,

we can improve WER only over the 100k baseline [0.34%

absolute (1.14% relative)].

Table 5. Word error rates [%] for graphone-augmented word
models; graphones are derived from G2P; (L: graphone size
limit, gps: graphones); vocabulary size is 100k + #gps.

# OOV 4-gram LM 6-gram LM
corpus L gps [%] WER [%] WER [%]

Dev09 2 2k 0.12 34.24 33.00

3 10k 0.12 32.83 32.72

4 24k 0.12 32.38 32.43

Eval09 4 24k 0.07 29.39 29.38
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In Table 6, we record the recognition results using

graphone-augmented word models. Where, as shown in

Section 2.2.3, we use Morfessor decomposition to adjust

graphones generated based on L = 2, since this gives the

least phoneme error rate (PER) for the G2P model. The

vocabulary is composed of 100k full-words plus graphones.

We can see that the 6-gram LM improves a little over the

4-gram LM. Using the adjusted graphones with a 6-gram

LM, by adding 200k graphones to the original vocabulary,

we get a little reduction in dev09 WER over the 300k base-

line [0.06% absolute (0.19% relative)]. For eval09 WER, we

can only improve over the 100k baseline by [0.5% absolute

(1.68% relative)]. Furthermore, some experiments are con-

ducted without the phonemic components of graphones, but

as results are comparatively worse, we do not include them.

Table 6. Word error rates [%] for graphone-augmented word
models; graphones are adjusted using Morfessor “free-size
graphones”; vocabulary size is 100k + #gps.

# OOV 4-gram LM 6-gram LM
corpus gps [%] WER [%] WER [%]

Dev09 77k 2.80 32.46 32.51

200k 1.91 32.14 32.13
Eval09 77k 2.61 29.49 29.52

200k 1.71 29.31 29.23

4.4. Effect on OOV words

For further analysis of our approaches, we investigate the ef-

fect on the recognition of OOV words which are not included

in the baseline full-words vocabulary. Therefore, the recog-

nition output is aligned with the reference transcripts and the

recognition accuracy is measured only for the OOV region. In

Figure 1(a), we show word accuracies using different methods

of word decomposition. It can be seen that the largest effect

on OOV words occurs with the unsupervised fragments which

seem to be very close to the true linguistic morphemes. Thus,

by using those fragments we can recognize around 35% of the

total OOV words. The differences among other approaches

seem not significant. Figure 1(b) provides the recognition ac-

curacies for OOV words measured for larger vocabularies in

case of unsupervised fragments. We can see that the same

range of accuracy (around 35%) happens for all vocabulary

sizes. This indicates the robustness of this approach.

5. CONCLUSIONS

We have investigated the use of sub-lexical language models

for German ASR. Three approaches for vocabulary decom-

position are compared, namely supervised and unsupervised

word decomposition, in addition to the graphone-based de-

composition. The best approach is to use a vocabulary of frag-

ments generated by unsupervised methods, along with some

fraction of full-words (around 5k). In our experiments, we
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Fig. 1. Recognition accuracies [%] for OOV words;

(a) (SD: supervised decomposition with 40k full-words,

USD: unsupervised decomposition with 5k full-words, CSG:

constrained-size graphones L=4, FSG: free-size graphones

200k) using vocabulary size = 100k and 4-gram LMs; (b) un-

supervised decomposition using 100k, 200k and 300k vocab-

ularies and 4-gram LMs.

have shown that using a vocabulary size of only 100k (5k
full-words + 95k fragments), we could significantly improve

WER over a 100k system of full-words by [dev09: 2.19% ab-

solute (6.47% relative); eval09: 1.28% absolute (4.31% rel-

ative)]. Increasing the overall vocabulary size decreases the

WER correspondingly. The improvement gets less for higher

vocabulary sizes, the reason is the higher degree of acoustic

confusability introduced by short fragments. The graphone-

augmented word models perform better than the supervised

decomposition approach, but worse than the unsupervised de-

composition approach. Moreover, a novel method is intro-

duced which uses word decomposition to allow for free-size

graphones. We believe that if a standard decomposition is

available, we can further reduce the WER. Ongoing work

includes the use of free-size graphones instead of the nor-

mal fragments in the original recognition vocabulary. One

choice is to consider a 100k vocabulary of 5k full-words +

95k morfessor graphones, where graphones replace the tradi-

tional graphemic fragments.
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