Abstract:
Discriminative reranking has been successfully used for several tasks of Natural Language Processing (NLP). Recently it has been applied also to Spoken Language Understan...Show MoreMetadata
Abstract:
Discriminative reranking has been successfully used for several tasks of Natural Language Processing (NLP). Recently it has been applied also to Spoken Language Understanding, imrpoving state-of-the-art for some applications. However, such proposed models can be further improved by considering: (i) a better selection of the initial n-best hypotheses to be re-ranked and (ii) the use of a strategy that decides when the reranking model should be used, i.e. in some cases only the basic approach should be applied. In this paper, we apply a semantic inconsistency metric to select the n-best hypotheses from a large set generated by an SLU basic system. Then we apply a state-of-the-art re-ranker based on the Partial Tree Kernel (PTK), which encodes SLU hypotheses in Support Vector Machines (SVM) with complex structured features. Finally, we apply a decision model based on confidence values to select between the first hypothesis provided by the basic SLU model and the first hypothesis provided by the re-ranker. We show the effectiveness of our approach presenting comparative results obtained by reranking hypotheses generated by two very different models: a simple Stochastic Language Model encoded in Finite State Machines (FSM) and a Conditional Random Field (CRF) model. We evaluate our approach on the French MEDIA corpus and on an Italian corpus acquired in the European Project LUNA. The results show a significant improvement with respect to the current state-of-the-art and previous re-ranking models.
Published in: 2010 IEEE Spoken Language Technology Workshop
Date of Conference: 12-15 December 2010
Date Added to IEEE Xplore: 24 January 2011
ISBN Information: