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ABSTRACT

Performing speaker diarization of a collection of recogdinwhere
speakers are uniquely identified across the database, isllardy
ing task. In this context, inter-session variability comgation and
reasonable computation times are essential to be addrelsstds

paper we propose a two-stage system composed of speakieadiar

tion and speaker linking modules that are able to perforra dat
wide speaker diarization and that handle both large volumhesta
and inter-session variability compensation. The spedikking sys-

tem agglomeratively clusters speaker factor posteridridigions,

obtained within the Joint Factor Analysis framework, thatidel

the speaker clusters output by a standard speaker diarizayis-
tem. Therefore, the technique inherently compensatesttaenel
variability effects from recording to recording within tlkatabase.
A threshold is used to obtain meaningful speaker clustersuby
ting the dendrogram obtained by the agglomerative cluggeriVe

show how the Hotteling t-square statistic is an interestiisgance
measure for this task and input data, obtaining the besttsemud

stability. The system is evaluated using three subsetsdiifil cor-

pus involving different speaker and channel variabilit& use the
within-recording and across-recording diarization erates (DER),
cluster purity and cluster coverage to measure the perfocenaf the
proposed system. Across-recording DER as low as withinroiag

DER are obtained for some system setups.

tion technology it is now common to model the inter-sessiarni-v
ability of speakers in addition of the speaker variabiltgeif so that
more robust recognition systems can be built. In technigueh as
Joint Factor Analysis (JFA)[1, 2], large databases invavinulti-
ple speakers and multiple sessions per speaker are anatyzepa-
rate the speaker and session effects in the speaker Galistanre
Models (GMM) obtained after adaptation.

In this paper we are interested in performing speaker ditiona
of a data set involving many recordings, that is, uniquebniify
the speakers across the data set and find the set of segnrezdstio
recording where each of the speakers is speaking. This tagl c
be solved by simply concatenating all the recordings of tita det
and then running a standard speaker diarization systenthisuis
not a practical or even feasible approach at this time fovdteme
of data we are targetting. We opt instead for a two-stagecagpr
where the amount of data processed at each stage is congpresse
First, a standard speaker diarization system obtainsmitiording
speaker clusters using a agglomerative clustering at thestic ob-
servation level. The speaker clusters are given a set dfastdrend
times and a unique speaker identifier within each recordinghe
second stage, another agglomerative clustering algosithose in-
put are the speaker clusters output by the diarization sy&eun
to structure the speaker space of the data set. Each inpakespe
cluster is represented as a speaker factor posteriorkdison ob-
tained after adaptation of a Universal Background Model \)B

Index Terms— speaker diarization, speaker linking, agglomer-to the speech data using JFA. The resulting speaker clusters

ative clustering, joint factor analysis, ward method

1. INTRODUCTION

clusters of speaker factor posteriors distributions, hemtgiven a
unique speaker identifier across the data set. If uniqueifaben are
correctly assigned, there should be a corresponding inepnent of
diarization performance, both within-recording, when thenber

In the last decades, speech technologies have been faced updf speakers within the recording has not been correctlyroeted

the challenge of dealing with large collections of multirizedata.
These corpora typically involve speech in a variety of sdesa
including multiple speakers, multiple acoustic condiipmultiple
languages, and even emotion or vocal effort variation. eones
other corpora, the data being captured is only limited byubers’
imagination and the available technology. In practice,size and
variety of recording conditions end up posing new challenfye
the speech processing techniques, whilst they are askezei dn
adequate computation time. The speaker diarization taakesh-
nology that is currently quite mature. However, changesouatic
conditions still can result in a performance drop and the mata
tional cost can become prohitive for long recordings orestilbns
of recordings.

Fortunately, the availability of lots of data can also tuntoia
valuable source for modeling new phenomena. In speakegmnéco
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and across-recording as well. Such a system benefits froquatie
processing for each stage. The first stage, within recordinge-
fits from a UBM fitted to the recording conditions to finely dete
speaker differences as well as dealing with a tractable eurob
speakers. The second stage benefits from a global UBM imglvi
multiple acoustic conditions, JFA inter-session compgosaand
more data per speaker to obtain the speaker models. We #ssess
impact of using the unique speaker labels on the Diarizefioor
Rate (DER) within and across recordings of the full data setell

as on the cluster purity and coverage measures.

Some work related to large scale speaker diarization arakspe
linking can be found in the literature. Cluster impurity acids-
ter entropy measures are proposed in [3] for speaker linkirad-
uation, although not focusing on system development. Ira[4p-
called speaker attribution system that performs speakk&inly of
the speaker clusters found by a speaker diarization systeumi
posed. This system is similar to our proposal in that it dtsst
the speaker clusters agglomeratively. The system useothplete
linking method to compute distances between clusters andlth-



malized Cross Likelihood Ratio (NCLR) as the distances betw
pairs of initial speaker clusters. Cluster and speakertyumiea-

step. The distance measure between two clusters is a combina
tion of Jensen-Shannon divergences, a measure naturéingar

sures are given to compare MAP and JFA approaches to adaptitem the maximization of Eq. 1. To infer the number of speak-

tion. Targetting large scale speaker diarization is [5]jclhpro-
poses a multi-stage system involving speaker diarizatidiovied
by speaker linking of chunks of speech data. Although &pdjtthe
database in small chunks increases diarization error, rétisssys-
tem scales particurlarly well on large data sets. Only thekviw
[5] focuses on interview and meeting data, the others tangeele-
phone speech conversations between two people. In our wark,
target a challenging scenario with meetings of 4 partidipaach
recorded using various types of far-field microphones aneraé¢
recording rooms. Regarding speaker factor posterioribigtons,
the system proposed in [6] includes the posterior distidinst into
the Variational Bayes method to perform soft clusteringidéion
on telephone speech.

ers the system uses the Normalized Mutual Information raoite
NMI = I(Y,C)/I(X,Y), measuring the fraction of original
mutual information I(X,Y) captured by the current clustepresen-
tation C. The optimal number of speakers is found when the NMI
measure is larger than a specified threshold.

Once the clusters have been found, their boundaries aredefin
using an ergodic HMM with duration constaints.

3. JOINT FACTOR ANALYSIS

Joint Factor Analysis (JFA) [1, 2] is a technique for adaptabf
Gaussian Mixture Models (GMM) based on Maximum-A-Postério
(MAP) estimation that allows for disentangling the speakad ses-

The paper is organized as follows: Section 2 describes theion effects. Assuming the simplified JFA model

speaker diarization system, based on the Information &wtik
(IB) clustering framework, that we use as a black box in thiskwy

Section 3 gives an overview of JFA, focusing on how the speake .

factor posterior distributions are estimated. Sectionstdbes how

the JFA framework is used to model the speaker segmentstoutp

by the diarization system, how they are clustered and hogueni
speaker identifiers across the data set are obtained. IioSect
the data sets used for experimental evaluation as well agetads

about the implemented systems are presented. SectionSgivee

results to validate the proposed techniques and Sectioreg gome
conclusions.

2. SPEAKER DIARIZATION

The goal of the speaker diarization task is to split a recwydinto
acoustically homogeneous regions that were spoken by tine sa
speaker, while also determining the number of speakerser Ada-
ture extraction and speech activity detection, these systgpically
detect boundaries between speaker turns, so-called spe@kege
detection, and then cluster these segments into speaksterdu
across the recording, so-called speaker clustering. Sipeaker
change detection is straightforward in our system, therdiag is
uniformly split into 1-2 second long segments that are aersid

m=m+ Vy +Ux , (2

m andm are the speaker-adapted and speaker-independent Gaus-
sian mean supervectors of a GMM, i.e. the concatenation ef th
Hhean vectors into a single vector. The speaker-indepe redger-
vectorm is formed by the mean vectors of a Universal Background
Model (UBM) typically trained with data from many speakehy

is a speaker-dependent low-rank term assumed to model espeak
variation. Ux is a session-dependent low-rank term modeling
session variation. The factor loading matridé¢&ndU are speaker-
independent and they are trained off-line using data froormyma
speakers and several session per speaker f2]and x are the
so-called speaker and session factors, assumed to be aijdor
following a normal distribution with zero mean and unit \earce.
The number of speaker and session factors affects the yjoétite
adaptation, the more factors the higher the dimensionalitthe
adapted subspaces.

Training a JFA model consists of fitting the factor loading-ma
tricesV andU and the latent variableg andx to the speech of a
database in the maximum-likelihood sense, typically bgrakting
the estimation of latent variables and loading matrices ocatver-
gence. The factor loading matrices are retained and thaysafor
adaptation, where only latent variables are fit to the adiaptaata.

homogeneous due to its short length, we only detail the gweak Note that as few as the number of speaker and session faetzide

clustering stage here. Please refer to [7] for more detaitsiathe
speaker diarization system.

The speaker clustering stage uses an Agglomerative Infama
Bottleneck (alB) approach based on information theoretiwcples.
The IB framework defines a set of relevance variabfegposterior
probabilities of the initial segments with respect to a GNU8M
in our case, that represent the information to be presemetie

estimated to adapt a GMM, whatever the number of Gaussian mix
tures. Once all the variables are available, a session-ensaped
speaker model could be synthesizethas- Vy.

In the training or adaptation phases, JFA estimates theepost
rior distribution of the speaker factors. Since they aresamsl to
be multivariate Gaussian[1] we can characterize the postistri-
bution with a mean vectoy and a covariance matri€, computed

clustering process. If' is a compressed representation of the inital &S

segmentsX, then the IB principle states thét should preserve as
much information as possible about the relevance varidbleBhis
objective function can be formalized in terms of mutual mfiation
as

F=I1Y,C) - %I(C, X) @)

y = Cb @)
G
= ([I+>_ NVOTmeTlve) T (4)
g=1
G
b = Y viTxoiX] (5)
g=1

whereg is a trade-off between the amount of information preserved,;;, @ being the number of Gaussian components of the GMM-

and the compression from the initial representaion.

UBM. For Gaussian mixture, V7 is the corresponding submatrix

The alB algorithm is a greedy approach to optimize EQ. 1uf v and%¥ the corresponding covariance matriX: are the first

where the initial segments are iteratively merged by pairshsit
the decrease in the objective function is minimum at eactgimer

1We dropped the diagonal speaker téba typically used in JFA.



order statistics that account for the teNiy. They are computed by of samples in clustet;. The number of samples for the initial clus-
removing the UBM and session effects from the first ordeisttes  ters is taken as the number of feature vectors used in theasin
XY as of speaker factor posterior distributions.

X! = X? - Nfm® — 5" N{ U ©
hes

4.2. Cluster Dissimilarity

g g . Although the Lance-Williams recursion is stricly valid fioitial dis-
whereN{ and V;, , are the expected number of frames assigned {Qances that are proportional to the squared Euclideanndistave
Gaussiary for speaker and sessioh andU? is the corresponding  se it with other dissimilarity measures as well. Assumireave

submatrix ofU. When only one session is available for adaptationcomparing two F-dimensiorfamultivariate Gaussian distributions

g — g i
we useN{ = N; .. Equations analogous to Eq. 3 are used topi ~ N(yi, C:) andp; ~ N(y;, C;):

estimate session factors.

4. SPEAKER LINKING

The goal of the speaker linking system is to uniquely idgntife
speakers output by the speaker diarization system foralidbord-
ings in the data set. The agglomerative clustering andiledpsteps
are discussed in the following:

4.1. Agglomerative clustering

We use an agglomerative clustering algorithm to group simil
speaker clusters from the output of the speaker diarizatystem.
Linking speaker clusters from different recordings is alleimging
task, but it also benefits from two advantages over wihtirting

speaker diarization: (a) The speech data in the data set €an b

analysed as a whole. In particular, the adapted models canrhe
pensated for session variation via JFA. (b) The amount & da¢d
for speaker modeling can be significantly larger if the speap-
pears in more than one recording. This surely has a positipaét
in the quality of the adapted models.

The speech data of each speaker cluster is modeled as a single

multivariate Gaussian with full covariance matrix, whichindeed
the speaker factor posterior distribution estimated by giv&n the

speech data and a GMM-UBM (see Section 3). These are the ob-

jects that the speaker linking algorithm is clustering. \okofv a
standard approach to agglomerative clustering: eacllicitister is
assigned one speaker cluster. The two closest clusterberestic-
cessively merged. To keep the whole clustering dendrograrstep
the merging process when only one cluster remains:

1. Compute the distance matrixfor all pairs of speaker clus-
ters, that become the initial clusters.

2. Merge the two closest clusters.

3. Update the distance matrix from the merged cluster to all
other clusters.

4. Go to 2. If only one cluster remainstop.

A key point of agglomerative clustering algorithms is thekdi

ing method, or how to measure the distance between two cduste
at some stage in the clustering process. We use Ward’s nj8ihod

which merges the two clusters that result in the minimumease
of the total within-cluster variance after merging, i.eaiins at ob-
taining compact clusters. Ward’s method is typically inmpénted
in a recursive manner using the Lance-Williams algorithm{@hen

two clusterse; andc; are to be merged, the distances between the

merged cluster;; and all other clusters;, are updated using the
recursion

d(ij)k = oudik + ajdjx + Bdij ©)
with d;; being the distance from clusterto clusterj, a; =
g oo Mt g N andn; is the number

nitngt+ng’ nitnjt+ng nitntng

e The cosine distanceis a widely use metric in the speaker
recognition community to compare speaker and total factor
mean vectors estimated via JFA or Eigenvoice MAP estima-
tion. It has been noted in [10] that the resuting scores are
stable to the point that the derived recognition systems do
not require any score normalization. The distance measure
is taken from the normalized projection of two vectoys,
andy; as

T .
17 Y y] (8)
Iyl [yl

e Thesymmetrised Kullback-Leibler divergenceis an infor-
mation theoretic measure of dissimilarity between twordist
butions. The KL divergence measures the amount of informa-
tion required to encode samples of a distribution using & cod
based on another distribution. By using the symmetrised KL
divergencedski(pi, pj) = dri(pi, ;) + dri(ps, pi), which
is non-negative and symmetric, only half of the elements of
the distance matrix need to be computed. The closed form of
the KL divergence for multivariate Gaussian distributicas
be written by

deos(¥ir yi) =

1 _ _
dia(pi,py) =5 (1(C7C) + (v: = 9))" €7 (v = 3)
1Ci|
—1In - F 9)
IG5 )

e Thetwo-way Hotteling t-square statisticis the multivariate
equivalent of the two-way Studentstatistic. It is used for
testing the hypothesis that the means of two samples assumed
to be Gaussian distributed with equal covariance matrices a
different. The statistic is written by

nin;g _
ditest (i pj) = mTsz(yi —¥i) Cponi(yi —y;) (10)
with
R )

n; +n; — 2
In the hypothesis test, Eq. 10 is typically transformed into
an F statistic that is evaluated against an F distributiasbto
tain a p-value, the probability of rejecting the hypothekist
the two mean vectors are the same. Since the p-values van-
ish when computed with large; andn;, we use the statistic
of Eg. 10 as the dissimilarity measure between two clusters.
Under the assumption that both Gaussian distributionseshar
the same covariance matrix, this measure has the form of the
Euclidean distance between spherified Gaussian distitgiti
therefore matching the assumptions of the Lance-Willisgns r
cursion.

2F is the number of speaker factors.



4.3. Speaker labelling

Itis expected that speaker clusters naturally arise duheggglom-
erative clustering process. As shown in [10], speaker fatiean
vectors exhibit very good discrimination amongst speakdrsey
are also inherently normalized by the priors, which is kel ren-
der them more comparable amongst speakers. In this workswe
sume the speaker clusters can be simply found by thresigott
distance values in the clustering dendrogram obtained sritled
in Section 4.1. For parent nogeand child node: in the dendro-
gram, ifd, > th andd. < th, all descendants including nodere
assigned the same global speaker identifer.

5. EXPERIMENTAL SETUP

To evaluate the proposed system, we ran experiments to certipa
performance of speaker diarization system alone versuspibaker
diarization plus linking system, what we célll speaker diarization
system.

We use the same frontend for the whole system, extracting 1§,

e AMI56CH : involves 56 speakers, 181 recordings, 85 meet-
ings, 12 channels, 3 rooms, 1262 speaker clusters to be
linked. This is the evaluation data set with the largest lspea
and session variability.

a2 1. Performance measures

We use several measures to evaluate the performance ofehkesp
diarization and the full speaker diarization systems. TlariPa-
tion Error Rate (DER) assesses the within-recording andsaer
recording impact of speaker linking on the diarization eys.
When speaker diarization systems detect more speakersthban
actual number of speakers, the within-recording DER (wrlpER
sesses the effect of grouping speakers within the recottatgvere
considered the same by the speaker linking system. wrDER use
the references obtained by forced alignment of ASR trapscwith
speakers labeled with unique identifiers within the reaaydiThe
wrDER also allows us to directly compare the output of theidia

tion and full diarization systems, although only the withécording
provement can be observed. We use the across-recordifiy DE

MFCC features every 10ms using a 30ms window. No delta or aciarpER) to assess the DER for the data set as a whole. For this

celeration coefficients are used.

The speaker diarization system relies solely on the datadii e
recording to do the speaker partitioning. No training dateothan
the recording itself is required. We used 2.5s long segnfenthe
initial segmentation. The IB trade-off parametewas 10. Since the
number of participants in the AMI meetings is 4 and the maximu
number of speaker clusters is set to 10, the system tendsder-un
cluster, i.e. find more speaker clusters than actual spgeakine
NMI threshold for speaker detection was3. These settings were
optimized for meeting data from the NIST RT’06 evaluation.

We use the speech data collected for the Augmented Muljipart
Interaction (AMI) project for training the speaker linkirgystem.
JFA adaptation requires a GMM-UBM that we trained using atbu
50 hours of far-field array data from the ES, IS and TS meetimgs
the AMI corpus. We use a gender-independent 512 Gaussidnnaix
UBM and Maximum Likelihood (ML) estimation.

The JFA factor loading matrice¥ and U were trained using
speech data involving 132 speakers from 4 far-field micropho
channels per meeting, using the ES, IS and TS meetings. The
meetings are recorded in different rooms using differentraai
phones, with a total of 12 different channels is present i data
set, plus the speaker-to-microphone placement which inamk
as well as microphone placement changes. To estimate timdpa

purpose, we concatenate the references of all recordintye idata

set as if it were a single recording with the within-recogigpeaker
identifiers replaced by unique speaker identifiers acrossdtta

set. To compute the DER, a one-to-one mapping between the set
of reference and system speaker identifiers is performed fest,

the ratio of the number of frames with reference speaker ritia

ing the mapped system speaker to the total number of frames is
computed. For all DER computations we use a collar of 250ms.

For the full diarization systems we also compute clusteityur
and cluster coverage measures. Given a particular cltiséec|uster
purity is defined as the ratio of the number of frames assigoed
the dominant speaker over the total number of frames of thste.
Conversely, for a given speaker, the cluster coverage ipated as
the ratio of the number of frames of the dominant cluster éottital
number of frames of that speaker. We give average valuestioger
data set for both measures.

Note that, since the speaker linking task is indeed an ifiesi
tion task, the performance is dependent on the number okspea

at are being identified, the more speakers the higher DERY

6. EXPERIMENTS AND RESULTS

matrices we used a decoupled estimation scheme with 10 iterd ne first set of experiments is aimed at exploring the behavod

tions of ML estimation for training the JFA model. For addjuta,
the speaker and session factor posterior distribution® vantly
estimated for each speaker cluster hypothesized by thé&espda
arization system. All the available speaker factors, i22,and 20
session factors were used after informal optimization @nAMI8
data set, described below.

The speaker diarization systems were evaluated on thefthiiree
lowing data sets:

the clustering and labelling steps of the speaker linkirgjesy and
assess their impact on their performance. Table 1 givesethdts

for these experiments. Two types of systems, Dia and Fuliibéa
shown corresponding to the standard and full speaker difwiz
systems. For the FullDia systems we tested the discusssingis
larity measures above. We use the optimal a posterioriltbidghat
minimizes the wrDER.

All FullDia systems obtain lower wrDER than the Dia baseline

These gains are due to speaker segments in each recordimg bei

* AMI8: involves 8 speakers, 18 meetings, 4 acoustic channelg,stered as the same global speaker. Note, however, thatthber

1 room, 135 speaker clusters output by the diarization syste

of speakers detected is far from 8 for the systems using thie&o

to be linked. This is a small development data set used tQn4 sk| dissimilarity measures. For these two systemsingatse
analyze the behaviour of the system and to tune the systefyreshold led to a smaller number of speakers, but for the rigm-

parameters.

AMI56: involves 56 speakers, 146 recordings, 56 meetings
4 channels, 1 room, 1044 speaker clusters to be linked. Thi
is an evaluation data set with larger speaker variability bu
recorded on the same room as AMIS8.

ber of speakers a bunch of recordings obtained much wors&€RrD
compared to the baseline system. Conversely, loweringhttesh-
old resulted in a slight wrDER gain although only few recorg
were given a different speaker assignment compared to geiba
system. In contrast, the system using the ttest distanceureax-



hibited more stability, being able to smoothly balance tiagle-off  wards the right side and around gain 0. For the cosine andssiha
between wrDER and number of speakers. For the optimal a-jpostdarity measures, a large proportion of the meetings didamainge
riori threshold, this system finds the right number of spesalked the speaker assignment. In this case, this led to better Rrib&n
it simultaneously optimizes the wrDER, reaching over 40%BR  further assigning the wrong speakers. Note that losses fld%%
relative improvement over the baseline. This large gaindabably  to -27% wrDER are observed in three recordings for the Falitai-
due to the fact that the ttest distance is proportional towagliiean  sine system. For the FullDia ttest system, out of the 146rd#egs,
distance once the pooled covariance has been spherifidds bese,  only 5 recordings are left with the original speaker assignin131
the distance measure is matched to the Gaussian input datllas recordings obtain gains and for 10 recordings the new speseke
as Ward's method and the Lance-Williams algorithm asswmgti signment results in some loss. However, these losses anelbdat
Fig. 1 shows dendrograms for the FullDia systems of Table 1around -2.5% absolute.
For the FullDia ttest system of Fig. 1(right), a big distageg be-

tween merged nodes is present after a speaker cluster hafobee. | gystem | Th. | #SpK] Wr/;lr 5D/ER(00) [ Cp/Cc(%) ]
For the cosine distance measure of Fig. 1(left) these gapsiach a_ — . : e
more gradual and a clear cutting threshold can not be visid#h- Eﬂ”g:g gck)ls ??ea 19%5 %ggggg gggﬁggé
tified. For the FullDia skl system of Fig. 1(center), thererss to be FullDia ttest| 0.25| 58 21.723.6 69.870.2

a set of meetings on the left part of the graph for which theghr
old seems to work whereas the distance explodes for anathef s Table 2. Speaker diarization experiments on the AMI56 data set
meetings on the right part of the graph. In this case, furtheing  involving 56 speakers. The same columns of Table 1 are shown.
of the threshold only increased the wrDER.

For the FullDia cos and FullDia skl systems, the threshoid th
optimizes the wrDER, even though it results in improvemeiits

turns out to be rather bad in terms of full diarization, witlb&R [ System [ Th. [ #Spk | wr/ar DER(%) [ Cp/Cc(%) |
becoming three times worse than wrDER. This supports treettuis Dia — — 27.6/ —
these systems are not able to identify natural clustersaat Lising a FullDiacos | 0.6 | 247 26.038.9 62.3/56.4

FullDiaskl | 3e4| 121 27.3/33.0 60.7/64.0

single threshold. arDER for the FullDia ttest system sthgssame FullDia ttest | 0.2 86 26.828.0 67.572.8

as wrDER, meaning that the optimal speaker assignment wasl fo
in this case. Cluster purity and especially cluster coveragasures  tapje 3. Speaker diarization experiments on the AMIS6CH data set

are significantly larger for the FullDia ttest system. involving 56 speakers. The same columns of Table 1 are shown.
[ System [ Th. [ #Spk [ wifar DER(%) | Cp/Cc(%) |
Dia . o 14.5/ Py Table 3 shows the results for the AMIS6CH data set, which
FullDiacos | 0.6 21 11.2/36.9 69.6/53.2 L ’
FullDia ski 364 17 12.6/33.6 69.2/53.3 he}s the Iargqst channgl .varlablllty of the three glata setthoigh
FullDia ttest | 0.25 8 8.58.5 75.074.2 this data set is more difficult than AMI56 we noticed that thene

thresholds in the AMI56 experiments roughly optimized th®&R
Table 1. Speaker diarization experiments on the AMI8 data sethere too. Absolute wrDER are overall higher than those obthfor
involving 8 speakers. The type of diarization system anddise  the AMI56 data set, e.g. 27.60% versus 24.50% for the basBiia

similarity measure are shown in the first column. The optimal gystem, This data set involves recoding in different shesase dif-
posteriori threshold, the detected number of speakersw -

recording/across-recording DER, the average clustetypanid av-  ferent recording setups as well as slightly different sticee of the
erage cluster coverage are shown in the remaining coluntissb@st  meeting. The FullDia systems give some slight improvemeet o

results use bold typeface. the baseline, around 5% relative for the FullDia cos systeegning
that the speaker clusters within the meeting are still pigpimked
to some extent. However, the number of detected speakensds m

Table 2 shows results for the AMI56 data set which has mordarger than the actual number of speakers, 56. This has tivena-
speaker variability but around the same session varigbiatterns  pact on the arDER rate. The FullDia cos and FullDia skl deteice
similar to those found in the previous experiments can batide and five times the actual number of speakers respectivelgarfde
fied here too. The use of cosine and skl dissimilarity meastge  ing the FullDia ttest system, 86 speakers were detectedaricaind
sult in some wrDER gains compared to the baseline system, bi0% more than the actual number of speakers. However, nate th
not as much as using the ttest distance. In terms of full zhari the arDER for this system is still very close to the baselinBER,
tion, the arDER for the FullDia cos and FullDia skl systemabsut ~ 28% vs. 27.6%, whereas the full speaker diarization tashrisid-
50% larger than their corresponding wrDER. However, thélkal  erably more challenging than within-recording speakeriziiion.
ttest system obtains comparable wrDER and arDER figures, witNote that, with a similar 50% increase of the number of speake
the arDER being slightly better than the baseline wrDERh&ligh  detected, the FullDia skl system performance decreasedduna
wrDER and arDER use different speaker assignments and compat0% the arDER in the AMI56 experiments. This suggests that th
ing them is not strictly correct, these similar figures sijgbat  ttest distance is robust to estimation errors in the numbaeatural
the speaker linking system is doing a good job consideriagftil speaker clusters besides obtaining better figures in alesgitms.
speaker diarization is a considerably more difficult taskis€@r pu-
rity and coverage measures are in the line of the previousrexp 7. CONCLUSION
ments with a clear improvement for the FullDia ttest system.

Figs. 2 show the histograms of the absolute improvement ofWe proposed a two stage system for performing speaker dimiz
wrDER across all the meetings in the AMI56 data set for theghr on a full data set via speaker linking of the speaker clustets
FullDia systems of Table 2. All the systems resulted in nyoisti- put by a speaker diarization system. According to the resali:
provement, as revelead by the asymmetry of the distribstion  tained for three data sets taken from the AMI corpus, usingsa d



Fig. 1. From left to right, dendrograms obtained by the FullDia, ¢adiDia skl and FullDia ttest systems on the AMI8 data sen tle x
axis are the speaker clusters output by the standard spdiakization system. The height of the nodes represents #ging distance. The

dotted line is the threshold that minimized the wrDER.
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Fig. 2. Histograms of the absolute wrDER improvement across alhtieetings in the AMI56 data set. The three graphs corresjuoting
FullDia cosine, FullDia skl and FullDia ttest systems fraeft ko right. On top of the graphs, the number of meetings whassignment was
not changed after speaker linking is shown along with thelremof meetings that resulted in a gain or loss of wrDER.

tance derived from the Hotteling t-square statistic in thglamera-

tive speaker clustering stage greatly helps in producingnimgful

speaker clusters across the database. Although the systnts
the cosine distance and the symmetric KL divergence olidaome
within-recording DER improvements, diarization erroreaBcross

(3]
[4]

the whole data set were much higher than those obtained kéth t

ttest distance. The optimal thresholds for speaker lafzeil the

speaker linking task were stable across different datavegtsdif-

ferent amount of acoustic channel variability, althoughttireshold
was decisive in predicting the number of speakers of the sittea
parameter that remains critical. The systems using thedigsnce
were also much more precise at guessing the right numbeeaksp
ers. Even the sensitivity of the diarization error rate asrihe data
set to these errors was found to be low when using the ttesindis.
These conclusions are supported by the cluster purity amtesl
coverage measures as well. For the data set with largedtesparad
channel variability diarization error rates across theadsdt were
kept almost as low as diarization error rates performedrdacg by

recording.
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