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ABSTRACT 
 
Pronunciation errors are often made by learners of a foreign 
language. To build a Computer-Assisted Language Learning 
(CALL) system to support them, automatic error detection is 
essential. In this study, Japanese learners of Chinese are fo-
cused on. We investigated in automatic detection of their 
typical and frequent phoneme production errors. For this aim, 
four databases are newly created and we propose a detection 
method using Support Vector Machine (SVM) with structur-
al features. The proposed method is compared to two base-
line methods of Goodness Of Pronunciation (GOP) and 
Likelihood Ratio (LR) under the task of phoneme error de-
tection. Experiments show that the proposed method per-
forms much better than both of the two baseline methods. 
For example, the false rejection rate is reduced by as much 
as 82%. However, the results also indicate some drawbacks 
of using SVM with structural features. In this paper, we dis-
cuss merits and demerits of the proposed method and in 
what kind of real applications it works effectively. 
 

Index Terms— Pronunciation error detection, Chinese, 
SVM, structural feature, GOP, LR, robustness 
 

1. INTRODUCTION 
 
Pronunciation errors are often made by learners of a foreign 
language. Especially when the target language contains some 
phonemes that are not found in learners’ native language, 
learners tend to replace these phonemes with ones existing in 
their native language. Automatic detection of these errors is 
an essential and requisite technique in CALL systems [1]. 
For this task, GOP is extensively studied [2][3] and often 
used with phoneme-dependent thresholds and, when a diffi-
cult phoneme is often replaced with a specific competitive 
phoneme, LR between the two phonemes is useful [4]. These 
methods, however, have the well-known mismatch problem, 
where training speakers of pronunciation models, i.e., teach-
ers, and testing speakers, i.e., students, are mismatched, e.g.,  
adults and kids, the performance readily decreases. To solve 
this, pronunciation models may be adapted to students, but 
the adapted models tend to falsely accept wrong pronuncia-
tions simply because the models are adapted to students [5]. 

Recently, a novel structural model of pronunciation was 
proposed [6], which works effectively to remove the non-

linguistic aspects of speech from speech acoustics and keep 
the linguistic aspects well at the same time. Since the non-
linguistic change of speech features is often modeled as fea-
ture transformation, the novel model is based on completely 
transform-invariant features, which is f-divergence [7]. This 
model has been already applied to overall pronunciation 
scoring in CALL [8], large vocabulary continuous speech 
recognition [9], speech synthesis [10], and dialect-based 
speaker clustering [11]. In these studies, remarkable robust-
ness of our invariant model to speaker differences was ex-
perimentally shown. This paper reports our first trial to ap-
ply our invariant model to phoneme error detection. 
 

2. MATERIALS 
 
In our study, 5 databases are used for different purposes: 
Chinese Read by Natives (CRN), Chinese Read by Japanese 
(CRJ), Chinese Read by Natives with Errors (CRN-E), Chi-
nese generated by a Text-To-Speech (TTS) converter [12] 
and NICT Chinese database [13]. 

We created the first three databases by asking speakers 
to read given sentences. At first, considering phoneme cov-
erage and level of reading content difficulty, 2 paragraphs 
(17 sentences) were selected from a Chinese textbook [14] 
as reading material. In the CRN database, 4 Chinese speak-
ers (2 females and 2 males) were asked to read the material, 
which will be used as teachers’ data. In the CRJ database, 7 
Japanese learners (3 females and 4 males) read the material. 
As for Chinese spoken by Japanese, through good discussion 
with Chinese teachers, 8 phonemes were defined that are the 
most problematic and difficult phonemes for Japanese learn-
ers to pronounce correctly. In this paper, we call these 8 
phonemes as target phonemes. Further, for each target pho-
neme, its competitive one is selected by teachers, i.e., the 
one which is often substituted by Japanese learners for the 
target phoneme. If we follow the description in the previous 
section of how learners substitute phonemes, teachers should 
select Japanese phonemes as competitive ones. However, for 
designing the CRN-E database below, we asked teachers to 
select competitive phonemes out of the Chinese phoneme set. 
Table 1 shows the 8 phoneme pairs. When a Japanese wants 
to pronounce /sh/, he may pronounce /x/ instead. 
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Table 1 Eight target phonemes and their competitive ones 
Targets zh ch Sh v er ing eng ang 

Competitive j q x u a in en an 
 
Generally speaking, techniques for pronunciation scoring 
and error detection should be built using real learners’ data 
that have many pronunciation errors. However, preparation 
of a non-native speech database with phone-level annotation 
is a very laborious task for teachers and phoneticians. This 
often blocks efficient technical development of new methods 
for error detection. To solve this, in [3], a database including 
phoneme production errors was prepared by using native 
utterances. Through changing phoneme-based transcripts of 
native utterances based on production error characteristics of 
learners, production errors were artificially simulated in the 
database. [3] also shows technical validity and effectiveness 
of this “artificial” preparation. In this study, we prepared 
speech samples with phoneme errors in a similar way, i.e., 
modifying the transcripts of the NICT Chinese database. 
Further, we made another version of artificial data, which 
was created by asking native speakers to read sentences with 
intentional errors based on Table 1. In the reading sheet of 
CRN, 48% of the instances of the 8 target phonemes are 
replaced by their competitive (confusing) phonemes. 9 na-
tive speakers (5 females and 4 males) were asked to read this 
material. Each speaker read 3 times per sentence. Their 
speech samples formed a database called CRN-E. For more 
efficient collection of utterances including phoneme errors, 
we tentatively tested the use of a commercial Chinese text-
to-speech synthesizer [12]. By using it, we can easily obtain 
utterances of the same original reading sheet with mispro-
nunciations added at different positions in the sheet. This 
database will be called henceforth as TTS. This tedious re-
cording is difficult to ask human speakers. 

The above databases will be used for different purposes 
in the following way. The NICT Chinese database contains 
utterances of 200 native speakers from 4 big cities. For our 
study, Beijing speakers (15 females and 15 males) were used 
for training native phoneme HMMs (monophones) and the 
same material was used also to determine GOP thresholds 
through modification of the transcripts. Out of the 17 sen-
tences in CRJ, 5 sentences (35 utterances) were selected and 
acoustic realizations of the 8 target phonemes were checked 
by a Chinese phonetician (the second author). In this paper, 
both the CRN-E database and the CRJ database are used in 
testing GOP, LR, and SVM with structural features. As for 
the TTS database, since we have a male synthesizer and a 
female one, we ask them to read 10 transcripts with mispro-
nunciations at different positions and different error rates. 
The resulting TTS database as well as CRN-E is used for 
SVM model training. The summary of the databases is 
shown in Table 2. “#M/F” represents the number of male 
and female speakers. “#U” represents the number of utter-
ances. Usage of each database is also shown in the table. 

Table 2 Summary of the 5 databases 
database #M/F #U Usage 

CRN 2/2 80 Teachers’ structural model 
CRJ 3/4 35 Training and/or testing samples 

for the three models of GOP, LR, 
and SVM with structural features. 

CRN-E 5/4 459 

NICT 10/10 5000 Native HMM training  
5/5 2500 GOP thresholds estimation 

TTS 1/1 340 SVM model training 
 

3. METHODS 
 
3.1. GOP with thresholds 
 
The GOP score is a well-known pronunciation measurement. 
It calculates posterior probability of phoneme x given its 
acoustic observation O, which is approximated by equation 
(1).  Here, Q is the inventory of phonemes. A student’s ut-
terance is subjected to both forced alignment and phoneme-
loop speech recognition [2].  
 

 
 

By using correctly pronounced data and incorrect data, dis-
tribution of the GOP scores of correct pronunciation and 
those of errors can be obtained. By observing the two distri-
butions, GOP thresholds for error detection can be obtained. 
If GOP(x|O) ≥ α, segment O is judged as correct and other-
wise not, where α is a threshold often determined dependent-
ly on target phonemes [2][3]. Estimation procedures of the 
thresholds will be explained in section 4.1. 
 
3.2. Likelihood Ratio 
 
As was done in data collection, we supposed that the pho-
neme-level substitution pattern found in Japanese Chinese is 
stable and that each target phoneme has its own competitive 
one. Hereafter, we use x as intended phoneme and y as sub-
stituted phoneme. In preparing the CRN-E database, we used 
the information of y although GOP does not exploit this in-
formation. When phoneme confusion is stable, Likelihood 
Ratio (LR) is useful [4], which uses the information of y as 
well. An LR score of phoneme x is calculated by taking the 
absolute difference of the log probability calculated through 
forced alignment as x and the log probability of forced 
alignment as y. 
 

 
 

The LR is based on binary classification, determining 
whether O is more like x or y. Actually, in the case of GOP, 
if phoneme loop recognition claims that segment O is y, then 
the LR is basically the same as GOP. In LR error detection, 
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if the LR score is higher than 0, segment O is judged as cor-
rect and otherwise, not. 
 
3.3. Structural features 
 
The GOP and LR scores use only the pronunciation features 
in the segment of O (absolute features), while structural fea-
tures are contrastive (relative) features between the segment 
O and other segments. The process of constructing a speech 
structure from an input utterance is shown in Fig. 1. An ut-
terance is represented by a sequence of feature vectors. Then, 
it is converted into a sequence of distributions. This conver-
sion process can be viewed as the training process of an 
HMM from an utterance. Distance between every distribu-
tion pair is calculated as the root of the Bhattacharyya dis-
tance. A full set of distances, i.e., distance matrix, is used to 
represent this utterance [6]. Note that this representation 
does not keep any information of the spectral shape of the 
segment O but keeps only how different O is to other seg-
ments. In other words, the GOP and LR methods are based 
on phonetic features of sound substances but the speech 
structure method is based on phonological features of sound 
contrasts [15]. 
 

 
Fig. 1 Extraction of structural features 

 
Suppose that a teacher and a student read the same sen-

tences and both the utterances are converted into two dis-
tance matrices, {Tij} and {Sij}. In [8], the structural devia-
tion related to phoneme i is calculated by (3), which quanti-
fies the magnitude of structural difference as for phoneme i 
between the teacher and the student. Fig. 2 schematically 
shows the process of calculating DEV(S,T,i), where {Dij} is 
a difference matrix between {Sij} and {Tij}. 
 

 
 
In (3), M is the number of distributions, which is the 

number of phoneme instances of the input utterance. Expla-
nation of how to convert an utterance to a distribution se-
quence will be explained in detail in section 4.3. 
 

 
Fig. 2 Structural difference between a student and a teacher 

 
3.4. Support vector machine 
 
Structural features are expected to tell us which phoneme 
instance is likely to be pronounced incorrectly based on its 
relations to other phoneme instances in the utterance. One 
problem is that equation (3) claims that all the elements in a 
difference matrix contribute with the same importance, but 
this claim will not be good. Especially when multiple pho-
neme instances are incorrectly pronounced in a sentence, the 
distance from phoneme i in {Sij} to one of these erroneous 
phoneme instances will impede the detection performance. 
One possible solution is to introduce weights and use a re-
gression model. For example, when correct phonemes are 
labeled as 0 and incorrect phonemes are labeled as 1, these 
scores can be predicted by the following regression.  
 

 
 

Based on consideration of this binary classification, we 
introduce the Support Vector Machine. Let xi represent a 
structural difference vector of phoneme i ({Dij}j=1,2…M), and 
yi represent a 1/0 label of xi, indicating whether phoneme i 
is correctly pronounced, shown in Fig.3. 
 

 
Fig. 3 Adoption of structural features in SVM 

 
Given a training set of instance-label pairs of (xi,yi), the 

SVM is obtained by solving the following problem [16]: xi 
is mapped into a hyperplane by function ∅. b is the bias term 
of the hyperplane. C(>0) is the penalty parameter of the er-
ror term εi. W is the weight vector of ∅(xi). 
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Here, the linear kernel and the radial basis function ker-

nel (RBF) are considered in the model training process. 
Generally speaking, the result of the linear kernel is similar 
to that of linear regression. The RBF kernel can handle the 
case when the relation between class labels and instances is 
nonlinear, and it has fewer parameters than other kernels so 
that it can reduce computational difficulty [16]. 
 

 

 
 
3.5. Performance measures 
 
Error detection can produce four types of outcomes [3]: 1) 
correct acceptance (CA), i.e., the number of correct pronun-
ciations that are judged as correct, 2) correct rejection (CR), 
the number of mispronunciations that are judged as incorrect, 
3) false acceptance (FA), i.e., the number of mispronuncia-
tions that are judged as correct and 4) false rejection (FR), 
i.e., the number of correct pronunciations that are judged as 
incorrect. Using these four outcomes, False Acceptance Rate 
(FAR), False Rejection Rate (FRR), and Average Error Rate 
(AER) are calculated [17] for comparison among GOP, LR, 
and SVM. FAR = FA / (CR + FA), FRR = FR / (CA + FR), 
and AER = (FAR + FRR)/2. 
 

4. EXPERIMENTS AND RESULTS 
 
4.1. GOP-based error detection 
 
In the NICT database, artificial pronunciation errors are 
created by changing the transcript as in [3]. Some instances 
of the phonemes in the second row of Table 1 are replaced 
by their target phonemes in the first row. We simulated that 
the speaker intended to pronounce a target phoneme but 
actually pronounced its competitive one. Using these data, 
the GOP scores of correct pronunciations and those of mis-
pronunciations were calculated separately. 

In Fig.4, the GOP distribution of /sh/ (correct pronunci-
ation) is drawn in blue, while the GOP distribution of incor-
rect /sh/ (real pronunciation is /x/) is drawn in red. We set 
the threshold so as to minimize the classification error. The 
thresholds of all the target phonemes were obtained from 
their corresponding distributions, shown in Table 3. 
 

 
Fig. 4 Probability distribution of /sh/ GOP scores 

 
Table 3 GOP thresholds of the 8 target phonemes 

Phonemes zh ch sh v er ing eng ang 
Thresholds 1.2 2 1.3 5 2.7 5 2.5 2.6 

 
Finally, phoneme error detection is done in the follow-

ing way. First, the GOP scores of all the individual pho-
nemes in test data (CRN-E) are calculated. Then, if the pho-
neme is one of the eight target phonemes, its GOP score is 
compared with its threshold. Table 4 shows our results and 
the results of another study just as reference although these 
scores should not be compared directly due to differences of 
experimental conditions. From the table, our AER is worse 
than that in [17]. The reason is that, although we have a bet-
ter result for FRR, we have a much worse result for FA. 
FAR and FRR have a trade-off relation and two FARs 
should be compared under the same score of FRR. 
 

Table 4 GOP-based error detection results 
 CRN-E [17] 

Language Mandarin Mandarin 
FAR 0.75 0.42 
FRR 0.12 0.24 
AER 0.43 0.33 

 
4.2. LR-based error detection 
 
Results of LR-based error detection in the CRN-E database 
are shown in Table 5. AER of the LR-based error detection 
improved a lot because FAR is reduced greatly. The LR 
scores show its high capacity in detecting errors but FRR 
increases compared with the GOP-based error detection.  
 

Table 5 LR-based error detection results 
 GOP LR 

FAR 0.75 0.26 
FRR 0.12 0.24 
AER 0.43 0.25 
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LR can be used for fair comparison with SVM using 
structural features when the CRN-E database in used. This is 
because both the models are trained based on competitive 
(confusing) phoneme pairs. 
 
4.3. SVM with structural features 
 
When using SVM with structural features for error detection, 
firstly, structural features should be extracted. Compared 
with structural matrix calculation for overall pronunciation 
scoring [8], there are two different steps. The first one is that 
data used to extract a distance matrix in this study is only 
one utterance. The second one is that each phoneme instance 
should be treated separately although, in [8], the instances of 
a phoneme are used together to estimate a distribution of 
that phonemic category. In [8], all the data of a student were 
used to estimate an N×N distance matrix, where N is the 
number of the kinds of phonemes. In this study for error 
detection, however, an M×M distance matrix has to be esti-
mated for an utterance, where M is the number of phoneme 
instances observed in the utterance. 

An input utterance is converted into its distance matrix 
in the following way. Forced alignment is firstly done using 
the HMMs trained with the NICT database. Then, using the 
boundary information, Viterbi training is done to train an 
HMM only for that utterance. Each utterance of each student 
and that of each teacher is converted to its HMM and its 
distance matrix. Here in a distance matrix, element Sij or Tij 
is a phoneme-to-phoneme distance, defined as the averaged 
distance among three state-to-state distances calculated as 
the root of the Bhattacharyya distance. 

As for SVM, LIBSVM [18] is used. The CRN-E data-
base is divided into two parts: training and testing. For each 
sentence, the teachers’ matrix of that sentence is obtained as 
the average matrix among the four teachers. Then, equation 
(3) is used to calculate the structural deviation of each pho-
neme instance in each of the students’ utterances. Data scal-
ing was done to improve the accuracy. When using the RBF 
kernel, we used cross-validation and grid search to find the 
best parameters C and γ, explained in section 3.3. 

Then, a leave-one-out cross-validation experiment was 
done. For a sentence, there are 27 utterances spoken by 9 
speakers (pseudo students). We set one speaker as testing 
speaker and the other speakers as training speakers of SVM. 
By changing speaker assignment, we used all the speakers as 
testing speakers. Table 6 shows the results, which are the 
average performance over the 9 experiments using the linear 
kernel. The performance of the RBM kernel is very close. 
We can see that the proposed SVM with structural features 
works better than the baseline LR-based method. Especially, 
FRR is decreased by 81.5%. Generally speaking, when the 
training data size is small, the obtained model tends to be 
dependent on the extra-linguistic factors found in the train-
ing data. Considering a very high performance of SVM us-

ing a small number of training speakers, this problem seems 
to be solved well by using structural features. 
 

Table 6 Comparison of error detection using LR and SVM with 
structural features 

 LR SVM + structural features Relative 
comparison 

FAR 0.26 0.21 -20.8% 
FRR 0.24 0.04 -81.5% 
AER 0.25 0.13 -49.8% 

 
We ran another test to evaluate the robustness of the 

structure-based SVM experimentally. Here, cross-gender 
experiments were done. Table 7 shows the results of the two 
cases where training speakers for SVM were only 3 males 
and 3 females, respectively. The RBF kernel was used. The 
testing speakers were of the opposite gender to the training 
speakers. 3 measures show similar scores between the two 
cases and these scores are very close to the results of Table 6. 
This indicates very high robustness of our proposed method. 
 

Table 7 Results of cross-gender tests using CRN-E 
Training speakers 3 males 3 females 

Optimal parameters C=2-7, γ =222 C=2-7, γ =222 
FAR 0.25 0.27 
FRR 0.05 0.05 
AER 0.15 0.16 

 
4.4. Results using the CRJ database 
 
Error detection experiments using 3 methods were done us-
ing the CRJ database. Unlike section 4.3, CRJ cannot be 
divided into training and testing parts because of the size of 
the database. Then, we used CRN-E or TTS data to train 
SVM. Further, as well as the feature vectors used in section 
4.3, a structural vector and a GOP score were combined to 
make a new vector in order to take advantage of both abso-
lute and relative features. Results are shown in Table 8. 

Comparing the performance of LR with that of GOP, we 
find that AER improves a little, but not as much as its im-
provement when using CRN-E both in training and testing. 
One possible reason may be that Japanese speakers’ pronun-
ciations do not always follow our expectation. More various 
patterns of substitution may be found. 

AER of SVM trained from TTS data is slightly better 
than that of SVM trained from CRN-E data. This is probably 
because TTS data contain utterances of more various occur-
rence patterns of phoneme errors, i.e., different positions and 
different rates of errors. In the table, it is shown that feature 
combination certainly improves the performance but its ef-
fect is rather minor. 

Looking at tables 6, 7, and 8, however, the most re-
markable finding about the performance of SVM is that 
SVM with structural features is very accurate in the condi-
tion of artificially prepared utterances of CRN-E and also 
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very robust to gender differences. However, it is very weak 
at mismatch between error production patterns between 
training and testing. This is very natural because structural 
features are relational features between a segment of interest 
and other surrounding segments in the utterance. If assump-
tions on the surrounding segments are invalid, the effect of 
our proposed method will decrease. These results lead us to 
consider merits and demerits of our proposed method. If we 
want to solve the above problem, a sufficiently large training 
corpus of non-native utterances with correct phone-based 
annotation is needed. With this kind of database, SVM train-
ing will learn which segments in the surrounding contexts 
are more reliable and will estimate weight vector W in an 
adequate way. For example, [19] develops a non-native Eng-
lish corpus with IPA annotation, where a fixed paragraph is 
read by over 1,500 speakers all over the world. The number 
of speakers is still increasing today. The aim of this project 
is to analyze and cluster world types of English on an indi-
vidual basis. We consider that our structural approach can 
be directly applied to this aim because a structural SVM can 
be trained for each phoneme in the fixed paragraph using 
phone-based IPA annotations. We’ve already started testing 
our structural model using this corpus. 
 

Table 8 Results of experiments using CRJ database 

 GOP LR 
SVM with struc-
tural features 

SVM with 
structures and 

GOP 
Training    CRN-E TTS TTS 

FAR 0.76 0.36 0.67 0.54 0.48 
FRR 0.14 0.46 0.26 0.33 0.36 
AER 0.45 0.41 0.47 0.44 0.42 

 
 

5. CONCLUSION 
 
In this paper, the most problematic 8 phonemes for Japanese 
learners of Chinese were defined and automatic error detec-
tion for these phonemes was investigated. For experimental 
investigation, we designed four new databases: CRN, CRJ, 
CRN-E and TTS databases. Three methods of error detec-
tion were tested using the four databases and the NICT Chi-
nese database. Our proposed SVM with structural features 
worked much better than both of the GOP and the LR in the 
CRN-E database. Moreover, structural features turned out to 
be robust against gender differences. However, the superi-
ority of SVM with structural features over the GOP or the 
LR can be said to depend on a more complicated training 
process and need some additional utterances. The GOP and 
the LR only require native HMMs for error detection. In the 
SVM with structural features, however, in addition to the 
native HMMs, teachers’ utterances of the target sentences 
are always needed for structural comparison and learners’ 
incorrect utterances are also needed for SVM training. 

Besides, by using the CRJ database, some drawbacks of 
our proposal were made clear. The SVM with structural fea-

tures is very robust against acoustic mismatch but still weak 
at proficiency level mismatch between training and testing. 
Since this mismatch is due to lack of labels for non-native 
utterances, this problem can be solved by using a sufficiently 
large non-native speech corpus with labels. Even under this 
condition, we showed a concrete example of possible and 
practical application of our proposed method. 
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