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ABSTRACT

Errors in open-domain ASR can be corrected by asking the
speaker to rephrase targeted segments in utterances where
they have been detected. The utterance merging problem con-
sists in generating a better transcript from the utterance where
errors have been detected and a clarification utterance. We in-
troduce an alignment-decoding algorithm for jointly process-
ing the two utterances and benefit from the complementary
information they contain. The algorithm aligns word lattices
in the WFST framework with a probabilistic cost model. Re-
sults on the BOLT-BC speech-to-speech translation task show
an improvement of 2.84 points of accuracy compared to align-
ing the one best without joint decoding.

Index Terms— Joint probabilistic model, lattice align-
ment, ASR error correction, dialog systems

1. INTRODUCTION

Automatic speech recognition is a building block of more and
more speech-enabled applications. However, recognition er-
rors due to out of vocabulary terms, disfluencies, mispronoun-
ciations, or difficult acoustic conditions can cripple the gen-
erated transcript and deteriorate user interactions. Mimicking
humans, dialog systems have been equipped with clarification
modules that leverage domain knowledge in order to conduct
interactions and recover the message that the user intended to
communicate [1]. Open-domain applications, such as speech-
to-speech translation or voice search, can also benefit from
clarification interactions by deploying a dialog system that de-
tects ASR errors, asks targeted clarification questions in order
to elicit a rephrase of the corrupted part of the utterance tran-
script, and recover a better transcript from both the original
and the clarification utterances [2].

The problem of merging complementary utterances is dif-
ficult for two main reasons. First, users of a clarifying dialog
need to use context in order to rephrase parts of a sentence,
and will often rephrase words outside of the error segments as
well. Second, short utterances, such as clarifying utterances,
are harder to recognize because the ASR system cannot take
advantage of context through its language model. Previous
work on the problem [3, 4] has mainly covered the first aspect,
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by proposing alignment strategies between the utterances ac-
counting for task-specific constraints: the utterances might
have different lengths, contextual words might be rephrased
in addition to targeted words, ASR errors might occur in the
clarification utterance transcript or in the original utterance
transcript outside of the error segment boundaries.

Previous work was limited in that it assumed the ASR
system had enough information to decode each utterance
independently of each other. Here, we reconsider that hy-
pothesis and tackle the problem of jointly decoding multiple
utterances. Joint decoding is attractive because, on the one
hand, decoding the original utterance depends on what was
said in the clarification utterance, and on the other hand, the
clarification speech lacks the context of the words it replaces,
which can void the benefits of using a language model. This
approach is not limited to clarification dialogs but could
be applied to other tasks, such as to transcribe disfluent
speech, where a sentence spans multiple turns, and over-
lapped speech [5], or to benefit from the effects of speaker
entrainment [6].

In this paper, we propose a model for joint decoding of
two comparable utterances which accounts for discrepancies
between an erroneous utterance and its clarification and test
it in the same framework as [4]. Our contributions are as fol-
lows:

e We propose a probabilistic model of joint decoding and
alignment of speech utterances.

e This model is cast in the WFST framework in order to
jointly decode word lattices and confusion networks.

e We experiment on a realistic corpus of clarification sub-
dialogs collected for the speech-to-speech translation
task of the DARPA-BOLT project.

The paper is organized as follows. Section 2 details the
proposed model, Section 3 shows how to cast this model for
the task of transcript clarification, Section 4 details and anal-
yses the experiment results on the BOLT corpora, Section 5
compares our approach to related work and Section 6 dis-
cusses the conclusions.
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2. JOINT ALIGNMENT AND DECODING

Traditionally, ASR is modeled as the probability of a word
sequence given the observed acoustic recording. Here, we
wish to jointly model two utterances which come from two
different acoustic sequences. The two utterances shall not
lead to the same transcript, but rather are complementary to
each other in that one may bring evidence on the words of
the other and conversely. This requires the notion of align-
ment between the two utterances. If they match completely,
their decoding should be identical to that of decoding a single
utterance, while if they are totally different, their decoding
should be independent.

2.1. Model

A probabilistic model for sequence alignment was proposed
in [7]. It assumes that edit operations are independent and
can be estimated with the EM algorithm. This model was ex-
tended to Conditional Random Fields by [8] to allow feature-
based training of a discriminative aligner. The scarcity of
training data available for merging clarification utterances
leads us to the following generative model.

First, we model the alignment of sequences of words. Let
X be the original word sequence. Let Y be the clarification
word sequence. Let a be a sequence of edits from the set of
all sequences of edits A. Following [7], the joint sequence
XY can be expressed in term of all the alignments between
XandY.

P(XY) =) P(aXY) (1)
acA

with P(a|XY) the probability of a sequence of edits that
maps X to Y, a = a;...a,. Assuming independent edit
operations leads to the following formulation:

n
P(alXY) =[] P(a:lXY) )
i=1
where P(a;|XY) is the probability of one of the edit opera-
tions:

P(del|z;) deletion
P(a;|XY) =< P(ins|yx) insertion 3)
P(sublxj,yr) substitution

with (4, k) the couple of words which are being aligned (omit-
ting the missing word in case of insertion or deletion).

We propose to introduce word posterior probabilities as-
sociated with each word in X and Y. For that we assume that
the edit operations are independent of the word generation
process.

P(de”xj) :P(mj)/\“’P(de”xj)ede‘ 4)
P(inslyr) =P (ins|ye) ™ P(y.) 5)
P(sublzjyr) =P(x;)* P(sublzyp)® P(ye)  (6)
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Here, A, and ), are hyper-parameters that control the
contribution of the original and clarification sequences of
words to the model. 0y, fins and gy, control the contribution
of edit operations to the alignment.

In this model, the best decoding-alignment of the two se-
quences can be retrieved through Viterbi decoding:

a* = argmax P(a|XY) (7
a€A

2.2. Lattices

Without loss of generality, we consider that instead of build-
ing a new kind of decoder that can process multiple utter-
ances at once from the ground up, we can take advantage of
the search space of a decoder running independently for each
utterance in the form of word lattices.

Given that a word lattice represents a collection of word
sequences, the joint alignment and decoding between two
lattices corresponds to finding the minimum cost edit script
between the cartesian product between the sequences rep-
resented by both lattices. If L, = U;{X;} is the set of
word sequence hypotheses for X (the word lattice), resp.
L, = Up{Y,} for Y, the best decoding-alignment a%- of
the two lattices L, and L, is:

axy = argmax P(a|XY) 8)
XY€ELg XLy
a€A

In order to find a%, efficiently, this model can be cast
in the transducer alignment paradigm as proposed by [9].
Assuming all weights are in the tropical semiring, let T,
Ty be acceptors that represent word lattices weighted by
— Az log P(x;), resp. —Ay log P(yx). Let T, be a single state
edit transducer that maps each word z; to each word yy, for
a cost of —0s,;, log P(sub|z;yx), maps each word z; to €
(the empty symbol) with a cost of —04.; log P(del|z;), and
maps € to y; with a weight of —6;,,; log P(insly;). aJ, can
be derived from the composition:

axy = bestpath(Tx o T, o Ty) )

An interesting potential extension is that this approach can
be used to jointly decode more than two utterances. Since 7,
is symmetric, the operation is commutative, i.e. Tx o T, o
Ty = Ty o T, o Tx. Therefore, by alternatively compos-
ing word lattices and the edit transducer, one creates a search
space weighted with the sum of the costs for the individual
alignments.

axyy =(((TxoT.)oTy)oT,)oTy... (10)

Even though this search space is large, recent advances
in WEST implementations allow the lazy evaluation of the
compositions when searching for the best hypothesis which
is both efficient in term of time and memory.



This paper does not cover the joint decoding of more than
two utterances. Therefore, we will make use of Equation 9
in the context of the transcript clarification task, as explained
below.

3. TRANSCRIPT CLARIFICATION

3.1. Task description

In this section we describe our approach to transcript clar-
ification and explain how it can be solved within the joint
decoding-alignment model.

The BOLT-BC task consists in machine mediated speech-
to-speech translation. The machine takes the role of an in-
terpreter that translates a conversation between speakers of
different languages. Like an interpreter, the machine can take
the initiative to clarify some words it did not understand or did
not know, in order to avoid the typical diverging conversations
of non-interactive translation systems subject to ASR errors.
Clarification sub-dialogs, initiated when a system detects an
error in ASR output, consist in a question targeting the error,
followed by a clarifying answer by the user. From the origi-
nal utterance and the clarification utterance, the system shall
generate a better transcript of the user intent, which generally
is not the transcript of one of the utterances, but derived from
both utterances. Even though the system might detect multi-
ple error segments, only one is clarified at a time (if too many
errors tarnish the utterance, the system asks to rephrase or re-
peat it completely). After being repaired, the transcript is sent
to the translation system further along the pipeline. Here is an
example of a subdialog:

1. Speech: They traveled across the desert on camel back
2. ASR: They [travel to cross to] desert on camel back

3. Error: [travel to cross to]

4. Question: Can you rephrase AUDIO(travel to cross to)?
5. Clarification: They visited the desert

6. Intent: They visited the desert on camel back

In this dialog, we call original the ASR transcript of the
original utterance (2). The error segment is the sequence of
words targeted by the clarification dialog (3). The clarifica-
tion is the answer from the user to the clarification question
(5). The intent is the sequence of words that the system should
generate as a result of the merging process (6). In the next
sections, we build a system which inputs an original utter-
ance with an error segment and a clarification utterance. We
expect this system to output the intended utterance transcript.

When asked to rephrase part of their utterances, the users
might completely rephrase them, rephrase only the targeted
segment, or contextualize the edit operation with other words,
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which might be subject to ASR errors, or be rephrased ver-
sions of words outside the error segment. The proposed sys-
tem accounts for all these behaviours.

3.2. Intended utterance generation

In order to solve the task of merging the original utterance and
the clarification utterance, we take advantage of the model
described in Section 2 for joint decoding-alignment of utter-
ances. Here, we jointly decode the original and clarification
utterances. Equation 9 gives a decoder for the model in which
X and Y are respectively the original and the clarification,
T'x and Ty are the word lattices generated by the ASR sys-
tem for those utterances, weighted by the posterior probability
of each word, and T, is the edit transducer, weighted by the
probability of the edit operations.

T, essentially performs a Levenshtein alignment between
the word lattices, with edit operations balancing (scaled) word
probabilities. [4] has proved that Levenshtein alignment must
be modified to account for task-specific issues such as the fact
the the clarification is generally shorter than the original, and
the fact that words in the error segment are incorrect. With-
out loss of generality of the model, 7, can be modified to
account for this specificity. This yields the following systems
(extended from [4]):

e Replace baseline: words from the original are replaced
by the clarification words as if the user had completely
rephrased his utterance.

e Insert baseline: words from the clarification are in-
serted in place of the error segment.

e Levenshtein: T, is used as described in Section 2.

e Error-loop + affine gap: words in the error segment are
replaced by a loop of dummy symbols (with posterior
probability of 1) that can match as many words from
the clarification as needed. Affine-gap adds a cost to
start a sequence of insertions / deletions (with different
probabilities for the start and the continuation).

e Phonetic match: the edit probability for substituting
two words depends on the distance of the phonetic tran-
scription of the words.

e Word embedding: the edit probability for substitution
depends on the distance between the words in an em-
bedding space [10].

Since Equation 9 yields an alignment between X and Y, to
generate the transcript from the alignment, we give priority
to the clarification words over the original words. Compared
to [4], our approach can be viewed as a generalization of ut-
terance alignment to lattices. The main difference is that our
model accounts for the balance between word probabilities



and alignment probabilities. In the hereunder experiments de-
scriptions, we call mergers the systems for intended utterance
generation.

4. EXPERIMENTS AND RESULTS

In order to assess the quality of our system, we used two
clarification dialog corpora. The first corpus, which we call
BOLT-DEV!, is a set of clarification situations where the user
is given an original utterance with an error segment and has to
rephrase it. This corpus was collected for the development of
the BOLT speech-to-speech translation system. The second
corpus, which we call BOLT-P2, contains real clarification
dialogs recorded during the BOLT phase 2 evaluation. The
first and second corpora contain respectively 70 and 141 di-
alogs. In both corpora the original utterance contains at least
one ASR error segment (the targeted error) and might contain
additional errors. For all the experiments, we tune the hyper-
parameters of the system on one corpus and test it on the other
(and vice versa).

ASR transcripts were obtained by running a DNN-based
ASR systems developed by SRI in the course of the BOLT
project [11]. On Bolt-P2, its WER (Word Error Rate) is
15.76% on the original and 17.78% on the clarification utter-
ances. Note that in all experiments, we consider that targeted
error segments have been correctly located by the error de-
tection module.

Joint decoding for utterance merging performance is eval-
uated with two metrics: merging accuracy represents the rate
of complete recovery compared to the human-written refer-
ence, and merging Word Error Rate (WER) is the word error
rate of the hypothesis compared to the intended transcript that
should have been produced (it’s not the WER relative to the
original reference transcript).

In the following, we propose to use and compare different
kind of ASR search space representation (one-best hypothe-
sis, word lattice and confusion network) as input of the utter-
ance merger described in Section 3.

4.1. One-best hypothesis vs word lattices

In Table 1 we compare the baseline mergers (Insert, Replace
and Levenshtein), with the task-specific merger (Err loop +
affine gap). The latter is used in a first version with one-
best hypothesis given by the ASR (called (/-Best) Err loop
+ affine gap) and a second version with word lattice search
space (called (Lattice) Err loop + affine gap). We observe that
the two different versions of the task-specific merger perform
better than the baselines, resulting in a reduction of WER and
improvement of accuracy. We observe that taking advantage
of lattices on the BOLT-P2 corpus yield an improvement of
2 points of WER compared to relying on the 1-best. In gen-

This corpus was called Speech in [4].
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eral the lattice-oriented system provides slightly better results
compared to its 1-best counterpart.

BOLT-DEV BOLT-P2
Method Acc. WER Acc. WER
(Baseline) Replace 1429 5447 0993 7542
(Baseline) Insert 08.57 4624 17.02 27.55
(Baseline) Levenshtein 20.00 23.55 18.44 20.36
(1-Best) Err loop + affine gap  24.29 20.99 2270 18.70
(1-Best) Oracle 28.57 16.17 2321 19.27
(Lattice) Err loop + affine gap 24.29 20.57 24.11 18.49
(Lattice) Oracle 32.64 14.05 2726 1598

Table 1. Accuracy and WER results on the BOLT-DEV and
BOLT-P2 corpus according the one-best and word lattice ASR
search spaces.

4.2. Hyper-parameters

In the joint alignment and decoding model, we propose to
optimize two hyper-parameters: A\, and A\, from Equation 6.
These hyper-parameters control the contribution of the orig-
inal and clarification word posteriors to the model. We sim-
plify the problem and balance the parameters as follows:
Az = Aand Ay = (1 — A). Figure 1 shows accuracy and
WER results using different A values on the BOLT-DEV and
BOLT-P2 corpora using the Err-loop + affine-gap merger.
The best results are obtained with a A, and A, fixed respec-
tively to 0.9 and 0.1. These values mean that the model gives
more importance to the clarification words.
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Fig. 1. Accuracy and WER results using different A hyper-
parameter values on the BOLT-DEV and BOLT-P2 corpora
with the Err-loop + affine-gap merger.

In a second experiment, we look at the variation of per-
formance according to the beam width of the ASR decoder
in order to tighten or loosen the ASR search space through
hypothesis pruning. The beam width controls how large the
word lattices and confusion networks get when they are gen-
erated. Figure 2 shows accuracy and WER results using dif-
ferent beam widths on the BOLT-DEV and BOLT-P2 corpora



with the Err-loop + affine-gap merger. The best results are
obtained with a beam width of 1, 000.
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Fig. 2. Accuracy and WER results using different beam val-
ues on the BOLT-DEV and BOLT-P2 corpus with the Err-loop
+ affine-gap merger.

4.3. Improved merging

In Table 2 we analyse the impact of using the word lattice with
different versions of the edit transducer. Among all proposed
mergers in [4], we focus on the two strategies that obtain the
best results on the BOLT-DEYV corpus: Phonetic + words and
Phonetic + embedding. As expected, the mergers using the
word lattice obtain the best results compared to the mergers
using the one-best hypothesis. This experiments tend to prove
that the gains obtained by using word lattices are not linked
to a specific edit distance computation strategy.

BOLT-DEV BOLT-P2
Method Acc. WER Acc. WER
(1-Best) Phonetic + words 2429 20.57 2199 18.70
(1-Best) Phonetic + embedding  25.71 20.85 23.40 18.18
(Lattice) Phonetic + words 2571 20.28 2340 18.65
(Lattice) Phonetic + embedding 25.71 19.29 24.11 1833

Table 2. Accuracy and WER results on the BOLT-DEV and
BOLT-P2 corpus according the one-best hypothesis and word
lattice.

4.4. Confusion networks

Confusion networks are a different representation of the ASR
search space, generated from word lattices. They consist of a
sequence of slots with each slot containing a list of word al-
ternatives weighted by their posterior probability. Thus, Con-
fusion Networks contain more paths than Word Lattices and
should achieve theoretically more robust results.

In the following experiment, we propose to use confusion
networks in place of the lattices as input search space for the
join decoding algorithm. To achieve this and in order to keep
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the same joint alignment and decoding model we simply rep-
resent the confusion networks as WFTs in the same way as
the word lattices.

In Table 3, we report the results obtained using confu-
sion networks with the three alignment variations: Err loop
+ affine gap, Phonetic + words and Phonetic + embedding.
First, we observe an improvement of the oracle of 3.19%
points in term of accuracy compared to the oracle for word
lattices. This is expected because the size of the search space
is increased. Secondly, on both corpora and for each merger
we observe a slight accuracy improvement compared to the
use of word lattices.

BOLT-DEV BOLT-P2
Method Acc. WER Acc. WER
(CN) Err loop + affine gap 22.86 19.86 2553 18.23
(CN) Phonetic + words 2429 19.15 24.82 18.39
(CN) Phonetic + embedding 25.71 19.57 2624 17.92
(CN) Oracle 3493 1278 3045 14.87

Table 3. Accuracy and WER results on the BOLT-DEV and
BOLT-P2 corpora according the confusion networks (CN)
given by the ASR output.

5. RELATED WORK

Besides the work on utterance merging performed in the con-
text of the BOLT project, the following work is related to our
contributions.

When low quality or diverging transcripts are available,
it has been proposed to align decoding hypotheses to imper-
fect transcripts [12]. In that particular work, the authors use
subtitles and prompts in order to improve ASR hypotheses.
While the decoding is generating hypotheses, they align the
imperfect transcripts to the current hypothesis, and boost the
LM probabilities according to how many words in a N-gram
can be aligned to the imperfect transcript. This leads to im-
provements in term of word error rate compared to not using
any external source of information. This line of work is sim-
ilar to ours but it relies on textual transcript instead of jointly
decoding utterances.

Short-term adaptation, such as MLLR adaptation [13]
from previous transcripts, or cache language models [14], ac-
counts for information from previous utterances for decoding
the current utterance, and are able to boost the probability of
a sequence of phonemes or words seen in the recent past. The
large body of work in adaptation could be used in our work
(in fact the ASR system used in our experiments performs
such adaptation), but it does not directly apply in the context
of targeted error clarification because words of the intended
utterance come from different speech signals.

Jointly decoding multiple speech signals is also of inter-
est of the robust ASR community. For instance, [15] propose
an extension of the HMM/DTW framework to decode jointly



multiple occurrences of the same isolated word. They con-
sider that the alignment shall be performed according to an
additional dimension for each audio recording and propose a
dynamic programming solution in order to find the optimal
alignment. Even though attractive, this approach is limited to
cases where multiple observations of the same utterance are
available, a special case of multiview learning.

The idea of forcing multiple examples to have the same
prediction has also been explored in the natural language pro-
cessing community, as the task, among others, of tagging
multiple instances of the same unknown word with the same
tag. This can be achieved in the dual decomposition frame-
work which maximizes the sum of constrained decoders [16].
It would be interesting to apply the same approach to the joint
decoding of multiple utterances.

6. CONCLUSION

In this paper, we propose a model for jointly decoding mul-
tiple utterances that share complementary meaning. It jointly
models the probability of two utterance transcripts from their
respective audio recording, at the same time as their align-
ment probability in term of edit distance. The model can
be implemented in the weighted finite state transducer frame-
work, and inputs word lattices or confusion networks as ASR
search space. Tested for the clarification utterance merging
task in the framework of the DARPA BOLT project, the pro-
posed approach leads an improvement of 2.84 points of ac-
curacy compared to aligning the ASR one-best hypotheses
without joint decoding. In addition to being a success for the
utterance merging task, the model could be used for jointly
decoding multiple utterances that convey a single message,
such as when a speaker begins an utterance and another fin-
ishes it, or when disfluent speech spans multiple utterances
but actually corresponds to a single message.
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