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ABSTRACT

Speaker verification (SV) systems using deep neural network
embeddings, so-called the x-vector systems, are becoming
popular due to its good performance superior to the i-vector
systems. The fusion of these systems provides improved per-
formance benefiting both from the discriminatively trained
x-vectors and generative i-vectors capturing distinct speaker
characteristics. In this paper, we propose a novel method
to include the complementary information of i-vector and
x-vector, that is called generative x-vector. The genera-
tive x-vector utilizes a transformation model learned from
the i-vector and x-vector representations of the background
data. Canonical correlation analysis is applied to derive this
transformation model, which is later used to transform the
standard x-vectors of the enrollment and test segments to the
corresponding generative x-vectors. The SV experiments per-
formed on the NIST SRE 2010 dataset demonstrate that the
system using generative x-vectors provides considerably bet-
ter performance than the baseline i-vector and x-vector sys-
tems. Furthermore, the generative x-vectors outperform the
fusion of i-vector and x-vector systems for long-duration ut-
terances, while yielding comparable results for short-duration
utterances.

Index Terms— Speaker verification, speaker embed-
dings, transformation model, x-vector, canonical correlation
analysis

1. INTRODUCTION

Speaker verification (SV) is to authenticate a person based on
the voice samples [1,/2]. The factor analysis approaches for
SV led to a new era with their achievement in having high
performance [3,4f]. Later, the total variability model based
i-vector system has been a benchmark for SV studies in the
current decade [5]. Recently, the deep neural network (DNN)
based systems have been in the focus of the research com-
munity. Due to their good performance, DNN-based systems
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have been incorporated in most systems in the latest NIST
SRE challenge [6-8].

The initial attempts with DNNs for SV have been made
in the context of i-vector speaker modeling in terms of com-
puting the phonetic posteriors [9|10]. Alternative approaches
extract bottleneck features from DNN acoustic models that
are combined with the acoustic features [[11,/12]. However,
such approaches require a large amount of transcribed data
and may not be as effective for out-of-domain data [[11]]. This
led to the exploration of end-to-end DNN systems for SV that
learn the speaker models in a discriminative manner [|13H17]].

The recent work in this direction focuses on using the
speaker embeddings that are scored with a probabilistic lin-
ear discriminant analysis (PLDA) based back-end [18}[19].
This kind of systems give comparable or better results to that
obtained with i-vector speaker modeling. Further, they are
proven to be very effective under short-duration utterance sce-
narios [20]]. The study on the score level fusion of i-vector and
embedding based systems [/18]] showed that the fused system
outperforms the individual systems due to their complemen-
tary characteristics. Later on, the robustness of x-vectors has
been explored by applying data augmentation [21]].

Another strategy to improve the x-vector based SV is
to include some input from the generative models as their
fusion has been found promising. The embedding process
is discriminative in nature, whereas the i-vector framework
is a generative model. Specifically, x-vector extraction is
achieved by training a DNN to discriminate among different
output labels, while the i-vector model relies on a universal
background model (UBM) to collect sufficient statistics for
deriving speaker models. However, directly concatenating or
score level fusion of these two models may not be an effective
way for application-oriented systems as it increases the need
of run-time computation and memory. This motivated us to
develop an efficient way of including information from the
generative model based on total variability modeling for an
embedding based SV system.

In this work, we propose a novel approach that learns a
transformation matrix using the i-vectors and x-vectors from
the background data to utilize both generative and discrimi-
native characteristics. Canonical correlation analysis (CCA)
between these vectors is used to derive this transformation



model. The CCA has been used previously for analysis of
correlation among different features [22] and for fusion of
multi-modal features in SV [23]]. Additionally, it has been
used for co-whitening for short and long duration utterances
in an i-vector system [24]. In this work, the CCA is consid-
ered to maximize the correlation of the two models based on
generative and discriminative paradigms to discover comple-
mentary attributes. The transformation model is then used to
transform standard x-vectors, so that they also benefit from
the input of generative model. Moreover, a comparison of
the proposed system and the fusion of i-vector and x-vector
systems is presented to highlight the impact of the work for
practical systems.

In the following sections, we first introduce the funda-
mentals of i-vector and x-vector approaches for SV in Sec-
tion[2] Section [3]introduces the proposed framework of gen-
erative x-vectors. The results of the SV experiments using the
proposed approach are reported in Section ] Finally, Sec-
tion |3l concludes the work.

2. SPEAKER RECOGNITION PARADIGMS:
GENERATIVE VS. DISCRIMINATIVE

This section provides an explanation of the basics of i-vector
and x-vector systems as they are studied for the proposed
framework of generative x-vectors. The detailed structure
with the parameters used for various modules of both the sys-
tems are also mentioned.

2.1. The i-vector: a generative model

An i-vector system is based on generative mode that is derived
using total variability model (TVM) [5]]. The TVM is learned
by unsupervised learning that is used to represent each utter-
ance in a compact low-dimensional vector as follows

M=m+Tx €))]

where M is Gaussian mixture model (GMM) mean supervec-
tor of an utterance, m represents UBM mean supervector and
total variability model T to obtain the i-vector .

2.2. The x-vector: a discriminative model

Generative models are successful due to the strong mathe-
matical representations. However, considering the goal as
speaker discrimination helps to increase the robustness. In
this regard, researchers pay more attention on discriminative
training for speaker recognition recently as discussed in the
introduction. We consider x-vector as the discriminative base-
line system, since it is comparable with i-vector systems for
text-independent speaker recognition, especially for short ut-
terances. The DNN embedding structure in our work basi-
cally follows the work of [[I18,21]. We do not use any data

Table 1. The time-delay configuration of the frame-level
layers in the TDNN architecture

Layer index | Layer context | Output dimension
1 (-2,-1,0,1,2) 512
2 (-2,0,2) 512
3 (-3,0,3) 512
4 0 512
5 0 1500

augmentation in the current work, that deserves future explo-
ration.

A time-delay neural network (TDNN) [25] is trained us-
ing the same acoustic features as in the i-vector system. The
TDNN model includes five frame-level hidden layers, all us-
ing rectified linear unit (ReLU) activation and batch normal-
ization [26]. The specific time-delay information of these
frame-level layers are listed in Table |1} A statistics pooling
layer follows the output of the last frame-level layer which
computes the mean and standard deviation of the frames of in-
put segments. The mean and standard deviation are stacked in
a manner such that the output dimension is doubled. The final
two hidden layers are 512-dimensional pooling layers, also
operating at segment level, prior to the softmax layer which
targets speaker labels for each audio segment. The softmax
and the second pooling layer are removed during the testing
phase and 512-dimensional x-vectors are extracted at the out-
put of the first pooling layer.

3. GENERATIVE X-VECTORS: DNN EMBEDDINGS
WITH GENERATIVE MODEL INPUT

In this work, we propose a novel approach to take the advan-
tage of the correlation between the i-vectors and x-vectors to
utilize their complementary nature of learning speaker mod-
els. A transformation model is learned using CCA by con-
sidering the i-vectors and the corresponding x-vectors as the
input pairs from the background speech data. During the
enrollment and the testing phase, the i-vector system is ex-
cluded from the pipeline and only x-vector system is consid-
ered whose output is linearly transformed using the transfor-
mation matrix obtained from the CCA model. We refer this
transformed output as generative x-vector, henceforth referred
to as xg-vector, since it captures certain properties of the input
generative model (i-vector model) during the transformation.

Fig. E]illustrates the steps to obtain the proposed x,-vector
representation of speakers. During the training stage, a trans-
formation matrix is learned by applying CCA and this ma-
trix is later used for Xg-vector extraction. It is important to
note that the TVM is only used for extracting i-vectors of the
background data and is computed once. There is no further
i-vector extraction involved during enrollment and test ses-



sions. Hence, this kind of framework is expected to have rel-
atively less latency than feature concatenation or score level
fusion of these systems.

We first mathematically explain the left panel presented
in Fig. [T] In order to take advantage of the generative model
information, we aim to seek a pair of matrices W;, and W,
which are confined in the following way

WT%IE corr(W;, ®;, W, ®,) 2)

Here, ®; and ®, contain the corresponding i-vectors and x-
vectors from the same set of utterances.

The proposed transformation with CCA is hypothesized
to transfer information from the generative model to the dis-
criminative model and vice-versa. Therefore, the resultant
transformation matrices for i-vector and x-vector are denoted
as W, and W, , respectively. Let N be the number of
background utterances used to train the transformation mod-
els with CCA. The dimension of background data i-vectors
and x-vectors to CCA are NV x 600 and NV x 512, respectively.
On applying CCA, we obtain transformation matrices W, of
size 600 x 512 and W of size 512 x 512, respectively.

During the SV experiments, we only concentrate on the
x-vector pipeline as shown in the right panel of Fig. [I] Given
an x-vector ¢, the proposed vector is computed as

¢wg = ng ¢:c (3)

where the ¢, denotes the x-vector with generative model in-
put that we refer to as a generative x-vector.

Both the i-vectors and x-vectors are zero-centered in all
of the mathematical expressions in this section. The details of
CCA and the transformation of x-vectors are discussed in the
following subsections.

3.1. Canonical correlation analysis

As mentioned in the aforementioned section, in this work,
we aim to maximize the linear relationship between a set of
i-vectors and x-vectors. It is to be mentioned that the di-
mensions for an i-vector and an x-vector are not the same.
Given that a fixed number of background speech utterances is
used to derive the background i-vectors and x-vectors, apply-
ing CCA maximizes the correlation between the input vector
pairs of different dimensions.

Mathematically, given random vectors X = (x1,...,2,)"
and Y = (y1,...,Ym)", the CCA defines new set of vari-
ables U = a¥X and V = b"Y via linear combinations of
XandY

U=a"X 4)
V=0bY 5)

The CCA aims to find vectors a and b that maximizes the
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Fig. 1. An overview of the proposed system, where the

discriminative model (x-vector) benefits from the generative
model (i-vector) input. The left panel shows the use of back-
ground data for CCA to train the transformation model W,
and W;,. The middle panel shows computation of x,-vector
from x-vector using transformation model W,. The right
panel shows the contrast system of discriminative i-vector to
generate ig-vector using transformation model W;,.

correlation p = corr(aT X, b Y'), which can written as

be E(a™XYTb) ©
VE(@ XX a)\/EG"YY"b)
With the constraints that
aTEXa =1 (7)
and
b'Eyb=1 ®)
the correlation parameter to be maximized becomes
_ T
p=a Exyb (9)

where ¥x = E(XX'), By = E(YY") and Zxy =
E(XY™) are the covariances.

We then obtain the first pair of canonical variates (U, V1)
via maximizing p represented in Equation (9). The remaining
canonical variates (U}, V;) maximize p subject to uncorrelated
with (U, V) for all & < . This procedure is iterated to
min{m,n} times that is based on the dimension of the two
random vectors. Finally, we obtain ay is the k-th eigenvector
of 2;{12 XY E;,l Yy x. Similarly, by, as the k-th eigenvector
of 2, Sy x T Exy.

3.2. CCA based x-vector transformation

In canonical correlation analysis we aim to find mutually or-
thogonal pairs of maximally correlated linear combinations of
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Fig. 2. t-SNE visualization of different representations.

the variables in X and Y. In our work, the random vectors
X and Y discussed in Section 3.1l form the i-vector matrix
&, and x-vector matrix ®,, respectively.

Revisiting the objective function given in Equation (), it
can be solved with the following constraints,

W, W, =1 (10)

and
W, 2, W, =1 (11)

where the x-vectors can be automatically whitened in the test-
ing phase. Notice that 32; and 3, denote the empirical covari-
ances of i-vectors and x-vectors, respectively.

3.3. t-SNE visualization

Together with the proposed x,-vector system, a contrast sys-
tem is also introduced to derive another transformation model
W,, for the generative model i-vector to take input from
the x-vector based discriminative model. The transformed
i-vector is denoted by ig-vector as input from discriminative
model has been used. We visualize each speaker repre-
sentation model to examine the distribution from subset of
speakers using the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) technique [27]]. The t-SNE technique is widely
used for the visualization of high-dimensional data.

We have randomly chosen 5 speakers from the database
that have more than 20 utterances and extracted correspond-
ing i-vectors, X-vectors, Xg-vectors and ig-vectors. Figure |Z|
shows the t-SNE distributions for different representations.
It is observed that the proposed x,-vectors benefit from the
generative information with an increased separability, while
the distribution of ig-vectors highly resembles the original i-
vectors.

The possible reason of this can be that the discriminative
models like x-vectors learn the differences among the speak-
ers without learning the characteristics of each speaker. Thus,
when information from discriminative models is used as in-
put to the generative model i-vector, it may not contribute to-
wards a better SV performance. On the other hand, the gen-
erative models such as i-vectors, learn the characteristics of
each speakers and they add specific speaker information when
used as input to a discriminative model. Additionally, the dis-
criminative models work well for a closed set of speakers,
whereas there is no such constraint for generative models.

4. EXPERIMENTAL RESULTS

4.1. Database

The SV experiments in this work are performed using the
NIST SRE 2010 database [28|]. The common condition 5
(CC’5) has been chosen for the evaluation. Further, we have



Table 2. EER and DCF under CC’5 on NIST SRE 2010 database for different systems. Fusion results refer to score level

fusion of i-vector and x-vector systems.

EER (%)

DCF

Tasks

i-vec | x-vec [ fusion | ig-vec | x,-vec

i-vec | x-vec [ fusion [ ig-vec | xg-vec

coreext-coreext | 2.20 2.96 2.19 2.23

1.51 042 | 042 0.36 0.44 0.35

core-10sec 6.07 6.39 471 6.00

441 0.85 | 0.72 0.78 0.84 0.70

10sec-10sec 11.46 | 11.51 8.92 11.56

8.93 0.98 | 0.85 0.88 0.96 0.89

considered different enrollment and test scenarios under this
task, namely coreext-coreext, core-10sec, and 10sec-10sec,
where coreext and core consist of long duration utterances,
while 10sec denotes short-duration speech of 10 seconds. Ad-
ditionally, Switchboard 2 Corpus of Phases 1, 2, and 3 as well
as Switchboard Cellular, along with NIST SREs from 2004
to 2008 are considered as background data for learning the
background models.

4.2. Implementation details

In this work, the 20-dimensional mel frequency cepstral co-
efficients (MFCC) features, along with delta and acceleration
are extracted for each frame of 25 ms in shift of 10 ms. The
i-vector model is used as a baseline system for reference in
our studies. A full-covariance gender-independent UBM with
2048 components is used in the i-vector framework to ob-
tain 600-dimensional i-vectors. For both the systems, dimen-
sionality is reduced to 200 with linear discriminant analysis
(LDA). For the x-vector system, the TDNN is trained on the
same 20-dimensional MFCC features. All non-linearities in
the neural network are ReLUs.

We use PLDA for channel/session compensation and scor-
ing in our experiments. Further, length normalization has
been applied before performing PLDA [29]. The PLDA is
trained to have 200 speaker factors with a full covariance,
while the channel factor is ignored. The studies are reported
in terms of equal error rate (EER) and detection cost function
(DCF) that follows the protocol of NIST SRE 2010 evaluation
plan [28[]. We used Kaldi recipes for building the baseline
systems in this work [30].

4.3. Results and discussion

In this section, the results provided by the individual base-
line systems using i-vectors and x-vectors are compared with
the proposed generative x-vectors. We further apply score fu-
sion to the i-vector and x-vector systems and compare with
the generative x-vectors to investigate their effectiveness in
capturing the complementary information from the generative
model.

Table [2| reports the performance of different SV frame-
works used in this study. Comparing the i-vector and x-vector
baselines, it is clear that the i-vector works better when both

the enrollment and test utterances are of long durations, i.e.,
for coreext-coreext task. On the other hand, the results for
core-10sec and 10sec-10sec tasks show that the x-vector sys-
tem performs comparable to the i-vector system for short-
duration test utterances when the enrollment data is either
short or long. Further, a score level fusion of these two sys-
tems results in a gain for all considered tasks of the NIST SRE
2010 database. The system fusion results follow the trend re-
ported by the authors of [[18]].

We then focus on the results provided by the proposed
Xg-vector system and its contrast ig-vector system. It is ob-
served that the proposed xg-vector system outperforms the
standard x-vector system by reducing the EER from 2.20%
to 1.51%. On the other hand, the performance of the con-
trast ig-vector system is similar to the original i-vector system.
Finally, we compare the performance of proposed x.-vector
with the score level fusion. For short utterance cases, the per-
formance of both systems are comparable. The proposed sys-
tem outperforms the score fusion for the core condition with
long utterances. Hence, the proposed system with a lower la-
tency and less computational burden achieves a remarkable
performance compared to fusion of the x-vector and i-vector
systems. This highlights its importance as a field-deployable
system in a practical setting.

The detection error tradeoff (DET) curves for different
systems obtained on the coreext-coreext task is illustrated in
Fig. 3] The superior performance of the proposed system is
clearly reflected in this plot with a DET curve that is quite
separate from the baseline individual systems as well as their
fusion. In terms of EER, we observe 48.83%, 22.46% and
31.01% relative improvement over the original x-vector sys-
tem for the three different tasks of CC’5 on NIST SRE 2010
database discussed in this work. The future work will focus
on extending this framework with data augmentation to over-
come mismatch conditions [21}/31}(32]].

5. CONCLUSIONS

This work focuses on having an improved DNN embedding
based SV system that considers input from generative mod-
els. The total variability speaker modeling is used as the
generative model for the studies. A transformation model
is learned by applying CCA using background data i-vectors
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Fig. 3. DET curves for the coreext-coreext task of NIST SRE
2010 database.

and x-vectors. This model is then used to obtain the genera-
tive x-vectors that are found to perform superior to its baseline
as well as i-vector counterparts. The studies are performed
on the NIST SRE 2010 database on three different condi-
tions. The studies reveal 48.83%, 22.46% and 31.01% rela-
tive improvement on EER for the coreext-coreext, core-10sec
and 10sec-10sec tasks, respectively. This confirms the im-
portance of using some inputs from the generative models for
the framework of discriminative model of DNN embeddings
for SV. Additionally, the performance of generative x-vectors
is found to be superior for long utterances and competitive
for short utterance cases to that obtained from the score level
fusion of i-vector and x-vector systems. Thus, this kind of ap-
proaches have less latency than the dimension concatenation
or score level fusion of systems that makes them useful for
application purpose.
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