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ABSTRACT

Large scale Natural Language Understanding (NLU) systems are
typically trained on large quantities of data, requiring a fast and scal-
able training strategy. A typical design for NLU systems consists of
domain-level NLU modules (domain classifier, intent classifier and
named entity recognizer). Hypotheses (NLU interpretations consist-
ing of various intent+slot combinations) from these domain specific
modules are typically aggregated with another downstream compo-
nent. The re-ranker integrates outputs from domain-level recogniz-
ers, returning a scored list of cross domain hypotheses. An ideal re-
ranker will exhibit the following two properties: (a) it should prefer
the most relevant hypothesis for the given input as the top hypothesis
and, (b) the interpretation scores corresponding to each hypothesis
produced by the re-ranker should be calibrated. Calibration allows
the final NLU interpretation score to be comparable across domains.
We propose a novel re-ranker strategy that addresses these aspects,
while also maintaining domain specific modularity. We design opti-
mization loss functions for such a modularized re-ranker and present
results on decreasing the top hypothesis error rate as well as main-
taining the model calibration. We also experiment with an extension
involving training the domain specific re-rankers on datasets curated
independently by each domain to allow further asynchronization.
Index Terms: Re-ranking, calibration, multi-task learning

1. INTRODUCTION

Voice-controlled smart agents [1] provide powerful ways for hu-
mans to interact with the underlying intelligent systems in perform-
ing various kind of tasks, such as playing music, asking for local
directions to more recently having extended multi-turn conversa-
tions [2]. Natural Language Understanding (NLU) is a crucial part
of this system that interprets the user request and produces struc-
tured representation of the user’s intention and extract units of in-
formation in the request. Design of such large scale NLU systems
requires a fast and scalable training with capabilities such as asyn-
chronous and parallel training [3} 4]. One of the NLU design ap-
proaches is a system modularized into domain-specific components
(namely, domain classifier, intent classifier and named entity recog-
nizers), where each domain represents a core service such as Mu-
sic and Q&A. Given this modularized system, we aim to design a
combination model that merges the outputs from the domain-specific
components and returns a scored list of cross-domain NLU hypothe-
ses. In this work, we propose an NLU re-ranker model for re-scoring
domain hypotheses, while maintaining the domain-wise modularity.
A domain specific re-ranker can allow a parallelized as well as asyn-
chronous training across domains. In such a case, scores for the
generated NLU hypotheses should capture the notion of correctness,
as well as being calibrated across each domain for a direct compar-
ison of cross domain scores. With calibration, the highest scoring
hypothesis amongst the list of all domains’ hypotheses can directly
be assigned as output of the NLU system. Calibration also allows

creation of a sorted list of cross domain hypotheses based on the
hypotheses scores. We demonstrate the application of this design
of re-ranker on an Alexa use case (Alexa is the virtual assistant de-
signed for Amazon devices), with improvements in NLU accuracy
over a baseline involving unweighted combination of outputs from
the domain-specific components.

Several previous works have investigated the integration of hy-
potheses from multiple domain components using a combination
model. For instance, Robichaud et al. [5] present a hypotheses
ranking system to combine outputs from similar modular domain
specific models, based on Lambda Rank Gradient Boosted Decision
Trees [6]. The combination model is a single model trained on out-
puts from each group of domain models and consequently, is shared
across all the domains. Crook et al. [7]] extend a similar model to a
multi-lingual setting. Re-ranking of hypothesis coming from a sys-
tem has been approached in other problems such as machine trans-
lation [8]], obtaining correct NLU hypotheses given multiple speech
recognition hypotheses [9], as well as re-ranking speech recogni-
tion hypotheses themselves [10]. On the other hand, researchers
have also focused on designing re-ranking algorithms such as Lamb-
daMART [6]], Adarank [11]] and Mcrank [[12]. A few other note-
worthy approaches that minimize error metrics based on a re-ranker
approach inlude corpus weight estimation [13]], minimum-risk train-
ing on translation forests [[14], batch tuning for statistical machine
translation [15]] and minimium risk annealing [16]. In particular, the
Yahoo! learning to rank challenge [17] led to several advances in
hypothesis ranking. Despite providing promising results on multiple
tasks, the methods propose training a single model as a combination
strategy, which will not maintain modularity of the system. Also,
the score yielded by the above methods is not calibrated for com-
parison across domains. Calibration [18]] is an important desired
property of machine learning systems, in particular when multiple
models are operating in conjunction [19]. As we propose training
modularized re-rankers, calibration becomes a critical requirement
for selecting top hypotheses across all the domains. Calibration is
also desirable by downstream components (for instance, for mak-
ing decisions such as to accept or reject the top hypothesis). The
novelty of our work lies in achieving modularization with the aid of
calibration. The proposed design provides advantages such as asyn-
chronous training across each domain, needing inputs from only the
corresponding domain components.

NLU systems modularized as per the concept of domains have
been proposed in several previous works [20L|5]. Domain Classifiers
(DC), Intent Classifiers (IC) and Named Entity Recognizers (NER)
are statistical models that outputs labels (in their corresponding la-
bel spaces) and corresponding confidence scores. Hypothesis for a
given domain is an aggregation of outputs from the corresponding
domain-specific DC, IC and NER models. We design loss func-
tions to jointly achieve the top hypothesis correctness along with
calibration. We also present analysis on the hypotheses calibration
and perform an additional experiment involving training the domain
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Fig. 1. A description of a modularized NLU system design contain-
ing DC (One Vs All MaxEnt), IC (Multi class MaxEnt) and NER
(CRF model) models. We propose the re-ranker as the combination
scheme to obtain a ranked list of NLU hypotheses.

specific re-rankers on datasets generated independently for each do-
main. This experiment explores further asynchronization across do-
mains where each domain is free to curate their own training data
(as opposed on relying on a common data source before kicking off
model training).

This paper is organized as follows: In the next section, we pro-
vide a background of a typical design for DC, IC and NER models,
followed by a description of the proposed re-ranker model. Section 3
describes the re-ranker design, followed by experiments and results
in section 4 and 35, respectively. We discuss the additional experi-
ment on re-ranker training using different datasets in section 6 and
present the conclusion in section 7.

2. BACKGROUND: NLU SYSTEM DESIGN

An effective NLU design approach involves modularization into do-
main components, with each component containing a set of three
statistical models: (i) a Domain Classifier (DC), (ii) an Intent Clas-
sifier (IC) and, (iii) a Named Entity Recognizer (NER). Below, we
describe the NLU system used for our experiments and Figure[T]pro-
vides a pictorial description of the modularized system.

(1) Domain Classifier (DC): A domain classifier is a binary clas-
sifier indicating if a given utterance query is intended for the target
domain. In our system, the DC is implemented, without loss of gen-
erality, as a Maximum Entropy (MaxEnt) classifier operating on n-
grams extracted from the query utterance. In Figure [T} Books and
Music domain DC yield scores of 0.6 and 0.7 for an incoming ut-
terance “play Moana”. A lower score is expected from an unrelated
domain such as sports.

(2) Intent Classifier (IC): Each domain component serves multi-
ple intents related to it. For instance, a request relevant to the music
domain component, could be about playing a specific song or adding
a song to a playlist. Therefore, each domain component should also
be designed to return an intent specific score for a set of intents
supported by that domain. We train a multi-class MaxEnt model
for intent classification, with the prediction targets set as the intents
supported by that domain. The model uses utterance n-grams as fea-
tures. In Figure[T] books IC returns scores for associated intents such
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Fig. 2. An example of set of hypotheses obtained from the Books
domain components for the utterance “play Moana”. Note the scores
corresponding the DC, IC and NER are retained for every generated
hypothesis.

as ReadBookIntent and FindBookIntent, whereas Music IC returns
scores for PlayMusicIntent and CreateListIntent.

(3) Name Entity Recognizer (NER): Finally, the entity recog-
nizer serves the specific purpose or identifying named entities within
a query. For instance, for the query described in Figure[I] “Moana”
has to be recognized as album name if the query corresponds to the
music domain, book name if the query corresponds to the books do-
main or a movie name if the query corresponds to the video domain.
We perform this task using a Conditional Random Field (CRF) clas-
sifier trained on utterance n-grams. For each domain component,
there is a domain specific set of labels on which the NER model is
trained.

3. RE-RANKER DESIGN

In order to maintain the modularity of re-ranker across domains, we
design domain-specific re-rankers with input from the corresponding
domain specific components. Given outputs from DC, IC and NER
from each domain’s statistical models, we first create a list of do-
main specific candidate hypotheses. In this section, we describe the
strategy for creating this list of candidate domain hypotheses. These
hypotheses and the corresponding DC, IC and NER scores are then
used as input to the domain’s re-ranker model.

3.1. Generation of domain specific hypotheses

We initially create a list of in-domain hypotheses, which is obtained
as a Cartesian product of the label outputs from DC, IC and NER
models. An example of candidate domain hypotheses for Books do-
main is shown in Figure 2] A similar in-domain hypothesis genera-
tion process is repeated for all other domains. Typically the Carte-
sian product is done using a beam search method, where only a lim-
ited set of most confident IC and NER hypotheses are considered.
Note that the scores from the DC, IC and NER for the corresponding
labels are retained and are used as inputs to the re-ranker. Next, we
define error metrics on a given hypothesis.

3.2. Error definition on NLU hypotheses

Given the set of domain hypotheses as described above, we define
two errors metrics: (a) Semantic Error Rate (SemER) and, (b) Inter-
pretation Error (IE).

Semantic Error Rate (SemER): Given the ground truth anno-
tation for an utterance, we first compute the Levenshtein distance
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Fig. 3. An example of SemER computation for hypotheses from the
Books domain component. Note that the DC output is not used to
compute Leveshtein distance (LD). N is the number of slots in the
annotations.

[21] between the ground truth annotation and the domain hypothe-
sis. The slots used for computing the Levenshtein distance are the
IC and NER labels. We do not use DC output for distance computa-
tion as IC label space are non-overlapping across domains. Hence,
an incorrect DC assignment automatically implies an incorrect IC
assignment. The computed distance is then normalized by the total
slot count in the ground truth reference. An example for sample hy-
potheses from the Books domain component is shown in Figure [3]
We represent the SemER value for a hypothesis ¢ corresponding to
an utterance u as SemER ;.

Interpretation Error (IE): IE is a hard metric that indicates if a
hypothesis is correct or not, i.e., hypothesized intent and slots exactly
match the ground truth. IE is O if SemER is 0 and 1 otherwise.
We represent the IE value for a hypothesis ¢ corresponding to an
utterance u as IE,;. Next, we present the design of our modularized
re-ranker model as well as the optimization loss definitions based on
the SemER and IE error metrics.

3.3. Re-ranker model and Loss definition

In order to maintain the modularity of the re-rankers per domain,
we train a re-ranker for each domain. During training, the domain’s
re-ranker training only receives hypotheses generated from the cor-
responding domain components on a re-ranker training dataset. The
training dataset, however, may contain ground truth annotations that
may belong to other domains. Note that this implies that the in-
domain hypotheses for utterances belonging to other domains will
always be incorrect during the re-ranker training. After obtaining the
set of domain hypotheses and the corresponding DC, IC and NER
scores, we obtain the final hypotheses score as a function f of the
three scores with a parameter set wq, as shown in equation ().

si' = f(wa,1§") (1)

s4% represents the score corresponding to the i hypotheses for
a domain d, given an utterance u. 13" is a vector representing the
scores (log probability) returned by the set of domain specific statis-
tical models (DC, IC and NER) for hypotheses ¢ for domain d, given
the utterance u. Note that we obtain a separate set of weights wy for
each domain d, thereby maintaining the modular nature of the NLU
models, allowing parallel and asynchronous training.

In order to obtain the weights wq for the weighted combination
stated above, we experiment with cost functions that yields a high
score s** for domain hypotheses with low SemER while also bieng
calibrated. Based on the SemER and IE metrics, we define the fol-
lowing cost functions.

Expected SemER loss (E-SemER): We define the E-SemER
loss in equation [J] The expected SemER loss S§ encourages hy-

potheses with a lower SemER value to yield a higher score s%* (and
correspondingly higher p,;). The SemER objective quantifies the
degree of hypothesis correctness and the objective attains minimum
value for the utterance u if s4° values are in the reverse sorted order
as the SemER,,; values (hypothesis with the highest SemER,,; ob-
tains the least s4%). Also, expected SemER is a better metric over
alternates that focus on the correctness of the top hypothesis, as it
provides a ranked list of hypotheses arranged by their degree of cor-
rectness.
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Expected Cross entropy loss: The objective with the cross-
entropy loss Cy' with respect to the labels IC,; is added for a cal-
ibration purpose. Despite training the domain specific weights, the
scores s4% across the set of domains should be comparable. Cross
entropy loss allows machine learning model’s outputs to be inter-
preted as Bayesian probabilities [22]], allowing output scores from
independently trained models to be directly comparable. It also of-
fers score refinement, by assigning a low score to an incorrect hy-
pothesis and vice-versa. However, note that this loss does not take
into account the granular SemER score into account for ranking, but
only the coarse IE values. Hence, all incorrect hypotheses are con-
sidered equally bad without regards to the degree of incorrectness.
Also, note that in equationEL we seek calibration for all the generated
hypotheses and not just the top-best.

CY¥ = \o Pyt x ((1 = IEy;) log ré" + 1By log(1 — ré‘i))

1E€Set of hypotheses
for w in domain d

Cross Entropy with IE,, ; as target
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o is the standard sigmoid function. Next, we define the various
optimization schemes we use to learn the re-ranker weights wyq.

3.4. Re-ranker model optimization

We chose a linear function of the form f(wyq,13") = w1 I3, The
reason for choosing a linear model is fact that the individual model
components (DC, IC and NER) perform at high accuracy levels (DC
models yield F-scores > 95% for each domain individually, IC mod-
els yield unweighted F-scores > 90% per domain and NER models
yield F-score > 88% per named entity detection). Another off-line
experiment using a shallow neural network instead of linear model
does not show significant gains, reflecting that the DC, IC and NER
scores are very well linearly correlated with SemER and IE values.
A linear combination model has also been tested in several related
re-ranking tasks such as machine translation [[13] and speech recog-
nition [23]. We experiment with four different re-ranker optimiza-
tion models as described below.



3.4.1. Baseline: Uniform re-ranker

The first re-ranker model used in our experiments is a re-ranker that
assigns uniform weights as wqy. The baseline strategy is the most
naive model that retains domain specific modularization and does
not require any additional training on top of the DC, IC and NER
training. We also observe that this strategy performs competitively
due to high accuracy of the DC, IC and NER models. The baseline
strategy also approximates the following.

log P(Hypothesis|u) = log P(Domain, Intent, Named-Entity|u)
~ log P(Domain|u) + log P(Intent|u) + log P(Named-Entity|u)
—_———— ———— —_————

DC score IC score NER score

Q)

3.4.2. RI: Re-ranker trained using E-SemER loss only

In the optimization R1, we only use the E-SemER loss for training
as discussed in the previous section. Note that this optimization is
only run on in-domain data. We produce domain specific hypotheses
in training re-ranker for a given domain, hence hypotheses for “out-
of-domain” utterances are always incorrect. SemER,,; in that case
does not represent the quality of hypothesis and is merely a function
of the count of NER labels. This optimization can be considered
equivalent to other ranking based metrics in the literature that solely
depend upon a ranking based loss (Lambda Rank Gradient Boosted
Decision Trees [6]). The optimization is stated below.

wy = argmin ( Z S4) 7

Wy

we Re-ranker training

setin d

3.4.3. R2: Re-ranker trained using E-CE loss only

In the optimization R2, we use the E-CE loss computed on each ut-
terance in the training set. In computing E-CE loss, all incorrect hy-
potheses are labelled 0. Consequently, all hypotheses from “out-of-
domain” utterances are labelled incorrect, while only one hypothesis
from in-domain utterances can be correct. We state the R2 optimiza-
tion below.

wy = arg n&’ldn ( Z Cy ) ®)

u ERe-ranker training set

3.4.4. R3: Re-ranker trained using E-SemER + E-CE loss

In this scheme, we optimize a combination of both the losses as
stated in equation 0] We set A1 and A are set as show in equa-
tion ??, assigning equal importance to the expected SemER and the
cross entropy losses.

wg = argmin (ky E S+ k2 E Ci) 9
w,
d ue Re-ranker. training
setind

uERe-ranker training set

Where, k1 and k2 are hyperparameters tuned to account for the
scaling differences between E-SemER and E-CE losses.
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Fig. 4. Confidence calibration plots obtained on hypotheses scores
across all domains. While baseline and R1 optimization do not yield
a good calibration, optimization using R2 and R3 provide the best
calibration.

3.5. Obtaining the final hypothesis for a test utterance

Given a set of domain specific DC, IC, NER and re-rankers, we de-
code a test utterance on a per-domain basis. Each domain yields
its set of domain specific hypotheses with corresponding hypotheses
scores. They are merged across all domains and sorted based on the
interpretation scores to obtain the n-best for the utterance.

We discuss our experimental setup in the next section, followed
by results and discussions.

4. EXPERIMENTS

We test the various re-ranker training strategies on an NLU system
serving an Alexa-enabled device. We use ~10M annotated utter-
ances representative of user requests directed to this device. We
initially train the domain specific DC, IC and NER models on the
training partition corresponding to the device. DC for each domain
d is trained on the entire training partition with in-domain utterances
labels as “in domain d” and “out of domain d” otherwise. IC for a
domain d is trained on the training data partition corresponding to
that domain, with targets as the set of intent labels in that domain
(“out of domain d” data for DC is not considered in IC training,
as it does not contain intents corresponding to the domain d). Hy-
perparameters such as n-grams and regularization are tuned on the
development partition. Similarly, NER for a domain d is trained on
the domain specific training data partition, with target space span-
ning the set of named entities corresponding to that domain. After
training the DC, IC and NER models, we train the domain-specific
re-ranker on the same development partition using the optimizations
stated in section3.4]

5. RESULTS

We present the baseline results as well as the relative improvements
over the uniform weight baseline for the device in Table[T] Firstly,
we observe that the baseline re-ranker model yields a low SemER
value, indicating a strong performance. Over the strong baseline, we
further obtain a significant improvement in the test performances (p-
value < 5%, bootstrap re-sampling test [24]) using each of the R1,
R2 and R3 schemes. R3 performs the best, suggesting a combina-
tion of a pure re-ranking based loss and calibration loss should be
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Fig. 5. Confidence calibration plots obtained on hypotheses on three domains: Global, HomeAutomation and Weather. The calibration varies

per domain, particularly at lower thresholds.

used. However, our evaluation is based only on the correctness of
the top best and the incorporation of the E-SemER loss may also be
desirable from an n-best quality perspective.

5.1. Calibration analysis

Calibration is an important and desired property of machine learn-
ing models and is required in SLU systems from two aspects: (i)
a well calibrated model observes less perturbations in performance
with each model update and, (ii) several downstream components
can use the score s%% as true estimate of the model’s confidence.
Moreover, in our case, calibration is required as hypotheses across
domains are merged and sorted. We evaluate the confidence calibra-
tion of models with calibration plots: indicating the proportion of
correct hypothesis in a bin and mean of scores in that bin. We di-
vide probability scores into 10 bins and compute mean of the scores
s4 for utterances in each of the bins. The mean is plotted against
the fraction of correct hypotheses (IE=0) in the corresponding bins.
By definition, a perfectly calibrated curve is the one where mean
of scores in the bin is equal to the proportion of correct hypothesis
in that bin. For each re-ranker model (baseline, R1, R2 and R3),
we present calibration curves in two different settings: (i) a cross-
domain calibration curve: on top hypotheses obtained after aggre-
gation from all domains (Figure [} and, (ii) per-domain calibration
curves: on the subset of hypotheses obtained as top hypotheses ob-
tained from a given domain (FigureE]).

The cross-domain calibration curve shows that for NLU system
without the calibration (baseline, R1 schemes), outputs scores that
are over confident as the curve is above the diagonal line, particu-
larly for scores close to zero. Given a rejection threshold, this would
introduce unnecessary false rejects, since a sizable proportion of hy-
potheses are correct in those bins. After introducing the calibration
objective (in R2, R3), our models reliability curve is nearly diago-
nal and a rejection threshold can be safely applied to such models.
Note that the reliability curve does not reflect the accuracy (SemER)
aspect of models as the number of hypotheses in each bin varies
across different models. The per-domain calibration curves in Fig-
ure |§| for Global, HomeAutomation and Weather domains present a
similar story where a domain’s hypotheses tend to be over confident.
The calibration for baseline and R1 schemes is particularly off at low
bins which may lead to a large number false rejects. Introduction of
calibration in R2, R3 improve the calibration results, although the
calibrated curves per domain are not as well aligned to the diago-
nal line as the cross-domain case. This analysis suggests that our
hypotheses generation strategy in section 3.5 may tend to break at
lower thresholds as performance across domains are not calibrated.
We also suggest that a different rejection threshold is applied to the

Optimization scheme | Relative improvements

Baseline -

R1 2.7%
R2 3.5%
R3 3.7%

Table 1. Improvements in aggregated SemER after adding re-ranker
scheme to the modularized NLU model. Baseline model’s SemER
is 7.1%.

top hypotheses, conditioned on the domain, since the calibration is
different for each domain.

6. ADDITIONAL EXPERIMENT: RE-RANKER TRAINING
ACROSS DOMAINS WITH DISSIMILAR DATA

In all the previous experiments, we used the same set for training
the re-rankers weights wg across all domains. However, we can
allow for further de-synchronization with an option of using differ-
ent training/development data for different domains. We simulate
this by allowing a given domain to obtain a different subset of train-
ing/development portion from all of the available data. Each domain
samples ~90% of all the available training/development data. Test
partition is kept constant for cross-domain evaluation. The re-ranker
is trained using the R3 optimizations discussed in section[3.4}

Although we use different dataset per domain, we do not ob-
serve any significant degradation in performance of the NLU system
(0.05% relative to the re-ranker trained using R3 optimization on all
of the development set). This observation hints that further inde-
pendence in curating training data for training each domain’s rec-
ognizers. We note that this asynchrony in training sets can only be
allowed due to the calibrated nature of the re-ranker. Although the
initial direction is promising, we acknowledge the need to conduct
more experiments as calibration may break under conditions involv-
ing very different re-ranker training datasets per domain.

7. CONCLUSION

Large scale NLU models are often modularized for scalable and par-
allelized training. However, this requires a combination strategy,
that can combine outputs across the domain specific components.
We propose a modularized re-ranker model in this paper, trained to
rank domain hypotheses based on their correctness, while yielding
calibrated scores across domains. The re-ranker design can allow
asynchronous training per domain with implications towards a faster



NLU model training and update. We demonstrate the usefulness of
the re-ranker model on an Alexa use case, obtaining significant im-
provements in the SemER performance. We also present our findings
on an experiment involving re-ranker trained on different datasets
obtain by every domain independently. We observe that we are ca-
pable of maintaining the performance of the NLU system despite
training models on different datasets, given the modularized and cal-
ibration aspects of the re-ranker.

In the future, we aim to add additional domain specific cues
along with the IC, NER and DC scores (e.g. scores related to Named
entity slots) to improve the generation of hypothesis list. Similarly,
more features (e.g. ASR based features [25]], paralinguistic features
[26]]) can be used to improve hypotheses re-ranking. Given more fea-
tures, we also aim to train a non-linear function f to obtain the scores
s4*. Other optimization schemes for re-rankers can also be explored
which combine existing loss functions and a calibration objective
[27, 28]
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