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ABSTRACT

We address the problem of reconstructing articula-
tory movements, given audio and/or phonetic labels.
The scarce availability of multi-speaker articulatory
data makes it difficult to learn a reconstruction that
generalizes to new speakers and across datasets. We
first consider the XRMB dataset where audio, ar-
ticulatory measurements and phonetic transcriptions
are available. We show that phonetic labels, used
as input to deep recurrent neural networks that re-
construct articulatory features, are in general more
helpful than acoustic features in both matched and
mismatched training-testing conditions. In a second
experiment, we test a novel approach that attempts
to build articulatory features from prior articulatory
information extracted from phonetic labels. Such
approach recovers vocal tract movements directly
from an acoustic-only dataset without using any ar-
ticulatory measurement. Results show that articula-
tory features generated by this approach can corre-
late up to 0.59 Pearson’s product-moment correla-
tion with measured articulatory features.

Index Terms— Articulatory features, tract vari-
ables, acoustic inversion, deep learning, XRMB

1. INTRODUCTION

Measurements of vocal tract movements can
be beneficial for several speech technology appli-
cations, including speech synthesis [1], automatic
speech recognition (ASR) [2, 3], pronunciation
training [4] and speech-driven computer animation

[5]. Typically, vocal tract movements, henceforth
referred to as articulatory features (AFs), are much
more difficult to collect than audio and require
extensive preprocessing steps to reduce noise and
interpolate missing data [6]. This results in few and
relatively small corpora of articulatory data and, as
a consequence, in a strong limitation to their use
in most of the aforementioned cases. Learning a
reliable AF reconstruction, that generalizes well
across speakers and datasets, would allow a more
significant use of articulatory information in many
applications. Previous works on AF reconstruction
learn an acoustic inversion (AI), i.e., a mapping
from acoustic features to AFs (e.g., [7, 8, 9]). While
most of these studies have focused on speaker-
dependent AI, there is some recent work on the
speaker-independent case [10, 11, 12].

In this paper we address two questions: (1) is
that possible to learn an AI that better generalizes
to new speakers by either augmenting or substitut-
ing altogether the acoustic input with some phonetic
information? (2) Can we generate accurate AFs,
starting from some phone-specific prior articulatory
knowledge and using very little or zero vocal tract
measurements?

To address question 1 we use input phonetic
features that range from phone labels to phonolog-
ical features, which can be extracted from those
labels through a look-up table. Specifically, we
use phonological features from the Articulatory
Phonology theory [13, 14]. Although the idea of
pairing phone labels with input acoustic features
to recover AFs is not new [15, 16], here we test
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the utility of phonological features in both matched
and mismatched training-testing conditions. The
mismatched condition is created within the XRMB
dataset [17] by training and validating on male
speakers and testing on female speakers, and vice
versa. We expect the phonetic information to be
particularly helpful in the mismatched case, as it is
speaker and environment independent.

Henceforth we will refer to AI and its variants
as supervised methods, in which measured articula-
tory data are used as targets to train a bidirectional
long short-term memory recurrent network (LSTM)
to perform AF reconstruction.

Adding side information, as proposed here, or
using adaptation techniques to make AF reconstruc-
tion more general may still be very challenging as
existing articulatory datasets are small and only
cover the read-speech speaking style.

A possible alternative, explored in this paper,
is to extract AFs directly from audio-only datasets
given weak prior knowledge about average vocal
tract configurations typical of each phoneme. This
alternative strategy addresses our question 2 and the
proposed methods are defined as weakly supervised.
This approach in principle does not require any ar-
ticulatory data but some articulatory data can still
be used to compute or refine the articulatory priors
(hence the name “weakly supervised”).

Our 3 weakly supervised methods are based on
deep auto-encoders [18, 19] or residual networks
[20] and tested on the XRMB dataset. Phone-
dependent discrete articulatory priors, extracted
from phonemes through a look-up table, are used to
generate real-valued latent articulatory representa-
tion of the acoustic data.

2. ARTICULATORY FEATURES

We considered the following AF sets:
Pellet trajectories (PTs). Preprocessed x-y trajec-
tories of 8 pellets tracking speaker’s lips, tongue
and jaw (see [11] for preprocessing details).
Vocal Tract Variables (VTVs), from articula-
tory phonology theory [13, 14]. Specifically, we
considered lip protrusion (LP) and aperture (LA),
tongue tip constriction location (TTCL) and degree

(TTCD), tongue body constriction location (TBCL)
and degree (TBCD). The 6 VTVs were extracted
from pellet trajectories by using the transformation
procedure described in [21]. The extraction requires
the shape estimation of the hard palate, which was
computed by fitting a second-degree polynomial
curve to the tongue measurement data.
Phone-dependent extended discrete VTVs: LFs
and SFs. To each phoneme we assigned one vec-
tor consisting of 10 integer-valued features: the
aforementioned 6 VTVs, 2 additional manually
annotated vocal tract features (specifically, velic
opening degree (VEL) and glottal opening degree
(GLO)), consonant, and silence. We used two dif-
ferent feature sets: LFs and SFs. LFs refers to the
set where the values (integers) of the first 6 VTVs
were provided by an expert, while in SFs set they
were computed through a simple statistical proce-
dure. For each phone label we computed the aver-
age values of the per-speaker z-normalized VTVs
over the XRMB training dataset. Average values
were then rounded to their closest integer, resulting
in an average number of 4 quantization levels per
feature (while LFs have on average 5 levels per fea-
ture). Both LFs and SFs can be retrieved from each
phoneme through a look-up table (available here.),
so we refer to them as phonological features.

3. SUPERVISED METHODS

Supervised methods rely on datasets consisting
of audio, phonetic annotations and measured artic-
ulatory data. The goal is to learn a mapping from
acoustic features (e.g., mel-scaled frequency cep-
stral coefficients, MFCCs) and/or phonological fea-
tures (i.e., phone labels or LFs or SFs) to AFs (either
in the form of PTs or VTVs). In our experiments
these mappings are learned by training deep bidi-
rectional recurrent neural network based on Long
short-term memory (LSTM) cells [22].

4. WEAKLY SUPERVISED METHODS

In this strategy the available articulatory infor-
mation consists of some prior concise description of
the typical vocal tract configuration of each phone

 https://www.dropbox.com/s/3lbh5rplrh14idk/phonetic_features.pdf?dl=0


(independent of the phonetic context). These priors
are either provided by an expert (LFs), or empiri-
cally extracted from some training articulatory data
(SFs). We experimented with SFs extracted from
multiple-speaker data and single speaker-data. In
this section, we denote by x the acoustic feature
vector, by x̂ the reconstructed acoustic feature vec-
tor, by z the articulatory prior vector (i.e., SFs or
LFs) and by ẑ the generated AF vectors. The preci-
sion of the generated articulatory features is evalu-
ated by comparing ẑ with measured articulatory fea-
tures.

4.1. Autoencoder-based method

An autoencoder (AE) is an artificial neural net-
work architecture that attempts to reconstruct its in-
put through a latent representation (encoding). It
consists of two parts: a mapping from the input to
the latent representation (encoder, e), and the input
reconstruction starting from the encoding (decoder,
d).

4.1.1. Autoencoder 1

The first autoencoder (AE1) we propose takes
the audio as input and returns its reconstruction.
This map goes through the encoding layer, which
we would like to resemble an articulatory represen-
tation by adding an additional term to the standard
autoencoder. Let zt be the prior vector at time
t with dimensionality G (G = 10, as mentioned
above), and xt+T

t−T = [xt−T , . . . ,xt, . . . , xt+T ] the
input concatenation of the audio vectors, where T
is the context window length on each side. The
objective function at time t is:

LA1,t =‖ xt+T
t−T − x̂t+T

t−T ‖
2
2 +λz· ‖ zt− ẑt ‖22, (1)

where ẑt = e
(
xt+T
t−T

)
, x̂t = d ◦ e

(
xt+T
t−T

)
and λz is a

scalar hyperparameter that weights the importance
of the second term of the loss. In other words, we
force the latent representation of the acoustic fea-
tures x to be close to the typical configuration taken
by vocal tract when the phoneme associated to x
is produced. The z can be seen as the mean of a
prior multivariate Gaussian distribution, while we

do not make any prior assumption regarding its co-
variance (contrary to variational autoencoders [23]).
The assumption that actual AFs are roughly nor-
mally distributed around z is also shared by the next
approaches, and is supported by qualitative analysis
we have carried out per each phone.

4.1.2. Autoencoder 2

In the second variant, autoencoder 2 (AE2), we
revert the AE structure previously described in Sec.
4.1.1. Now, z is the input of the AE which provides
the articulatory reconstruction ẑ. We force the en-
coding layer to match the acoustic latent represen-
tation x. Therefore, the loss function to minimize at
time t is:

LA2,t =‖ zt+T
t−T − ẑt+T

t−T ‖
2
2 +λx· ‖ xt− x̂t ‖22, (2)

where x̂t = e
(
zt+T
t−T

)
, ẑt = d◦e

(
zt+T
t−T

)
and λx ∈ R

is an hyperparameter. Note that here the articulatory
reconstruction ẑ is not a function of the acoustic fea-
tures as in AE1, but a direct function of the phono-
logical features.

4.2. Residual-based method

In this approach a deep neural network with one
residual layer (ResDNN) takes articulatory prior
vectors z as input features and targets acoustic
features (Figure 1). The residual layer [20] mod-
ulates the input z with its left and right context
weighted by a learned parameter, thus returning a
coarticulation-modulated version of the z.

Formally, the output of each i-th element of the
residual layer ẑt is defined as:

ẑit = zit +Rt, Rt =

t+T∑
s=t−T

G∑
g=1

zgsw
R
sg. (3)

Rt is the residual at time t, and the wR
sg’s are

the learning parameters of the residual network.
The sums taken over time and features model co-
articulation effects. The network is trained to mini-
mize the following loss function:

LR,t = ‖xt − x̂t‖22 + λw‖wR‖22, (4)



Fig. 1: Residual DNN structure. The frame context
is only used in the residual layer. Here T = 1.

where x̂ is the reconstructed audio, λw controls the
penalization term, and wR ∈ RG·(2T+1).

5. EXPERIMENTAL SETUP

5.1. Dataset

All the experiments were carried out on the 47
American English speaker subset of XRMB used in
[11, 12], with the only exception that we discarded
speaker JW33 (used for validation in [11, 12]), as
we discovered some corrupted audio (while we kept
speaker JW58 which was removed in [12] and only
removed some corrupted utterances).

Articulatory data consists of x-y trajectories
of: upper and lower lips, 4 tongue points, one
mandible molar and one mandible incisor. For
the training-testing matched condition we split the
dataset into disjoint sets of 35/7/4 speakers for train-
ing/validation/testing respectively.

For the training-testing mismatched condition
we split the dataset by gender. We refer to the so-
obtained subsets as Male and Female , with 22 and
24 speakers respectively. For supervised methods,
when Female was used as testing dataset, Male was
split into 18/4 speakers for training/validation re-
spectively. In the opposite case, Female was split
into training and validation, with 19 and 5 speakers
respectively.

Articulatory features were preprocessed as
in [11], while acoustic features are the first 13

MFCCs, computed every 10ms from 25ms Ham-
ming windows, plus deltas and delta-deltas. Both
acoustic and articulatory features are per-speaker
z-normalized.

5.2. Neural Networks

Supervised methods are based on bidirectional
LSTMs (BLSTMs). The networks have 5 layers
each containing 250 memory blocks, with peephole
connections and hyperbolic tangent activation func-
tion. All experiments were carried out using Adap-
tive Momentum Optimizer [24], a piecewise con-
stant learning rate with initial value set to 0.1, a 0.9
momentum, ε = e−8 and initial decay rates of first
and second moments 0.9 and 0.999, respectively.
Weights were initialized with Xavier initialization
[25]. Early stopping was applied to determine the
number of training epochs.

In all weakly supervised methods, the network
input consists of the central vector plus T = 12 con-
text vectors per side. Training was performed with
stochastic gradient descent. Learning rate exponen-
tially decayed every 10000 steps, with initial value
0.01 and 0.96 decay rate. Training was performed
for 50 epochs or stopped earlier if the acoustic fea-
ture reconstruction error did not decrease.

Both AE types have a hourglass shape, symmet-
ric w.r.t. the encoding layer. Each encoder (as well
as the decoder) has 3 layers with 200, 130, 70 nodes
respectively, decreasing towards the encoding layer
which has G = 10 nodes in AE1 and 39 nodes in
AE2. Again we used Xavier initialization.

ResDNNs have 4 layers with 1000 nodes each,
while the residual layer hasG = 10 nodes. We fixed
λw = 0.01 and grid-searched the remaining hyper-
parameters, based on the audio reconstruction.

We evaluated all methods by computing the
average (over features) root mean squared error
(RMSE) and the average Pearson’s correlation
coefficient (r) between per-speaker z-normalized
reconstructed and measured AFs (so RMSE is a
normalized RMSE).



PTs VTVs
Input RMSE r RMSE r

MFCCs (S1) 0.894 0.448 0.879 0.517
MFCCs 0.685 0.721 0.646 0.777

Phonemes 0.664 0.742 0.617 0.782
LFs 0.672 0.732 0.611 0.797
SFs 0.667 0.744 0.618 0.783

MFCCs + Phonemes 0.654 0.757 0.606 0.797
MFCCs + LFs 0.657 0.748 0.602 0.801
MFCCs + SFs 0.655 0.752 0.606 0.798

Table 1: Supervised methods results on the test set
for PT and VTV reconstruction in the matched con-
dition case. MFCCs (S1) refers to a BLSTM trained
on 1 single speaker data (JW14).

6. RESULTS

6.1. Matched conditions

In Table 1, we compare the average RMSE and
correlation for PT and VTV reconstruction of differ-
ent BLTSM inputs. BLTSM training and evaluation
were repeated twice, with different random initial-
ization. To keep tables more readable we only report
the mean, the std. dev. is always lesser than 0.01.
Results suggest that phonological features (phone

labels, LFs and SFs) can outperform MFCCs, and,
surprisingly, MFCCs slightly improve reconstruc-
tion when combined with phonological features, de-
spite MFCCs containing much more detailed infor-
mation than phonological features. LFs and SFs do
not produce relevant improvement w.r.t. phone la-
bels. Table 1 also shows AI results when only one
speaker is used for training in order to quantify the
gap w.r.t. to multi-speaker training data and to com-
pare with weakly supervised methods in a limited
articulatory data setting.

Results of weakly supervised methods in the
matching conditions setting are summarized in Ta-
ble 2. We compare them with the Baseline case,
where the phonological features are directly com-
pared with measured AFs. Again, all experiments
were carried out twice (std. dev. < 0.01). Although
LFs and SFs have a similar number of quantization
levels, SFs largely outperform LFs in all methods.

Baseline ResDNN AE1 AE2
Features RMSE r RMSE r RMSE r RMSE r

LFs - 0.366 - 0.360 - 0.330 - 0.390
SFs 0.858 0.524 1.010 0.554 0.862 0.507 0.820 0.571
SF1s 0.888 0.514 1.117 0.537 0.876 0.508 0.835 0.563
SF2s 0.872 0.519 1.102 0.524 0.894 0.492 0.826 0.568

Table 2: Weakly supervised methods results on the
test set. SF1s and SF2s refer to the statistical fea-
tures computed on the JW14 and JW14+JW12 ar-
ticulatory data, respectively.

LP LA TTCL TTCD TBCL TBCD
JW48 RMSE 0.825 0.859 0.838 0.753 0.816 0.828

r 0.600 0.519 0.590 0.680 0.581 0.563
JW53 RMSE 0.781 0.842 0.845 0.666 0.739 0.745

r 0.688 0.548 0.581 0.747 0.681 0.686

Table 3: Details of AE2 performance for speakers
JW48 and JW53 (matched conditions).

Most importantly, the generated AFs ẑ always cor-
relate more with actual AFs than the priors z, with
the exception of method AE1. That means that AE2
and ResDNN successfully transform the original
prior articulatory information into articulatory fea-
tures that are closer to the actual AFs. AE2 is the
most effective method.

To show that SFs well generalize across speak-
ers, we re-computed the SFs based on only one or
two training speakers (SF1s and SF2s) and repeated
the weakly supervised experiments. Interestingly,
results obtained with SF1s and SF2s do not signif-
icantly differ from SFs. This implies that the sta-
tistical representations calculated on few speakers
(or just one!) well characterize the vocal tract of
any other speaker. Importantly, in this limited data
setting, ResDNN and AE2 outperform the best su-
pervised method (e.g., r = 0.537 and r = 0.563
vs. r = 0.517). Note that Table 2 shows the best
AE1 and AE2 performances on the validation set,
achieved by fixing λz and λx at 2 and 0.5, respec-
tively. We did not report the RMSE for the LFs, as
they do not reflect the real measurements of the ar-
ticulatory data. More detailed results can be found
in Table 3, where the best AE2 performance is re-
ported for two test speakers and for each VTV.



Fig. 2: Comparison between measured, statistical, and reconstructed (from AE2) LA, TTCD, TBCD features
of speaker JW53.

Input Test gender RMSE r

MFCCs Male 0.848 0.592
SFs Male 0.604 0.782

MFCCs + SFs Male 0.685 0.743

MFCCs Female 0.860 0.557
SFs Female 0.625 0.787

MFCCs + SFs Female 0.686 0.748

Table 4: BLSTM cross-gender VTV reconstruction.

Baseline AE2
Test gender RMSE r RMSE r

Male 0.854 0.539 0.816 0.586
Male (S1) 0.877 0.526 0.822 0.579

Female 0.858 0.529 0.821 0.576
Female (S1) 0.867 0.529 0.819 0.576

Table 5: Cross-gender evaluation of AE2. Male
(S1) and Female (S1) refer SFs computed from fe-
male speaker JW14 and male speaker JW12, respec-
tively.

6.2. Mismatched conditions

Table 4 shows the results of the supervised methods
in the training-testing mismatched conditions. The most
striking result is that MFCCs not only perform signifi-
cantly worse than SFs but even worsen SFs performance
when combined with them. This is due to the strong

speaker dependency of MFCCs (despite their per-speaker
normalization), that may be alleviated through speaker
adaptation.

Regarding weakly supervised methods, in this case
AE2 only, we computed SFs on one set and used them as
prior information for training AE2 on the other dataset.
Note that, in this case, AE2 is trained and tested on the
same speakers (e.g., Female), while priors are computed
on other speakers (e.g., Male). Indeed, since AE2 is only
trained on acoustic data, which are always available, there
is no need to generalize to new speakers. Results in Ta-
ble 5 show that (i) AE2 almost matches the supervised
method with MFCC; (ii) even in the mismatched case,
AE2 reconstruction is not affected by a reduction of ar-
ticulatory data to a single speaker.

7. CONCLUSIONS

In this paper we addressed articulatory feature recon-
struction. We first showed that phone labels are more
helpful than acoustic features in reconstructing AFs in
both matched and mismatched conditions. We then pro-
posed weakly supervised methods to reconstruct AFs
from discrete articulatory priors extracted from phone
labels. Results show that weakly supervised methods can
be a more viable strategy when the amount of articulatory
data is limited, especially in mismatched conditions.
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