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ABSTRACT

Acoustic-to-word (A2W) end-to-end automatic speech recognition
(ASR) systems have attracted attention because of an extremely sim-
plified architecture and fast decoding. To alleviate data sparseness
issues due to infrequent words, the combination with an acoustic-to-
character (A2C) model is investigated. Moreover, the A2C model
can be used to recover out-of-vocabulary (OOV) words that are not
covered by the A2W model, but this requires accurate detection of
OOV words. A2W models learn contexts with both acoustic and
transcripts; therefore they tend to falsely recognize OOV words as
words in the vocabulary. In this paper, we tackle this problem by
using external language models (LM), which are trained only with
transcriptions and have better linguistic information to detect OOV
words. The A2C model is used to resolve these OOV words. Ex-
perimental evaluations show that external LMs have the effects of
not only reducing errors but also increasing the number of detected
OOV words, and the proposed method significantly improves per-
formances in English conversational and Japanese lecture corpora,
especially for out-of-domain scenario. We also investigate the im-
pact of the vocabulary size of A2W models and the data size for
training LMs. Moreover, our approach can reduce the vocabulary
size several times with marginal performance degradation.

Index Terms— End-to-end speech recognition, acoustic-to-
word, attention-based encoder-decoder, multi-task learning, recur-
rent neural network language model, OOV

1. INTRODUCTION

The conventional HMM-based hybrid automatic speech recognition
(ASR) systems are modularized into several components such as
acoustic, subword, lexicon, pronunciation, and language model.
While they are shown to achieve a human-level recognition per-
formance [1, 2], they are separately optimized based on different
objectives and training data, so the overall system is sub-optimal
and needs a complicated decoding process to combine them.

In contrast, end-to-end systems, which optimize the direct map-
ping from acoustic features to transcriptions, have shown promising
results using three end-to-end ASR models: connectionist temporal
classification (CTC) [3–6], attention-based encoder-decoder mod-
els [7–9], and RNN-transducer models [10, 11]. In this paper, we
focus on attention-based models because they show the most promis-
ing results among them [10–12]. There are some choices about out-
put units, and a majority of the previous end-to-end systems is based
on subword units such as characters [8] and word-piece units [13].
Recently, acoustic-to-word (A2W) models have received much at-
tention because of their extremely simplified architecture and fast
decoding process [12, 14–20]. When considering downstream pro-
cesses of ASR such as machine translation, dialogue systems, and
spoken term detection, word-level information is required, so it is

a natural choice to adopt a word as the output unit. However, A2W
models need a considerable amount of training data to match the per-
formance of the state-of-the-art subword-based models [17]. There-
fore, they encounter problems of data sparseness and over-fitting due
to infrequent words [14]. Moreover, A2W models cannot recognize
out-of-vocabulary (OOV) words.

To tackle these problems, some works explore model initializa-
tion [15] and multi-task learning (MTL) with low-level auxiliary
tasks [12, 18, 20]. In the MTL approach, we jointly optimize an
A2W model with an acoustic-to-character (A2C) model by sharing
encoder parameters [12, 18, 20]. OOV words are resolved by refer-
ring to the corresponding partial hypothesis provided by the A2C
model [12, 18]. It also has generalization effects by accelerating
better parameter representations and leads to fast and stable conver-
gence.

However, even with these regularization techniques, they are
more likely to incorrectly recognize OOV words as other words in
the predefined vocabulary. This is because A2W models learn con-
texts with both acoustic and word sequence, and attach too much im-
portance to acoustic level. When recognizing speech corresponding
to OOV words (these are often infrequent words), the A2W model
assign high probabilities to other in-vocabulary words which have
similar pronunciations. In this case, these words cannot be recov-
ered by the A2C model.

External language models (LM) trained with a large text have
better linguistic information and further improve the ASR perfor-
mance. They are integrated to the attention-based models in the
beam search decoding, which are referred to as shallow fusion [21].
Since external LMs are trained with a large text, they have better
ability to detect OOV words accurately.

In this paper, we improve the OOV resolution for the attention-
based A2W model by integrating the external LM. We combine shal-
low fusion with external LMs and the OOV resolution method by re-
ferring to the hypothesis of the A2C model. We show that external
LMs not only reduce errors of the A2W models but also increase the
number of OOV words in the hypothesis, which means that more
OOV words are detected with external LMs. Then, recovering these
OOV slots by the A2C model boosts the performance. In addition,
we found that the effect of external LMs are enhanced with MTL
without recovering OOV words.

We conduct experimental evaluations with English conver-
sational and Japanese lecture corpora, and show the proposed
method significantly improves the performances, especially for
out-of-domain test sets. Moreover, we investigate the effects of the
vocabulary size of the A2W models and the data size for training ex-
ternal LMs. By restricting the vocabulary to the frequent words and
recovering many OOV words from the A2C model, the vocabulary
size can be reduced several times from the best model with marginal
performance degradation.

The remaining part of this paper is structured as follows. In Sec-
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tion 2, we describe previous research on OOV problems of A2W
models. In Section 3, we describe attention-based A2W models
and the proposed method. Experimental evaluations are presented
in Section 4. We conclude this paper in Section 5.

2. ACOUSTIC-TO-WORD END-TO-END SPEECH
RECOGNITION WITHOUT OOV

Acoustic-to-word (A2W) end-to-end systems are attractive because
they can directly optimize mapping from acoustic to word sequences
with a single architecture, and realize fast decoding. Although A2W
models have these advantages, they suffer from the data sparseness
problems due to rare words and therefore require sufficient training
data. Moreover, A2W models cannot recognize any OOV words. A
practical solution is to adopt word-pieces as output units [13]. There
are some solutions to make A2W models open-vocabulary. The first
one is to decompose infrequent words to a sequence of subwords and
encapsulate them into a single dictionary [16, 20]. Another solution
is to recover OOV words by referring to the hypothesis of the A2C
model, which is realized by joint training [12, 18]. Time alignments
of the A2W and A2C models are synchronous because they share
encoder parameters. This is similar to human perception, where fre-
quent words are memorized but rare words such as named entities
must be spelled out. In this paper, we focus on this modeling for the
open-vocabulary A2W end-to-end ASR system.

3. MODEL DESCRIPTION

This section describes the baseline attention-based acoustic-to-
word (A2W) model, the multi-task learning (MTL) framework
with the acoustic-to-character (A2C) model, the recurrent neural
network language model (RNNLM) integration to the attention-
based models, and recovering OOV words with the A2C model.
Let x = (x1, . . . , xT ) be the input speech frames of length T ,
yw = (yw1 , . . . , y

w
N ) be the corresponding word-level transcrip-

tion of length N , and yc = (yc1, . . . , y
c
M ) be the corresponding

character-level transcription of length M .

3.1. Baseline attention-based A2W model

In this paper, A2W models are built based on the attention-based
encoder-decoder model [7–9], which is an end-to-end sequence
labeling model and can learn soft alignments between a variable-
length input and a target sequence. Attention-based models incor-
porate contextual information from the target label sequence in the
decoder part unlike the CTC models, which is another end-to-end
sequence labeling model and learn frame-level contexts in the en-
coder part. We focus on the attention-based models as a baseline
A2W model in this paper. The A2W model is composed of three
components: encoder, word-level decoder, and attention layer.

The encoder network consists of the stacked multiple layers of
bidirectional long-short term memory (BLSTM) [22] and transforms
x into a distributed representation h = (h1, . . . , hT ).

The decoder network consists of a single LSTM layer and gen-
erates the probability distribution of the lexical entries conditioned
over all the previous outputs. The decoder’s hidden state sn at each
output timestep n is updated as a function of the context vector cn,
and previously output word ywn−1 (which is passed through the word
embedding layer) recursively as follows:

ywn ∼ Generate(sn−1,cn)

sn = Reccurency(sn−1,cn, y
w
n ) (1)

The attention layer computes an attention distribution αw
n =

(αw
n,1, . . . , α

w
n,T ), which is a relevance score over the entire en-

coder’s outputs h, and computes the context vector cn by summing
over the encoder’s outputs h as follows:

en,t = v
T tanh(Wsn−1 +V ht +Ufn,t + b)

fn = F ∗αw
n−1

αw
n = softmax(en)

cn =

T∑
t=1

αw
n,tht

where F , W , V , U , v, and b are trainable parameters and ∗ de-
notes convolutional operation, and fn is a convolutional feature from
the previous attention distributionsαw

n−1.
The loss function is designed as the negative log-likelihood and

used for parameter estimation:

Lw(x,y
w) = − lnP (yw|x)

3.2. Multi-task learning with attention-based A2C model

To alleviate data sparseness issues of A2W models, the MTL with
the A2C model is performed by sharing encoders’ parameters. As
with the previous section, the A2C model is also built based on
the attention-based model and has different parameters concerning
the decoder and attention layer. Although there is another choice
of the CTC-based model for the A2C model as in [12], we adopt
the attention-based model because character-level CTC models are
more likely to misspell than attention-based models [10, 11]. The
character-level decoder can be connected to the arbitrary intermedi-
ate layer [23,24]. The overall loss function is the linear interpolation
of the negative log-likelihood between the A2W and A2C models by
a tunable parameter λ (0 ≤ λ ≤ 1):

L(x,yw,yc) = λLw(x,y
w) + (1− λ)Lc(x,y

c)

where Lc is the negative log-likelihood of the A2C model.

3.3. RNNLM integration

Although attention-based models explicitly model linguistic con-
texts in the decoder part, external LMs trained with a larger text
corpus can provide a reliable probability distribution to the decoder.
The left-to-right beam search decoding with an external language
model, which is referred to as shallow fusion [21], is performed to
find the most probable word sequence yw∗ based on the following
criterion:

yw∗ = arg max
yw

{log Pa2w(y
w|x) + βwlog Pwlm(yw)

+ γwcoverage}

where βw and γw are tunable parameters. To use a narrow beam
width and keep the decoding efficiency of the A2W model, scores
by the external LM is added in the loop of the decoder network, not
in the rescoring step. The coverage terms are added to prevent long
sequences composed of repeated tokens and calculated as follows:

coverage =
∑

t=1,...,T

[
∑

n=1,...,N

αw
n,t > τ ]

where τ is a threshold to receive a cumulative attention lager than
its value. We set τ to 0, and this also purges short hypotheses from
candidates in the beam.



Table 1: Recognition performances on Switchboard corpus (300h). SWB and CH represent Switchboard and CallHome subsets, respectively.
#OOV represents the number of detected OOV words. Beam search decoding was performed with beam size = 5 in all experiments. The
vocabulary size was about 11k. The OOV rates of SWB and CH test sets were 1.81 and 3.00, respectively.

Model Resolving OOV RNNLM SWB CH Ave.
WERWER (#OOV) WER (#OOV)

Word CTC - × 20.26 (240) 42.32 (358) 31.29

A2W
- × 18.99 (154) 38.46 (222) 28.73
- 300h 18.45 (319) 38.49 (463) 28.47

(baseline) - 2000h 18.35 (322) 38.13 (490) 28.24

A2W+A2C

× × 18.35 (183) 37.54 (267) 27.95
X × 18.18 (183) 37.40 (267) 27.79
× 300h 17.76 (349) 37.26 (513) 27.51
X 300h 17.43 (349) 36.99 (513) 27.21
× 2000h 17.40 (346) 37.00 (546) 27.20
X 2000h 17.11 (346) 36.71 (546) 26.91

3.4. Resolving OOV words

In the MTL framework, the A2C model not only works as regular-
ization effects but also provides additional information to the A2W
model. As with [12, 18], in the inference stage, we refer to the
A2C model’s hypothesis ŷc = (ŷc1, · · · , ˆycM ) when outputting OOV
words and replace them with the corresponding space-separated
word including ŷcm by computing the index m where attention
weights between the A2W and A2C models are most overlapped.

{αc
m,i}i =

αc
m,2i +α

c
m,2i+1

2

m = arg max
m=1,··· ,M

(αw
n ·αc

m)

Since time resolutions of activations of the encoder attached to the
A2W and A2C models are different due to the subsampling lay-
ers [8], frame-wise attention weight of A2C models αc is averaged
between the adjacent two frames before multiplication. Note that
character-level hypotheses are obtained by greedy decoding to keep
the decoding speed of the A2W models.

4. EXPERIMENTAL EVALUATION

4.1. Switchboard corpus (300h)

4.1.1. System settings

We used the Switchboard corpus (LDC97S62) [25], which contains
about 300-hour conversational English telephone speech, as the
training set. Following data preparation in Kaldi recipe [26], we re-
served the first 4k utterances as a validation set separately. Besides,
we removed duplicated utterances (”yeah,” ”uh-huh” etc.) beyond a
count threshold of 300. The final training set has about 192k utter-
ances. For evaluation, we report results on Hub5 Eval2000 test set
(LDC2002S09), which consists of two subsets, Switchboard (SWB)
and CallHome (CH).

For A2W models, we restricted the vocabulary to words with
at least five occurrences in the training set and replaced the rest to
a single out-of-vocabulary (OOV) class. The resulting vocabulary
size was roughly 11k words, and the OOV rates of SWB and CH
test sets were 1.81 and 3.00, respectively. For A2C models, we used
47 character sets (26 alphabets, digits, hyphen, space, and end-of-
sentence, etc.). The input features were static 80-channel log-mel
filterbank outputs computed with a 25ms window and shifted every
10 ms. The features were normalized by the mean and the standard
deviation on the speaker basis. None of speaker adaption techniques

was used. The encoder consists of 5 stacked BLSTM layers with
320 memory cells per direction, and both word and character-level
decoders consists of a single LSTM layer with 320 memory cells.
Subsampling was performed in {1,2,4}-th layers of the encoder to
approximately equate sequence lengths to the number of the corre-
sponding tokens in transcriptions. The character-level decoder was
attached to the 4-th layers of the encoder. This resulted in 4 and
8-fold reduction of the encoder activations in the A2C and A2W
models, respectively [8, 27, 28]. Output words and characters were
embedded to the fixed dimension of size 128 and 32, respectively.
The dropout ratio 0.2 was applied to the encoder, decoders, and em-
bedding layers. Training was performed on mini-batches of 50 or 60
utterances using Adam [29] with a learning rate of 1.0 × 10−3 fol-
lowed by SGD [30] with a single GPU. For fast and stable training,
all utterances in the training set were sorted in the ascending order
by their lengths in all training stage [5, 6, 16]. All weights were ini-
tialized with random values drawn from a uniform distribution with
a range [−0.1, 0.1]. We also clipped the norms of gradients so that
they had maximum absolute values of 5 [31]. The probabilities of
scheduled sampling [32] and label smoothing [28, 33] were 0.2 and
0.1, respectively. We empirically set λ = 0.5, βw = 0.2, γw = 0.4
(w/o LM), and γw = 0.6 (w/ LM), respectively.

RNNLMs were composed of two layers of unidirectional LSTM
with 512 memory cells and have residual connections between two
LSTM layers [34]. Input and output embeddings were tied as in
[35, 36]. RNNLMs were optimized using back-propagation through
time (BPTT) with a sequence length of 100. We used the same tran-
scriptions as the A2W models (300-hour) and also those appended
with Fisher corpus (totally 2000-hour) for training RNNLMs. The
beam width was set to 5 in all the experiments. All networks were
implemented with a Pytorch framework [37].

4.1.2. Results

The results are shown in Table 1. The attention-based A2W model
outperformed the word CTC model12. This is because the decoder
part in the attention-based A2W model captured richer linguistic

1As in [15, 16], we also confirmed that the initialization of the BLSTM
encoder with phone CTC improved the performances of both word CTC
and attention-based A2W model. The resulting WERs w/o LMs were
19.78/39.97 and 18.86/37.81 (SWB/CH) with beam width = 5, respec-
tively. However, the A2W model still outperformed the word CTC model.

2We did not use any speaker adaptation techniques such as i-vector based
adaptation as in [15, 16]. We assume that this is the major cause of the per-
formance gaps between our results and those in [15,16] in CallHome subset.



Table 2: Recognition performances on CSJ (240h). eval3 is the out-of-domain test set. #OOV represents the number of detected OOV words.
Beam search decoding was performed with beam size = 5 in all experiments. The vocabulary size was about 12.5k. The OOV rates of
eval1, eval2, and eval3 were 1.24, 1.66, and 4.09, respectively.

Model Resolving OOV RNNLM
In-domain Out-of-domain Ave.

WEReval1 eval2 eval3
WER (#OOV) WER (#OOV) WER (#OOV)

Word CTC - × 12.79 (352) 11.12 (469) 20.28 (662) 14.73
A2C - × 12.82 9.98 18.98 13.93

A2W
- × 12.89 (265) 10.25 (299) 19.70 (498) 14.28
- 240h 12.20 (437) 9.73 (531) 19.49 (761) 13.80

(baseline) - 600h 12.11 (443) 9.65 (516) 18.71 (759) 13.49

A2W+A2C

× × 12.27 (252) 9.96 (334) 18.70 (521) 13.64
X × 12.06 (252) 9.67 (334) 17.99 (521) 13.24
× 240h 11.71 (441) 9.40 (534) 18.21 (782) 13.11
X 240h 11.27 (441) 8.85 (534) 17.20 (782) 12.44
× 600h 11.70 (429) 9.29 (518) 17.54 (788) 12.85
X 600h 11.27 (429) 8.77 (518) 16.57 (788) 12.21

contexts as mentioned in Section 3.1. Both external RNNLMs
trained with the original training data (300h) and that concatenated
with the additional training data (2000h) improved the performances
in Switchboard subset, and the latter improved the performances in
CallHome subset. Moreover, the number of detected OOV words
in the hypotheses was increased by shallow fusion with the external
RNNLMs. This is because the vocabulary of RNNLMs was limited
to that of the A2W models, and high probabilities were assigned
to the OOV class. The MTL with the A2C model improved the
baseline performance, and resolving OOV words boosted it as in our
previous work [12]. External RNNLMs improved the performances
of all models except for the one trained on 300h text data for the
baseline A2W model. The MTL approach encouraged the effective-
ness of shallow fusion thanks to alleviating data sparseness issues.
In addition, shallow fusion enhanced the improvements by the OOV
resolution. This suggests that the external LM helps detect OOV
words more accurately. In summary, compared to the baseline A2W
model with shallow fusion, the further combination with the A2C
model and the OOV resolution method yielded absolute 1.24 (6.75%
relative), and 1.42 (3.72% relative) gains in Switchboard (SWB) and
CallHome (CH) subsets, respectively.

4.2. Corpus of spontaneous Japanese (CSJ)

4.2.1. System settings

The Corpus of Spontaneous Japanese (CSJ) [38] is one of the largest
Japanese spontaneous speech corpora. The CSJ consists of about
600-hour spontaneous speech including academic and simulated lec-
tures. In this paper, we focus on the academic lectures which have
been the primary target of ASR research using this corpus, consisting
of about 240 hours of training data in total. There are three evalua-
tion sets (eval1, eval2, and eval3), each of which is composed of 10
lectures and the eval3 set is regarded as an out-of-domain test set.
We picked up the first 4k utterances from the training set as a valida-
tion set separately following Kaldi recipe [26]. The final training set
has about 155k utterances.

For the A2W models, we restricted the vocabulary to words
which occurred at least five times in the training set and replaced the
rest to a single OOV class. The resulting vocabulary size was about
12.5k words, and the OOV rates of eval1, eval2, and eval3 were 1.24,
1.66, and 4.09, respectively. For the A2C model, we used the 2820
kinds of standard Japanese characters including kanji, hiragana, and
katakana characters, alphabets, digits, noise, space, and the end of

sentence mark. Output words and characters were embedded in the
fixed dimension of size 128 and 64, respectively. The topology and
training scheme of RNNLMs were the same as in Section 4.1. The
rest of the configurations was the same as in Section 4.1.

RNNLMs were composed of two layers of unidirectional LSTM
with 512 memory cells and have residual connections between two
LSTM layers [34]. Input and output embeddings were tied as in
[35, 36]. RNNLMs were optimized using back-propagation through
time (BPTT) with a sequence length of 100. We used the same tran-
scriptions as ASR models (240-hour) and also those appended with
additional text data of the simulated lectures (totally 600-hour) for
training RNNLMs.

4.2.2. Results

The results are shown in Table 2. As in Section 4.1.2, the attention-
based A2W model outperformed the word CTC model. In contrast,
the A2C model outperformed the A2W model. This is because the
length of characters per word in Japanese is shorter than that in En-
glish, so it is easy for the A2C model to capture linguistic depen-
dencies from the target character sequence. The MTL of the A2W
model with the A2C model improved the performance, and outper-
formed the A2C model. Resolving OOV words further improved the
performance, which is consistent with results in Section 4.1.2.

Both external RNNLMs trained with the original training data
(240h) and that concatenated with the additional training data (600h)
improved performances in all test sets in proportion to the training
data size for LMs. Adding the out-of-domain data to the training data
for the external RNNLM alleviated the domain mismatch in eval3
test set to some extent. The MTL alleviated data sparseness prob-
lems, and then the effect of shallow fusion was emphasized. shallow
fusion also increased the number of detected OOV words in the hy-
potheses in this corpus, and this left room for the improvements by
recovering OOV words by the A2C model. In summary, the com-
bination of the MTL with the A2C model, resolving OOV words
and shallow fusion with the external RNNLM showed the best WER
in three test sets, especially for the out-of-domain scenario (eval3).
Compared to the baseline A2W model with shallow fusion, our best
model yielded absolute 0.84 (6.93% relative), 0.88 (9.11% relative)
and 2.14 (11.43% relative) gains in each test subset, respectively.

Next, we changed the vocabulary size of the A2W models (see
Figure 1 and 2). The OOV rates in each vocabulary are shown in
Table 3. With the smaller vocabulary size, WER was drastically de-
graded due to the increase of the OOV rates in the test sets. However,



Fig. 1: Recognition performances with various vocabulary sizes in
eval1 test set. eval1 is regarded as an in-domain test set.

Fig. 2: Recognition performances with various vocabulary sizes in
eval3 test set. eval3 is regarded as an out-of-domain test set.

the MTL approach with OOV resolution mitigated this problem and
was robust to the vocabulary size. In the A2W models, the gain
by the external RNNLMs was trivial with the small vocabulary. In
contrast, external RNNLMs were always effective in case of using
the OOV resolution even with the very small vocabulary such as 1k
and 5k. The best results were obtained with vocabulary 15k, but the
gaps of the performances between 5k and 15k were 0.30 and 0.94 in
eval1 and eval3 test sets, respectively. Therefore, we can reduce the
vocabulary size three times with the small performance degradation.

Finally, the real time factor (RTF) of the A2W models in eval1
test set are shown in Figure 3. Decoding was performed with a sin-
gle NVIDIA Titan GPU. Our attention-based models use the bidi-
rectional encoders, but RTF is small enough for the real-time usage.
When using a large vocabulary, there is few additional time for re-
solving OOV words with the external RNNLM because there are few
OOV words. In contrast, when using a small vocabulary, the costs of
the OOV resolution is more expensive than those of using external
RNNLMs. However, note that all of the A2W models are always
faster than the A2C model although some of them use the external
RNNLM during decoding.

5. CONCLUSIONS

We have addressed an issue that the acoustic-to-word (A2W) model
tends to incorrectly recognize OOV words as in-vocabulary words.
Joint decoding with the external language model helps the A2W

Table 3: The OOV rates of in-domain (eval1) and out-of-domain
(eval3) test sets in CSJ corpus (%).

Vocabulary size eval1 eval3
1k 11.87 18.86
5k 3.14 8.20

10k 1.65 4.79
15k 1.30 3.64
20k 0.99 3.10
25k 0.92 2.69

Fig. 3: Real time factor in eval1 test set.

model detect OOV words more accurately because it has more re-
liable linguistic information. These OOV words can be recovered
by the character-level decoder which attached to the same encoder
as the A2W model in the multi-task learning (MTL) framework. We
experimentally confirmed that external LMs encouraged the OOV
prediction, and recovering OOV words further improved the perfor-
mance. We also found that MTL alleviates data sparseness issues
to some extent, and then the effectiveness of the LM integration is
enhanced. In addition, by resorting the recognition of rare words to
the character-level decoder, the A2W models can work with a small
vocabulary size.
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[14] Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise Bea-
ufays, “Fast and accurate recurrent neural network acoustic
models for speech recognition,” in Proc. of INTERSPEECH,
2015, pp. 1468–1472.

[15] Kartik Audhkhasi, Bhuvana Ramabhadran, George Saon,
Michael Picheny, and David Nahamoo, “Direct acoustics-to-
word models for English conversational speech recognition,”
in Proc. of INTERSPEECH, 2017, pp. 959–963.

[16] Kartik Audhkhasi, Brian Kingsbury, Bhuvana Ramabhadran,
George Saon, and Michael Picheny, “Building competitive
direct acoustics-to-word models for English conversational
speech recognition,” in Proc. of ICASSP, 2018, pp. 4759–4763.

[17] Hagen Soltau, Hank Liao, and Hasim Sak, “Neural speech
recognizer: Acoustic-to-word LSTM model for large vocabu-
lary recognition,” in Proc. of INTERSPEECH, 2017, pp. 3707–
3711.

[18] Jinyu Li, Guoli Ye, Rui Zhao, Jasha Droppo, and Yifan Gong,
“Acoustic-to-word model without OOV,” in Proc. of ASRU,
2017, pp. 111–117.

[19] Liang Lu, Xingxing Zhang, and Steve Renais, “On training the
recurrent neural network encoder-decoder for large vocabulary
end-to-end speech recognition,” in Proc. of ICASSP, 2016, pp.
5060–5064.

[20] Jinyu Li, Guoli Ye, Amit Das, Rui Zhao, and Yifan Gong, “Ad-
vancing acoustic-to-word CTC model,” in Proc. of ICASSP,
2018, pp. 5794–5798.

[21] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N Sainath,
Zhifeng Chen, and Rohit Prabhavalkar, “An analysis of in-
corporating an external language model into a sequence-to-
sequence model,” in Proc. of ICASSP, 2017, pp. 5824–5828.

[22] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[23] Shubham Toshniwal, Hao Tang, Liang Lu, and Karen Livescu,
“Multitask learning with low-level auxiliary tasks for encoder-
decoder based speech recognition,” in Proc. of INTER-
SPEECH, 2017, pp. 3532–3536.

[24] Yonatan Belinkov and James Glass, “Analyzing hidden rep-
resentations in end-to-end automatic speech recognition sys-
tems,” in Proc. of NIPS, 2017, pp. 2438–2448.

[25] John J Godfrey, Edward C Holliman, and Jane McDaniel,
“SWITCHBOARD: Telephone speech corpus for research and
development,” in Proc. of ICASSP, 1992, pp. 517–520.

[26] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech
recognition toolkit,” in Proc. of ASRU, 2011.

[27] Suyoun Kim, Takaaki Hori, and Shinji Watanabe, “Joint CTC-
attention based end-to-end speech recognition using multi-task
learning,” in Proc. of ICASSP, 2017, pp. 4835–4839.

[28] Jan Chorowski and Navdeep Jaitly, “Towards better decoding
and language model integration in sequence to sequence mod-
els,” in Proc. of INTERSPEECH, 2017, pp. 523–527.

[29] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proc. of ICLR, 2015.

[30] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mo-
hammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, et al., “Google’s neural ma-
chine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[31] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On
the difficulty of training recurrent neural networks,” in Proc.
of ICML, 2013, pp. 1310–1318.

[32] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer, “Scheduled sampling for sequence prediction with
recurrent neural networks,” in Preceedings of NIPS, 2015, pp.
1171–1179.

[33] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna, “Rethinking the inception ar-
chitecture for computer vision,” in Proc. of CVPR, 2016, pp.
2818–2826.

[34] Gakuto Kurata, Abhinav Sethy, Bhuvana Ramabhadran, and
George Saon, “Empirical exploration of novel architectures
and objectives for language models,” in Proc. of INTER-
SPEECH, 2017, pp. 279–283.



[35] Hakan Inan, Khashayar Khosravi, and Richard Socher, “Ty-
ing word vectors and word classifiers: A loss framework for
language modeling,” arXiv preprint arXiv:1611.01462, 2016.

[36] Ofir Press and Lior Wolf, “Using the output embedding to
improve language models,” in Procs. of the 15th Conference
of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, 2017, pp. 157–163.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmai-
son, Luca Antiga, and Adam Lerer, “Automatic differentiation
in pytorch,” 2017.

[38] Kikuo Maekawa, “Corpus of spontaneous japanese: Its design
and evaluation,” in ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition, 2003.


	1  Introduction
	2  Acoustic-to-word end-to-end speech recognition without OOV
	3  Model description
	3.1  Baseline attention-based A2W model
	3.2  Multi-task learning with attention-based A2C model
	3.3  RNNLM integration
	3.4  Resolving OOV words

	4  Experimental evaluation
	4.1  Switchboard corpus (300h)
	4.1.1  System settings
	4.1.2  Results

	4.2  Corpus of spontaneous Japanese (CSJ)
	4.2.1  System settings
	4.2.2  Results


	5  Conclusions
	6  References

