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ABSTRACT

In this paper we present a data driven vocal tract area function
(VTAF) estimation using Deep Neural Networks (DNN). We
approach the VTAF estimation problem based on sequence
to sequence learning neural networks, where regression over
a sliding window is used to learn arbitrary non-linear one-to-
many mapping from the input feature sequence to the target
articulatory sequence. We propose two schemes for efficient
estimation of the VTAF; (1) a direct estimation of the area
function values and (2) an indirect estimation via predict-
ing the vocal tract boundaries. We consider acoustic speech
and phone sequence as two possible input modalities for the
DNN estimators. Experimental evaluations are performed
over a large data comprising acoustic and phonetic features
with parallel articulatory information from the USC-TIMIT
database. Our results show that the proposed direct and
indirect schemes perform the VTAF estimation with mean
absolute error (MAE) rates lower than 1.65 mm, where the
direct estimation scheme is observed to perform better than
the indirect scheme.

Index Terms— Speech Articulation, Vocal Tract Area
Function, Deep Neural Network, Convolutional Neural Net-
work

1. INTRODUCTION

Vocal tract (VT), starting from the larynx to the lips, is the
most important organ in the human speech production system.
Given the excitation signal at the larynx, various configura-
tions of the VT result in different spoken sounds. VTAF esti-
mation is of great importance in various applications, such as
speech synthesis and automatic speech recognition, specially
with spontaneous or pathological speech.

Approaches to vocal tract area function estimation can
be broadly classified into two categories: image process-
ing based which generally use MRI frames of the VT to
extract the area function and speech processing based that
use acoustic speech signals to estimate the VTAF. For a
successful image-based VTAF estimation, obtaining a full

or semi-automatic vocal tract boundary segmentation is re-
quired. Intensive research has been conducted on the auto-
matic vocal tract boundary estimation in the real-time MRI
data [1, 2, 3, 4]. Upon estimating the VT boundaries, the
VTAF could be calculated in a number of ways. Given the
vocal tract boundaries, [4] carried out a recursive bisection
algorithm to find the vocal tract midline. The area function
was then calculated by finding the distance between the in-
tersection points of perpendicular to the midline and the VT
boundaries. In another approach, [2] defined a set of stan-
dard grid lines along the tract and calculated the VTAF as
the distance between the grid and VT boundaries intersection
points, at each grid line.

An image-based VTAF estimation may not seem practi-
cal at a first look, but such studies are mainly performed and
are necessary for the speech-based approaches. To perform
the one-to-many acoustic to articulatory mapping efficiently,
in the speech-based approaches, acquiring a large audio-to-
articulatory dataset is required, which is attainable via the
image-based estimations. A direct estimation of the articula-
tory by inverse filtering of the acoustic speech was proposed
in [5]. Another VTAF estimation approach was carried out us-
ing particle swarm optimization [6]. Later multimodal articu-
latory inversion using acoustic and visual data was proposed
[7]. Using DNNs and RNNs for articulatory-to-acoustic con-
version or acoustic-to-articulatory inversion problems has
gained attraction in the recent years [8, 9]. Such approaches
have taken over the traditional GMM or HMM based artic-
ulatory inversion methods [10, 11]. Siding window-based
sequence to sequence prediction methods using deep neural
networks such as algorithms proposed in [12, 13], provide an
effective framework for articulatory estimation problem.

In this work, we refer to the cross sectional distance (in
mm) between the lower and upper vocal tract boundaries,
from lips to the larynx, as the area function. To our knowledge
the proposed method is the first approach to directly estimate
the vocal tract area function from phone sequence, unlike the
previous approaches, which commonly utilize acoustic fea-
tures. We introduce a novel method to efficiently estimate
the VTAF from the acoustic and phone data. Looking at the
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area function estimation task as a sequence to sequence map-
ping problem, we utilize a deep learning overlapping sliding
window regressor, inspired by [13]. We model the VTAF esti-
mation task as a multivariate regression problem. The sliding
window regressor approach learns arbitrary non-linear one-
to-many mapping from the input feature sequence to the out-
put articulatory sequence. We propose a direct and an indi-
rect approach for the area function estimation task. In the
direct estimation scheme, the VTAF values along the tract
are directly estimated at the output of the trained networks,
whereas in the indirect scheme, a DNN is trained to estimate
the VT boundaries and the VTAF is then calculated from the
estimated contours. We compare the performance of the di-
rect estimation to indirect scheme, for acoustic and phonetic-
based trained networks.

The rest of this paper is organized as follows. In sec-
tion 2 we describe the training dataset preparation and pro-
posed speech and phone-driven VTAF estimation systems.
Experimental evaluations are given in Section 3. Finally, the
article is concluded in Section 4.

2. METHODOLOGY

2.1. Dataset

In this work, the USC-TIMIT database [14] is used to train a
DNN for vocal tract area function estimation. The database
comprises midsagittal MRI videos of 10 speakers, recorded
at a frame rate of 23.13 fps and a spatial resolution of
68 × 68 pixels over 20 × 20 cm (approximately 2.9 mm
pixel width). Synchronized audio is recorded at a 20 kHz
sampling rate. To create a training dataset, we utilized the
the USC software package developed in [2], to extract the
vocal tract lower and upper contours and area function. In
this method a set of grid lines are placed on the vocal tract
and the VT lower and upper contours are estimated on each
grid line. The VTAF is then obtained from the estimated VT
contours by computing the Euclidean distance between the
upper contour points to the closest lower contour point (see
[2] for more details). Figure 1 shows a sample extracted VT
contour and the corresponding area function using the USC
software.

2.2. Feature Representation

A major design decision in training the neural networks is
representation of the features. In this work we investigate two
different input feature types, acoustic speech and phone se-
quence, to train DNNs with two different kind of output val-
ues, vocal tract boundaries and area function.

2.2.1. DNN input: phone features

The phone features are simply chosen as the phoneme la-
bel of the input utterance. The phoneme transcription files
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Fig. 1: An example of articulatory data extraction. Above:
midsagittal view of a MRI frame. Red: lower VT boundary,
Blue: upper VT boundary, Cyan: grid lines from lips to lar-
ynx. Below: VTAF along the tract, calculated on each grid
line.

available in the USC-TIMIT dataset are utilized to prepare
the phone features in this study. An alternative for transcrib-
ing the speech is using any off the shelf forced aligner tool.
For each video in the training set, we find a one-to-one map-
ping between the phoneme labels and the video frames i.e
each video frame is labeled with a phoneme class according
to where the mid-time of the frame lies in the phone tran-
script timeline. A standard set of 41 phonemes, each encoded
as a one hot vector, is used for transcribing the data, includ-
ing silence and short pause. We represent the extracted phone
features as

{
fpj
}N
j=1

, where fpj ∈ R41×1 is a column vector,
j is the frame index and N is the number of frames in the
training set.

The final phone features are obtained by utilizing a sliding
window technique on the extracted phone feature set, which
captures the temporal information of the phoneme sequence.
We call these features temporal phone feature sequence and
calculate them over a window of size Kp = 2kp + 1 as:

F p
j = [fpj−kp

>
, ..., fpj

>
, ..., fpj+kp

>
]>, (1)

where the column vectors fpj are stacked column-wise result-
ing in a 41Kp × 1 column vector F p

j . The temporal phone

feature sequence,
{
F p
j

}N
j=1

, is used to train the phone-based
DNN.

2.2.2. DNN input: acoustic features

Mel-Frequency Spectral Coefficients, also denoted as MFSC
are utilized as the acoustic features. MFSC extraction is same
as the better known MFCC features, without the discrete co-
sine transform, which is applied at the last stage of MFCC
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Fig. 2: Variation of the main mode corresponding to largest
eigenvalue, around the mean shape. The model parameters
are restricted to ±3 of their standard deviation to allow plau-
sible VT shapes.

feature extraction. For each speech frame, 40 MFSC features
along with their deltas and delta-deltas, are extracted using
HTK toolkit [15] to define the acoustic energy distribution
over 40 mel-frequency bands. These features are computed
on short term overlapping Hamming window over the speech,
with sampling interval chosen according to the frame rate of
the corresponding videos. Each video frame length is approx-
imately 44 ms, therefore we choose a Hamming window of
size 25 ms with 11 ms frame shift, resulting in a 4-to-1 audio
to video frame correspondence. We normalize the acoustic
feature set to have zero mean and unit variance in each feature
dimension. MFSC, delta and delta-delta features are stacked
through the depth dimension like channels of a RGB image.
The set of acoustic feature vectors is represented as

{
faj
}N
j=1

,
where faj ∈ R40×4×3 and 4 indicates the audio to video frame
ratio.

The temporal acoustic feature sequence is calculated over
a window of size Ka = 2ka + 1 as:

F a
j = [faj−ka

, ..., faj , ..., f
a
j+ka

], (2)

where the features faj are concatenated row-wise to form the
40× 4Ka × 3 temporal acoustic instance F a

j . Each temporal
acoustic feature could be interpreted as an image with height
40, width 4Ka and depth 3. We use the temporal acoustic
feature sequence,

{
F a
j

}N
j=1

, to train the speech-based DNN.
The target articulatory values of the trained DNNs depend

on the direct or indirect estimation scheme, which we explain
in the following sections.

2.3. Indirect Estimation Scheme

In the indirect scheme, the VTAF is computed from the esti-
mated vocal tract lower and upper contours. The vocal tract
contour is represented by a set of M landmark coordinates
[x1, y1, x2, y2, ..., xM , yM ]>. In our experiments M = 150
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Fig. 3: Sliding window technique for temporal acoustic in-
put and VTAF output feature representation. At each feature
frame a window centered to the frame gives the temporal fea-
tures. Note the 4-to-1 acoustic to video frame ratio.

(twice the number of the grid lines) and 75 points are chosen
on the lower and 75 points on upper VT boundary. To esti-
mate the VT boundaries, a statistical shape model is trained
for the tract shapes using the Active Shape Model (ASM)
[16]. ASM, utilizing Principal Component Analysis (PCA),
models a set of shapes with their mean and eigenvectors of
their covariance matrix.

The key element in the ASM is discarding eigenvectors
corresponding to small eigenvalues hence removing the cor-
relation and reducing the dimensionality in the data. Given
the eigenvectors (P1, P2, ..., P2M ), sorted according to the
descending eigenvalues (λ1, λ2, ..., λ2M ), the first k eigen-
vectors are chosen such that (

∑k
j=1 λj/

∑2M
j=1 λj) > 0.99.

In our experiments by choosing k = 37, the shape model
captures 99% of the variation in the training set. Each shape
in the training set is transformed into a uncorrelated lower di-
mensional space as:

f = PT (S − S̄), (3)

where S̄ is the mean shape, P is the 2M × k truncated eigen-
vectors matrix and f is the k-dimensional model parameters.
Each of the 37 parameters is called a mode of variation in the
shape model. Given these parameters, the VT shape is easily
reconstructed as S = S̄ + Pf . Figure 2 illustrates the vari-
ation around the mean shape by setting the main mode (first
parameter) to ±3 of it’s standard deviation in the training set.

In the indirect estimation scheme, the PCA projected pa-
rameters are used as the target values at the DNN’s output
regression layer. The set of PCA values is represented as{
f ij
}N
j=1

, where f ij ∈ R37×1 and i states the indirect esti-
mation scheme.

2.4. Direct Estimation Scheme

In the direct estimation scheme, a DNN is trained to estimate
the 75 area function values on each grid line from lips to the
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Fig. 4: Direct VTAF estimation scheme for vowel /AH/ using
acoustic and phonetic features.

larynx. The area function values are extracted using the USC
software package [2]. We represent the set of collected VTAF
values as

{
fdj
}N
j=1

, where fdj ∈ R75×1 and d states the direct
estimation scheme.

Upon extracting the direct or indirect articulatory features,
similar to the DNN’s input sequences, a fixed-length overlap-
ping sliding window is employed to the output articulatory
sequence to capture the temporal information. The temporal
target sequence is calculated over a window of size Km =
2km + 1 as:

Fm
j = [fmj−km

>, ..., fmj
>, ..., fmj+km

>]> (4)

where m ∈ {d, i}, indicates the direct or indirect scheme and
the column vectors fmj are stacked column-wise to form the
temporal target values Fm

j of size 75Kd×1 and 37Ki×1 for
direct and indirect schemes, respectively. We use the temporal
articulatory feature sequence,

{
Fm
j

}N
j=1

, as the target values
at the DNN’s output regression layer.

Figure 3 helps to understand the procedure of sliding
window temporal feature extraction for direct acoustic-based
scheme.

2.5. Network Architecture

The vocal tract area function estimation is modeled as a multi-
variate regression problem. The non-linear mapping from the
temporal acoustic or phonetic feature sequence to the target
VTAF or PCA sequence is learned by a regression function.
The DNN regressors trained in this study are similar to what
we have proposed in a previous work [12], which is explained
briefly in the following.

2.5.1. Phone-based architecture

For phone-based experiments, we utilize a deep feed-forward
neural network. The input layer, fed with the temporal pho-
netic features, is connected to three fully connected hidden
layers with 1024 neurons each and a final output layer. Each
hidden layer is followed by a hyperbolic tangent activation
function, to induce the non-linearity. We employ standard
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Fig. 5: Acoustic-based indirect VTAF estimation scheme.
Area function is computed from the estimated VT boundaries.

mini batch stochastic gradient descent algorithm for train-
ing. Mini batch size is selected as 128 along with Adam
optimizer [17] for learning rate adaptation. To avoid over-
fitting, dropout [18] with 50% probability is used at each hid-
den layer. The final output layer is standard multivariate re-
gression layer predicting the target temporal articulatory se-
quence and trained to minimize the MAE loss.

2.5.2. Speech-based architecture

Convolutional Neural Networks (CNN), firstly proposed for
image classification tasks, are widely used in speech recog-
nition related problems [19]. Having organized the acoustic
features as image-like inputs, we employ a CNN architecture
for speech-based model training.

The image-like temporal acoustic features are fed to the
input layer of the speech-based network. The CNN network
contains three convolution layers with first layer having 64
filters of size 7 × 4Ka. In the second convolution layer, 128
filters of size 5× 1 is selected. The last convolutional layer is
set to have 256 filters of size 3 × 1. All convolutional layers
are followed by a pooling layer with window size of 2 × 1
and stride of 2 × 1. The network is then connected to three
fully connected layers with 1024 hidden neurons each. We
use dropout regularization method with probability 50%, in
the convolutional and fully connected layers , to prevent over-
fitting. Hyperbolic tangent activation function is used at each
layer with Adam optimizer for hyper learning rate optimiza-
tions.

We used Keras1 with TensorFlow [20] backend to train
the networks on a NVIDIA TITAN XP GPU.

1https://keras.io/

https://keras.io/
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Fig. 6: Error plots for direct and indirect schemes using acoustic or phonetic-based DNN, evaluated on different sub-regions of
the vocal tract.

3. EXPERIMENTAL EVALUATIONS

In this work we use a single speaker for training and vali-
dating our introduced methods i.e. the experiments are per-
formed in a speaker-dependent manner. To evaluate the per-
formance of the proposed methods we calculate the mean
absolute error (MAE) between the ground truth and the pre-
dicted area functions from different estimation schemes. The
MAE is calculated in different sub-regions of the vocal tract
on each grid line. The VT sub-regions are (1) grid lines 1∼
10 for labial, (2) grid lines 11∼25 for alveolar and hard palate
region, (3) grid lines 26∼58 for velar and dorsal constriction
region and (4) grid lines 59∼75 for pharyngeal wall region.

A total of 44K samples comprising acoustic and pho-
netic features with the corresponding articulatory informa-
tion (VT boundaries, shape model and area function), are col-
lected during the data preparation. The networks are trained
on 40K and validated on 4K samples. The network char-
acteristics and sliding window sizes are optimized using fine
tuning methods. We find out that selecting window sizes as
(Ka,Kp,Kd,Ki) = (7, 15, 5, 5) give the best results on the
train and validation sets.

The estimated values at the output of the trained networks
give the articulatory features in a temporal window of size
Km, hence the input feature sequence yields an overlapping
output sequence. The articulatory parameters at a frame are
calculated as the temporal mean of the overlapping output se-
quence.

Figure 4 shows the results of the direct VTAF estimation
for the vowel /AH/. As observed from the figure, the acoustic-
based estimation fits closer to the ground truth area function
than the phone-based model; however it is observable that the
phone-based estimation is capable of accurately capturing the

outline of the VTAF configuration. As addressed in [13], the
phone-based estimation results look slightly under articulated
compared to the original data and need to be scaled up. We
notice that under articulation is slightly less when using the
acoustic features as input to the DNN.

In the indirect estimation scheme, the VT temporal shape
model parameters are estimated using the trained DNN. The
overlapping temporal shape model parameters are blended to-
gether using temporal mean to give the frame-wise parame-
ters. The VT contours are then computed using inverse of (3)
from the estimated PCA parameters. Upon retrieving the tract
boundaries, VTAF is calculated as the distance between each
point on the upper boundary to the closest point on the lower
boundary, as shown in Figure 5.

Table 1: Performance evaluation of various proposed
schemes. Values indicate the average mean absolute error per
grid line in mm unit.

Scheme Acoustic-based Phone-based

Direct 1.23 1.41

Indirect 1.65 1.65

Figure 6 illustrates the error analysis plots for direct and
indirect schemes with acoustic and phone-based networks.
We observe that in a direct estimation scheme, the speech-
based system is slightly better than the phone-based system,
in all sub-regions of the tract, Figure 6a. From Figure 6b,
the direct estimation scheme is observed to result in less error
compared to the indirect scheme. The advantage of the direct



scheme over the indirect scheme, is particularly more remark-
able for a group of rapidly changing articulators including
lips, tongue tip and velum, which are more deformable during
the articulation. Analyzing the estimation error in different
sub-regions of the VT gives insight to discover articulators
with higher error results, hence focusing on these articulators
to improve the proposed schemes in future studies. These er-
ror plots show that the proposed schemes estimate the VTAF
for tongue tip and dorsal regions with higher error compared
to other regions.

Table 1 presents the average mean absolute error for each
grid line, between the estimated and ground truth VTAF, for
different proposed schemes. These results suggest that all
of the trained models perform the VTAF estimation problem
with a small error, as compared to the pixel width (2.9 mm).
We observe that an acoustic-based direct estimation scheme
performs with less error compared to other schemes. It is
observed that in the indirect estimation scheme, none of the
acoustic or phone-based networks has a significant advantage
over the other.

4. CONCLUSION AND FUTURE WORK

In this paper we proposed different schemes to efficiently es-
timate the vocal tract area functions using acoustic speech and
phone sequence data. A direct and an indirect articulatory es-
timation model were trained using deep neural networks with
acoustic or phonetic input sequences. We observed that all of
the introduced estimation schemes are robust across different
sub-regions of the VT. The acoustic-based direct estimation
scheme was observed to be less erroneous than the indirect
scheme, in all the defined sub-regions of the vocal tract.

The accuracy of the proposed methods depends on the
correctness of the collected ground truth articulatory data.
The articulatory data used in this study for the model train-
ing is not the real manually labeled data by an expert, and
is solely the estimations of an accurate automatic algorithm.
As a future work we will focus on a more error-free image-
based articulatory estimator, to create larger and more accu-
rate training datasets for speech-based articulatory estimation.
We will work on a speaker independent VTAF estimation sys-
tem by using acoustic and articulatory information of differ-
ent speakers for the model training. Preparing a large multi-
speaker dataset and approaching the VTAF estimation prob-
lem in a multimodal acoustic-phonetic manner, is a prospec-
tive approach to a speaker independent articulatory estima-
tion.
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