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ABSTRACT

In this paper we propose a novel data augmentation method

for attention-based end-to-end automatic speech recognition

(E2E-ASR), utilizing a large amount of text which is not

paired with speech signals. Inspired by the back-translation

technique proposed in the field of machine translation, we

build a neural text-to-encoder model which predicts a se-

quence of hidden states extracted by a pre-trained E2E-ASR

encoder from a sequence of characters. By using hidden

states as a target instead of acoustic features, it is possible

to achieve faster attention learning and reduce computational

cost, thanks to sub-sampling in E2E-ASR encoder, also the

use of the hidden states can avoid to model speaker depen-

dencies unlike acoustic features. After training, the text-

to-encoder model generates the hidden states from a large

amount of unpaired text, then E2E-ASR decoder is retrained

using the generated hidden states as additional training data.

Experimental evaluation using LibriSpeech dataset demon-

strates that our proposed method achieves improvement of

ASR performance and reduces the number of unknown words

without the need for paired data.

Index Terms— automatic speech recognition, end-to-

end, data augmentation, back-translation

1. INTRODUCTION

Automatic speech recognition (ASR) is the task of converting

a continuous speech signal into a sequence of discrete char-

acters, and is a key technology for the realization of natu-

ral interaction between humans and machines. ASR technol-

ogy has great potential in various applications such as voice

search and voice input, making our lives more convenient.

Typical ASR systems [1] consist of multiple modules such as

an acoustic model, a lexicon model, and a language model.

Dividing ASR systems into modules makes it possible to op-

timize each of them separately, but this also results in more

complex systems and imposes performance limitations. Over

the past few decades, this approach has been the basis of ASR

systems.

With the improvement of deep learning techniques, end-

to-end (E2E) approaches have begun to attract attention [2].

While typical ASR systems convert a sequence of acoustic

features into text step-by-step using several modules trained

separately, E2E-ASR systems directly convert speech using a

single neural network. Therefore, the whole E2E-ASR sys-

tem can be optimized jointly, making system construction

much easier than with typical ASR systems. Furthermore, it

does not require costly lexical information or morphological

analysis.

The present E2E-ASR approaches can be divided into

two types. First type is based on connectionist temporal clas-

sification (CTC) [2–6]. The CTC approach makes it possible

to map the input sequences of acoustic features to output se-

quences of symbols of shorter length without using a hidden

Markov model (HMM). However, it requires assumptions

of conditional independence in the output sequence, i.e.,

each output symbol such as a character or phoneme is inde-

pendently predicted in each frame. The second E2E-ASR

approach utilizes an attention-based sequence-to-sequence

(Seq2Seq) model [7]. In this approach, a sequence of acoustic

features is directly mapped into text using an encoder-decoder

architecture [8, 9]. In contrast to the CTC-based approach,

the attention-based Seq2Seq approach is not bound by any

assumptions, therefore it can be trained to directly maxi-

mize the probability of a word sequence given a sequence of

acoustic features. However, in exchange for its generality, the

Seq2Seq approach requires large amounts of data for train-

ing. Furthermore, since the language model is not a separate

module, the large amounts of text typically available cannot

be used to improve its performance. This actually yields

significant degradation of proper noun recognition, which are

not appeared in the paired speech and text data, and affects

negatively to production when evaluated on live production

data according to [10].

One straightforward approach to address these issues is to

integrate a language model with the Seq2Seq model, includ-

ing shallow fusion, deep fusion, and their variants [11–13].

Shallow fusion [11,14] is the most simple approach in that we
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Fig. 1: Overview of proposed back-translation-style data augmentation method.

separately train a Seq2Seq model and a language model and

then combine the score of two models in the decoding phase.

Deep fusion [12] is an approach which has been proposed in

the field of neural machine translation. A seq2seq model and

a language model are trained separately, and then the hidden

states of the decoder of the Seq2Seq model and those of the

language model are concatenated using a gating matrix which

controls the importance of each model. The parameters used

to calculate the gating matrix are then trained using a small

amount of training data while fixing all of the other param-

eters. These fusion approaches enable us to utilize a large

amount of unpaired text to improve ASR performance. The

resulting model is not actually end-to-end, however, since it

requires additional steps and fine-tuning to integrate the sep-

arate modules.

A simpler approach is back-translation [15, 16], a method

which has been proposed in the field of machine translation.

In this approach, a pre-trained target-to-source translation

model is used to generate source text from unpaired target

text. Augmenting training data with back-translated data led

to notable improvements in performance of neural machine

translation models [15]. Similar techniques have also led to

performance improvements in related tasks such as automatic

post edition [17].

Inspired by the back-translation approach, in this paper

we propose a novel data augmentation method for attention-

based E2E-ASR models allows them to utilize large amounts

of text not paired with speech signals. Instead of using a

text-to-speech system on unpaired text to produce synthetic

speech [18] or using grapheme to phoneme conversion to

generate paired text and pseudo speech sequences based

on phonemes [19], we build a text-to-encoder model which

learns to predict the hidden states of the E2E-ASR encoder.

Targeting the states of the speech encoder, rather than speech

itself makes it possible to achieve faster attention learning and

reduce computational cost, thanks to sub-sampling present in

E2E-ASR encoder, Furthermore, the use of the hidden states

can avoid to model speaker dependencies unlike acoustic

features. After training, the text-to-encoder model gener-

ates the hidden states from a large amount of unpaired text,

and then the decoder of the E2E-ASR model is retrained

using the generated hidden states as additional training data.

To evaluate our proposed method, we conduct experimental

evaluation using LibriSpeech dataset [20]. The experimental

results demonstrate that our proposed method achieves the

improvement of ASR performance and makes it possible to

improve the recognition results for unknown words.

2. BACK-TRANSLATION-STYLE

DATA AUGMENTATION

2.1. Overview

An overview of our proposed back-translation-style data aug-

mentation method is shown in Fig. 1. First, the attention-

based E2E-ASR model is trained using paired training data

which consists of text and speech. Next, the final layer hid-

den states of the ASR encoder are extracted, providing paired

training data which consists of text and the corresponding hid-

den states. Using this paired training data, a neural text-to-

encoder (TTE) model is trained to predict the hidden states

of the ASR encoder from a sequence of characters. Finally,

the text-to-encoder model generates hidden states from a large

amount of unpaired text and the ASR decoder is retrained us-

ing the generated states as additional training data.

2.2. ASR model training

An overview of an attention-based ASR model is shown in

Fig. 2(a). This model directly estimates posterior p(C|X),
where X = {x1,x2, . . . ,xT } represents a sequence of in-

put features, and C = {c1, c2, . . . , cL} represents a sequence

of output characters. Posterior p(C|X) is factorized with a

probabilistic chain rule as follows:

p(C|X) =

L
∏

l=1

p(cl|c1:l−1,X), (1)

where c1:l−1 represents subsequence {c1, c2, . . . cl−1}, and

p(cl|c1:l−1,X) is calculated as follows:

hasr

t = Encoderasr(X), (2)

aasrlt = Attentionasr(qasr

l−1
,hasr

t , aasrl−1
), (3)



(a) Attetion-based ASR model (b) Tacotron2-based TTE model

Fig. 2: Overview of attention-based ASR and Tacotron2-based TTE network architectures.

rasrl = ΣT
t=1

aasrlt hasr

t , (4)

qasr

l = Decoderasr(rasrl ,qasr

l−1
, cl−1), (5)

p(cl|c1:l−1,X) = Softmax(LinB(qasr

l )), (6)

where a∗lt represents an attention weight, a∗l represents

an attention weight vector (sequence of attention weights

{a∗l0, a
∗

l1, . . . , a
∗

lt}), h∗

t and q∗

l represent the hidden states of

encoder and decoder networks, respectively, r∗l represents a

letter-wise hidden vector, which is a weighted summarization

of the hidden vectors using attention weight vector a∗l , and

LinB(·) represents a linear layer with a trainable matrix and

bias parameters.

All of the above networks are optimized using back-

propagation through time (BPTT) [21] to minimize the fol-

lowing objective function:

Lasr = − log p(C|X)

= − log
(

ΣL
l=1

p(cl|c
∗

1:l−1
,X)

)

,
(7)

where c∗
1:l−1

= {c∗
1
, c∗

2
, . . . , c∗l−1

} represents the ground truth

of the previous characters.

2.3. TTE model training

As our neural text-to-encoder (TTE) model we use Tacotron2,

which has demonstrated superior performance in the filed of

text-to-speech synthesis [22]. An overview of its network ar-

chitecture is shown in Fig. 2(b). In our framework, the net-

work predicts ASR encoder state hasr

t and the probability of

the end of sequence st at each frame t from a sequence of

input characters C = {c1, c2, . . . , cL} as follows:

htte

l = Encodertte(C), (8)

attetl = Attentiontte(qtte

t−1
,htte

l , attet−1
), (9)

rttet = ΣL
l=1

attetl htte

l , (10)

vt−1 = Prenet(hasr

t−1
), (11)

qtte

t = Decodertte(rttet ,qtte

t−1
,vt−1), (12)

ĥ
b,asr
t = tanh(LinB(qtte

t )), (13)

dt = Postnet(qtte

l ), (14)

ĥ
a,asr
t = tanh(LinB(qtte

l ) + dt), (15)

ŝt = Sigmoid(LinB(qtte

t )), (16)

where Prenet(·) is a shallow feed-forward network to con-

vert the network outputs before feedback to the decoder,

Postnet(·) is a convolutional neural network to refine the

network outputs, and ĥ
b,asr
t and ĥ

a,asr
t represent predicted

hidden states of the ASR encoder before and after refinement

by Postnet. Note that the indices of the encoder and decoder

states are reversed in comparison to the ASR formulation in

Eqs. (2)-(6), and that we use an additional activation function

tanh(·) in Eqs. (13) and (15) to avoid mismatching of the

ranges of the outputs, in contrast to the original Tacotron2

architecture [22].

All of the networks are jointly optimized to minimize the

following objective functions:

Ltte = MSE(ĥa,asr
t ,hasr

t ) +MSE(ĥb,asr
t ,hasr

t )

+ L1(ĥa,asr
t ,hasr

t ) + L1(ĥb,asr
t ,hasr

t )

+ 1

T
ΣT

t=1
st ln ŝt + (1− st) ln(1 − ŝt),

(17)

where MSE(·) represents mean square error, L1(·) represent

an L1 norm, and the last two terms represent the binary cross

entropy for the probability of the end of sequence. The use

of losses for both outputs, before and after Postnet aids fast

convergence. In the original Tacotron2 paper [22], the L1

norm was not used as the objective function, however, in [23]



Fig. 3: Flowchart of proposed retraining.

it was reported that the use of L1 norm improves performance,

especially when using noisy training data.

2.4. ASR decoder retraining

After training of the TTE model, we retrain the ASR de-

coder using both the paired and unpaired training data. A

flowchart of this retraining is shown in Fig. 3. We concate-

nate the paired and unpaired text datasets, and then for each

text, if there is paired speech data, the acoustic features of

that speech are used as inputs. If not, the hidden states gen-

erated by the TTE model are used as inputs. Using both the

generated hidden states and the original acoustic features pro-

duces a regularization effect which prevents overfitting to the

generated states.

3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

We conducted an experimental evaluation using the Lib-

riSpeech dataset [20], which consists of two sets of clean

speech data (100 hours + 360 hours), and noisy speech data

(500 hours) for training. We used 100 hours of clean speech

data to train the initial ASR model and the text-to-encoder

(TTE) model, and the text of 360 hours of clean speech data

to retrain the ASR decoder. We used five hours of clean de-

velopment data as a validation set, and five hours of clean test

data as an evaluation set. To evaluate the effectiveness of our

proposed method, we compared the recognition performance

of the following seven methods:

Baseline

model trained with 100 hours of acoustic features;

Retrain-State

model retrained with 360 hours of generated hidden

states and 100 hours of extracted hidden states;

Retrain-State-Frozen

model retrained with 360 hours of generated hidden

states and 100 hours of extracted hidden states while

the attention layers are frozen;

Retrain-Joint

model retrained with 360 hours of generated hidden

states and 100 hours of acoustic features;

Oracle-State

model trained with 460 hours of extracted hidden

states;

Oracle-State-Frozen

model trained with 460 hours of extracted hidden states

while the attention layers are frozen;

Oracle-Feature

model trained with 460 hours of acoustic features;

where “generated hidden states” represent the hidden states

generated by the TTE model, and “extracted hidden states”

represent the hidden states extracted from the ASR encoder

using raw acoustic features.

We used an acoustic feature vector consisting of an 80-

dimensional log Mel-filter bank and three-dimensional pitch

features, which were extracted using the open-source speech

recognition toolkit Kaldi [24]. The ASR encoder consisted

an eight-layered bidirectional long short-term memory with a

projection layer [25] (BLSTMP), and the ASR decoder con-

sisted a one-layered LSTM. In the second and third lay-

ers from the bottom of the ASR encoder, sub-sampling was

performed to reduce the length of utterances T , yielding the

length T/4. The ASR attention network used location-aware

attention [7], which is more robust to long sequences than dot-

product [26] or additive attention [27]. For decoding, we used

a beam search algorithm [9] with beam size of 20. We man-

ually set the maximum and minimum lengths of the output

sequence to 0.3 and 0.8 times the length of the subsampled

input sequence, respectively. Details of the experimental con-

ditions for the ASR model are shown in Table 1.



Table 1: Experimental conditions for the ASR model.

Encoder type BLSTMP
# encoder layers 8
# encoder units 320
# projection units 320
Decoder type LSTM
# decoder layers 1
# decoder units 320
# dimension in attention 300
# filter in attention 10
Filter size in attention 100
Learning rate 1.0
Gradient clipping norm 5
Batch size 50
Maximum epoch 30 (for initial training)

15 (for retraining)
Optimization method AdaDelta [28]
AdaDelta ρ 0.95
AdaDelta ǫ 10−8

AdaDelta ǫ decay rate 10−2

Beam size 20
Maximum length 0.8
Minimum length 0.3

The architecture of the TTE model followed the origi-

nal Tacotron2 settings [22]. The input characters were con-

verted into 512-dimensional character embeddings. The TTE

encoder consisted of a three-layered 1D convolutional neu-

ral network (CNN) containing 512 filters with the shape 5,

a batch normalization and rectified linear unit (ReLU) activa-

tion function, and an one-layered BLSTM with 512 units (256

units for forward processing, the rest for backward process-

ing). Although the attention mechanism of the TTE model

was based on location-aware attention [7], we additionally

cumulated the attention weight feedback to next step to ac-

celerate attention learning. The TTE decoder consisted of a

two-layered LSTM with 1024 units. Prenet was a two-layered

feed forward network with 256 units and ReLU. Postnet was

a five-layered CNN containing 512 filters with the shape 5,

a batch normalization, and tanh activation function except in

the final layer. Dropout [30] with a probability of 0.5 was ap-

plied to all of the convolution and Prenet layers. Zoneout [31]

with a probability of 0.1 was applied to the decoder LSTM.

During generation, we applied dropout to Prenet in the same

manner as in [22], and set the threshold value of the proba-

bility of the end of sequence at 0.75 to prevent from cutting

off the end of the input sequence. Details of the experimental

conditions for the TTE model are shown in Table. 2.

All of the networks were trained using the end-to-end

speech processing toolkit ESPnet [32] with a single GPU

(Titan X pascal). Character error rate (CER) and word error

rate (WER) were used as metrics.

3.2. Experimental results

First, we focus on the effectiveness of adding the L1 norm

to the objective function of the TTE model. Mean square er-

ror loss for validation data with teacher forcing is shown in

Table 3. We can confirm that the use of the L1 norm results

Table 2: Experimental conditions for the TTE model.

Encoder type CNN + BLSTM
# embedding dimension 512
# encoder layers 3 (CNN)

1 (BLSTM)
# encoder BLSTM units 512
# encoder CNN filters 512
Encoder CNN filter size 5
Decoder type LSTM
# decoder layers 2
# decoder units 1024
# dimension in attention 128
# filters in attention 32
Filter size in attention 31
# Prenet layers 2
# Prenet units 256
# Postnet layers 5
# Postnet filters 512
Postnet filter size 5
Dropout rate 0.5
Zoneout rate 0.1
Learning rate 10−3

Gradient clipping norm 1
Batch size 50
Maximum epoch 100
Optimization method Adam [29]
Adam ǫ 10−6

Threshold to stop generation 0.75

Table 3: MSE of the TTE model for validation set.

With L1 norm 0.0298
Without L1 norm 0.0335

in improved performance. Furthermore, we found that use of

the L1 norm also leads to much faster attention learning. The

attention weights for the validation data are shown in Fig. 4.

While the TTE model without the L1 norm is unable to learn

the attention until after epoch 40, use of the L1 norm make

the model to learn the attention in less than 1/3 the number of

epochs. This is because use of the L1 norm makes the model

focus on reducing smaller error, which prevents the decoder

of the model from becoming something like an auto-encoder.

Next, we focus on the effectiveness of our proposed data

augmentation method. Our experimental results are shown in

Table 4. Compared with the baseline, we can confirm that

our proposed “Retrain-Joint” approach improved the recog-

nition performance. However, when only hidden states were

used during retraining, no improvement was observed. This

is because using only the hidden states resulted in overfit-

ting. However, in comparison to the oracle results, we can

Table 4: ASR performance using various retraining methods.

CER / WER [%]

Validation Evaluation

Baseline 11.2 / 24.9 11.1 / 25.2
Retrain-State 12.0 / 27.6 12.4 / 28.3
Retrain-State-Frozen 11.9 / 27.1 11.9 / 27.6
Retrain-Joint 10.3 / 23.5 10.3 / 23.6

Oracle-State 7.6 / 16.8 8.7 / 18.4
Oracle-State-Frozen 8.1 / 18.9 8.5 / 19.6
Oracle-Feature 4.7 / 11.4 4.6 / 11.8



Fig. 4: Visualization of attention weight for validation data. Upper figures are w/ L1 norm, bottom ones are w/o L1 norm.

Table 5: Some recognition examples including unknown words before retraining.

GT . . . in a reclining attitude being RIGIDLY bound both hands and feet by strong and painful withes
ORG . . . in a reclining attitude being RIGILLY bound both hands and feet by strong and painful with
RET . . . in a reclining attitude being RIGIDLY bound both hands and feet by strong and painful withs

GT the first of our vague but INDUBITABLE data is that there is knowledge of the past
ORG the first of our vague but INDUPINABLE data as that there is knowledge of the past
RET the first of our vague but INDUBITABLE data it set there is knowledge of the past

GT . . . children that ran about and prattled when they were in the woods looking for wild STRAWBERRIES
ORG . . . children that ran about and pratelled when they were in the wood slooking for wild STRAWBERRES
RET . . . children that ran about and prattled when they were in the woods looking for wild STRAWBERRIES

Table 6: ASR performance of shallow fusion with LM.

CER / WER [%]

Validation Evaluation

Baseline + LM 10.6 / 23.0 10.4 / 22.9
Retrain-Joint + LM 9.8 / 21.6 10.0 / 22.0

see that there is a still room for improvement. These results

imply that the use of data of various speakers is more impor-

tant than the use of various text. Since hidden states contains

less information about speaker characteristics than acoustic

features, using hidden states at the targets of the TTE model

likely results in the generated hidden states representing the

characteristics of an intermediate speaker. As a result, there

is not enough speaker variation among the generated hidden

states, degrading the effectiveness of data augmentation. To

address this issue, we will extend our scheme using multi-

speaker Tacotron2 [23] in future work.

Some recognition examples including unknown words be-

fore retraining are shown in Table 5. We can see that our

proposed data augmentation method can improve the perfor-

mance of the ASR decoder as language model, making it pos-

sible to extend the vocabulary. A similar effect was observed

in the original back-translation work [15].

Finally, the results of shallow fusion with a character-

based language model (LM) [14] are shown in Table 6, where

the LM was trained using text of 360 hours of clean speech,

and the balancing weight parameter between two models was

decided to achieve the best recognition performance on CER.

We can see that the use of LM improved the recognition per-

formance in both cases, indicating that our proposed method

can still be combined with LM integration methods.

4. CONCLUSION

In this paper we proposed a novel data augmentation method

for attention-based E2E-ASR, utilizing a large amount of text

which was not paired with speech signals, an approach in-

spired by the back-translation technique has been proposed

in the field of machine translation. We built a neural text-

to-encoder (TTE) model which predicted a sequence of hid-

den states extracted by a pre-trained E2E-ASR decoder from

a sequence of characters. Using the hidden states as targets

makes it possible to achieve faster attention learning and re-

duces computational cost thanks to sub-sampling in the ASR

encoder. After training, the TTE model generated the hid-

den states from a large amount of unpaired text, and then the

decoder of the E2E-ASR model was retrained using the gen-

erated hidden states as additional training data. An exper-

imental evaluation using LibriSpeech dataset demonstrated

that our proposed method achieved the improvement of ASR

performance and made it possible to improve the recognition

results due to the smaller number of unknown words. Fur-

thermore, we could confirm that our proposed method can be

combined with language model integration methods.

In future works, we will extend the text-to-encoder model

to multi-speaker model using speaker embedding vector [23]

to generate more variable hidden states, and apply our pro-

posed method using much larger amount of unpaired text.
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