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ABSTRACT

In this work, we study the use of attention mechanisms to
enhance the performance of the state-of-the-art deep learning
model in Speech Emotion Recognition (SER). We introduce
a new Long Short-Term Memory (LSTM)-based neural net-
work attention model which is able to take into account the
temporal information in speech during the computation of the
attention vector. The proposed LSTM-based model is evalu-
ated on the IEMOCAP dataset using a 5-fold cross-validation
scheme and achieved 68.8% weighted accuracy on 4 classes,
which outperforms the state-of-the-art models.

Index Terms— Speech Emotion Recognition, Attention,
Deep Learning, Neural Network

1. INTRODUCTION

As automatic speech recognition and synthesis become more
and more ubiquitous, the possibility of recognizing and syn-
thesizing even higher level semantics opens up. Emotion (or
affect) is one such semantic. For example, in the context of a
speech-to-speech translation system, we would like to be able
to reflect the fact that a speaker is happy or angry to the trans-
lated voice. In the context of a dialogue agent in a call center,
we would like to know if the client is satisfied with the pro-
cess of their query; a client becoming angry or frustrated may
be a cue to transfer them to a human operator. To this end,
and in the context of this paper, we are interested in general
in the recognition of emotion in speech.

Speech emotion recognition (SER) is the process of au-
tomatically determining the underlying emotional state of a
person from a sample of its speech. For many years, the
state-of-the-art SER models were developed using statistical
parametric features followed by a classification or regres-
sion algorithm [1]. Nonetheless, over the last years due
to the increase of available data and computational power,
deep learning models such as Neural Networks (NNs) have
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managed to outperform the traditional machine learning al-
gorithms. One particular architecture which has emerged is
based on the combination of Deep Neural Networks (DNNs)
and Recurrent Neural Networks (RNNs). This approach is
able to exploit the temporal information in speech to predict
utterance-level emotion labels.

Neural network based attention mechanisms are widely
used over the recent few years in deep learning. These tech-
niques were firstly introduced in the Neural Machine Transla-
tion field by Badhanau et. al. [2]. Ever since, attention mech-
anisms have been applied to various machine learning tasks,
such as key-term extraction [3], image classification [4], se-
mantic segmentation [5] and also recently to SER [6].

In its simplest form, an attention mechanism can be de-
scribed as a single vector. Let’s define H = [h1,h2, ...,hT ]
as an input matrix of shape T × F , with T the number of
frames and F the number of features per frame. In this case,
the attention model is denoted as a weight vector w ∈ RF ,
which is multiplied withH:

M = wTH (1)

M is denoted as the “attention map”. This map can be
used in various ways. The most common use is normalizing it
to unity and using it as a weighting factor for the RNN output,
to perform a weighted pooling. One possible way to do that
is by using a softmax:

R =HαT , (2)

where,

αi = softmax(mi) (3)

=
exp(wThi)∑
t
exp(wTht)

(4)

The main idea behind attention mechanisms is to “help”
the model to learn where to “look for” the information that is
meaningful for the task at work. It can then focus on the rele-
vant parts while disregarding noisy or irrelevant data. The at-
tention mechanism can take multiple forms. A simple model
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such as the one presented in Eq.1 and 2 was successfully used
by Zhou et al. [7] for relation classification. A more complex
model was developed by Yang et al. [8] where an additional
fully-connected layer is used to compute H . The common
feature across different attention mechanisms is the fact that
they are almost always trained along with the rest of the net-
work by back-propagation.

In order to improve the performance of the state-of-the-art
models for SER, we investigate the use of different attention
mechanisms. The goal is to localize the parts of speech con-
veying emotional load in the utterance and weight the differ-
ent frames based on their emotional relevance. We hypothe-
size that the attention mechanism will be able to localize the
meaningful information, while disregarding the noisy data.
However, the majority the attention models introduced in the
literature are applied on a frame-by-frame level. This makes
them incapable of taking into account the contextual infor-
mation of the neighboring frames. To alleviate this problem,
we designed a new attention model based on a bi-directional
LSTM (BiLSTM), which would be able to exploit the sequen-
tiality in speech. We hypothesize that the ability of LSTMs to
model the context of neighboring frames will create more ro-
bust attention vectors.

The rest of this paper is organized as follows: the pro-
posed method with the LSTM attention model we investigate
is introduced in Section 2. The experimental setup along with
the other attention mechanisms used for comparison are de-
scribed in Section 3. The results are presented and analyzed
in Section 4. In Section 5 the final conclusions are presented.

2. PROPOSED METHOD

We introduce a new attention mechanism which relies on the
bi-directional long short-term memory (BiLSTM)’s ability to
model the temporal dependencies of sequential data such as
speech. An LSTM unit takes as input a feature vector xt and
computes the output vector ht using the previous output vec-
tor ht−1 and the previous memory cell state ct−1 as follows:

f t = σg(W fxt +Ufht−1 + bf ) (5)
it = σg(W ixt +U iht−1 + bi) (6)
ot = σg(W oxt +Uoht−1 + bo) (7)
ct = f t ◦ ct−1it ◦ σc(W cxt +U cht−1 + bc) (8)
ht = ot ◦ σh(ct) (9)

with σg the sigmoid function, σc and σh the hyperbolic tan-
gent when no peephole connection is used. Thanks to its
specific design, the LSTM cell is able to retain information
over time, incorporating new elements and discarding irrele-
vant ones, as the input flows. This property makes the LSTM
cell especially suitable for tasks such as SER where the se-
quentiality of the data is important.

We chose to use a bi-directional LSTM in our novel atten-
tion mechanism as there is a strong time dependency on the
parts of speech that conveys emotions and we want to take
in account both the past and future contexts. The proposed
model uses the BiLSTM to compute the matrix H which is
then processed as described in Eq. 1-2. We decided to apply
a sigmoid activation instead of the usual softmax normaliza-
tion to compute the attention vectorα, as the softmax forces a
very low number of frames to have high activation. By using
a sigmoid activation instead, we can ensure that many frames
get a high activation level aiming for an overall smoother at-
tention vector.

Using a BiLSTM inside the attention module allows for
the model to take into account each frame in its context within
the full utterance. In this way, we hypothesize that the frames
are context dependent; determining the level of attention a
frame should receive does not depend only on the frame it-
self, but also on its past and future context. The use of a BiL-
STM also allows us to control the complexity of the model by
varying the output size of the LSTM.

With this kind of attention mechanism, we can force the
model to learn meaningful features as well as to localize the
emotionally salient parts of an utterance. The attention vector
that is generated will not only give low weights to the silent
parts of an utterance, in a VAD fashion, but also to the non-
emotional parts which might be voiced. Moreover, by incor-
porating an LSTM inside the attention mechanism, we expect
the model to cope better with the sequentiality of the data to
compute the attention vector.

3. EXPERIMENTAL SETUP

We investigate the benefits of using attention mechanisms for
SER by applying different attention mechanisms on top of
a state-of-the-art baseline model. The baseline model is in-
spired from the one in [6], which is a DNN-RNN. We extract
a frame-level feature vector using the openSMILE toolkit
[9], which we feed as input to the neural network. Features
are extracted using a sliding window of 25ms length, with
a shift of 10ms. We extract a 32-dimensional feature vector
per frame, which is composed of hand-crafted Low-Level
descriptors (LLDs) often used for SER, namely pitch, energy,
zero-crossing rate, voicing probability, 12 mel-frequency cep-
stral coefficients (MFCCs) as well as the first derivative of
each of these quantities.

The model is composed of 3 ReLU-activated fully-
connected layers with 256 nodes each, followed by a bi-
directional LSTM with 128 units and tanh activation. The
outputs of the RNN are concatenated and a mean temporal
pooling operation is applied. Finally, the resulting 256-
features vector is fed to a softmax classifier, which in our
case is a fully-connected layer with 4 outputs and softmax
activation since we work on a 4-class problem.

To this baseline model, we applied different kind of at-



Table 1: Performance of different attention mechanisms in terms of Weighted Average (WA) and Unweighted Average (UA)
for full dataset and improvised dataset

Attention Model Full dataset Improvised speech only

WA UA WA UA

Baseline (mean pool) 60.5 58.3 62.2 63.3
Zhou et al. [7] 60.7 58.7 64.7 62.4
Yang et al. [8] 61.2 58.4 64.8 64.1
Proposed model 62.5 59.6 68.8 63.7

FeaturesT × F

FC LayersT × 256

BiLSTMT × 256

T

mean temporal pooling256

Softmax4

. . .

. . .

. . .

Fig. 1: Architecture of the baseline model. The output size of
each part is shown on the left

tention mechanisms, with different levels of complexity and
different behavior. In this work, we evaluate the performance
of 4 different strategies: first a simple mean pooling strat-
egy with no attention mechanism, then two existing attention
mechanisms introduced in the literature by Zhou et. al [7] and
Yang et. al. [8] respectively, and finally, we also evaluate our
proposed attention model.

The three attention models are applied on top of the Bi-
LSTM. The attention model in Zhou et al. [7] consists of a
single attention vector w used as described in Eq. 1 and 2
and takes as input the output of the BiLSTM directly. The
attention model of Yang et al. [8] passes the output of the
BiLSTM through a fully-connected layer to generate the ma-
trix H . The fully-connected layer can have any output size,
which gives some ability to control the complexity of the at-
tention model. The proposed attention model uses a second
BiLSTM layer to generate the feature matrixH , as described
in 2. The architecture of the proposed attention model is de-
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Fig. 2: Architecture of our proposed model, with the LSTM
attention mechanism

picted in Figure 2.

All experiments were done on the IEMOCAP database
(Interactive Emotional Dyadic Motion Capture) [15]. IEMO-
CAP is one of the largest available dataset for SER. It contains
approximately 12 hours of spoken content, split in 5 sessions
with 2 different speakers each, for a total of 10 speakers. In
each session, the two professional actors performed scripted
and improvised scenarios. As it was shown in [14], the im-
provised part of the dataset could be characterized as an eas-
ier task for prediction. In order to present a more detailed
comparison with state-of-the-art work on this database, we
decided to tackle the problem using both the full dataset and
the improvised speech.



Table 2: Performance of SER models in terms of Weighted Average (WA) and Unweighted Average (UA) for full dataset and
improvised dataset 1

Models (CV scheme) Full dataset Improvised speech only

WA UA WA UA

Mirsamamdi et al. (5-fold CV) [6] 63.5 58.8 —- —-
Etienne et al. (10-fold CV) [10] —- —- 64.5 61.7
Tzinis et al. (5-fold CV) [11] —- —- 64.2 60.0
Huang et al. (Leave-one-session-out) [12] 59.4 50.0 —- —-
Lee et al. (5-fold CV) [13] —- —- 62.9 63.9
Neumann et al. (5-fold CV) [14] 56.1 —- 62.1 —-
Proposed model (5-fold CV) 62.5 59.6 68.8 63.7

(a) Baseline (b) Yang et al. [8] (c) Proposed model

Fig. 3: Confusion matrix of the baseline, Yang et al. model [8] and the proposed model on the improvised set

As there is no predefined train/test split for IEMOCAP,
we decided to apply a 5-fold cross-validation scheme using
4 sessions as training set and the last session as testing set
to ensure speaker independence. We report the average accu-
racy over the 5 cross-validation folds, which is our final per-
formance measurement. To stay consistent with most of the
literature on IEMOCAP, we keep only the samples belonging
to the 4 classes angry, happy, neutral and sad, without merg-
ing the happy and excited classes as done in [14]. Moreover,
we present both Weighted Accuracy (WA) and Unweighted
Accuracy (UA) as the classes are not uniformly distributed.
We propose an evaluation procedure as complete, transparent
and easily reproducible as possible whilst retaining compa-
rability with other published results on the same dataset, i.e.
IEMOCAP, to allow for a fair comparison with the literature
to come.

Due to the use of an RNN architecture in the proposed
network, a fixed number of frames is required for the training
samples. Following the insights of [14], the fixed number
of frames was set to 500, for a 5 seconds long utterance. We
crop longer utterances and pad shorter ones with zeros to have
equal length utterances.

Before feeding the feature vectors to the network, fea-

tures are normalized by the mean and standard deviation of
the neutral speech of the training set, which differs for each
split. Moreover, to further avoid overfitting and improve the
model’s adaptability to unseen data, we augment the data by
adding random white noise with a variance σ2 = 0.4.

We built the proposed model using Tensorflow [16] and
train it by back-propagation using an Adam optimizer with
learning rate of 3 × 10−5 while feeding mini-batches of
32 utterances. The entire network is regularized with l2-
regularization with a factor γ = 5e−2 and dropout is applied
on all layers apart from the attention model with a keep
probability of 0.9. The values for these hyperparameters
were chosen as the ones yielding the best performance on
the average of the 5 cross-validation splits. To counter the
class-imbalance in each split, we weight each sample of the
class c in the loss function by a factor wc = Ntot

NclassesNc
. We

trained each cross-validation split for 200 epochs and keep
the best performing model in terms of summed UA and WA,
to ensure good performances on the whole dataset and on
each separate class.



(a) Baseline (b) Yang et al. [8] (c) Proposed model

Fig. 4: Confusion matrix of the baseline, Yang et al. model [8] and the proposed model on the full dataset

4. EXPERIMENTAL RESULTS

The results of our experiments are presented in Table 1. The
LSTM-based attention model outperforms the baseline model
and the standard attention models in both WA and UA on the
full dataset and in WA on the improvised set. By using our
LSTM-based model, a 2% absolute improvement in WA over
the full dataset and a 6.6% absolute improvement on the im-
provised set, were achieved compared to the baseline model.
This can be explained by the nature of the LSTM-based at-
tention model ; due to its ability to cope with the contextual
information in speech data, using an LSTM to compute the
attention vector is shown to be a better suited solution for
SER. This increase in performance validates our hypothesis
that contextual information is important in the computation
of the attention vector.

The LSTM-based attention model performed better on the
neutral and sad class than two other attention models, as can
be seen on the confusion matrix presented in Figure 3 and 4.
This can be explained by the nature of these two emotions;
neutral and sad, as opposed to happy and angry are “slow”-
paced emotions, less exclamatory and explicit and more pas-
sive [17]. Due to this fact, the emotional load is spread more
widely in sad and neutral utterances, which makes an LSTM-
based attention model better suited to detect them. On the
other hand, angry and happy emotions are more “fast”-paced,
energetic and active, and so, much more localized in time.

Comparison of the performance of the proposed model
with the literature can be found in Table 2. We were able
to compare the proposed model to all the previous work on
IEMOCAP, whether the improvised set only or the full dataset
were used. The proposed model outperforms the state-of-
the-art models on both the improvised partition and the full
IEMOCAP dataset, in terms of WA and UA.

1Results from [11, 12, 13, 14] were rounded to one decimal digit.

5. CONCLUSIONS

We evaluated the performance of various attention-based
models applied to the state-of-the-art speech emotion recog-
nition deep learning based systems. We showed that using
attention mechanisms can yield improvement in the accuracy
by focusing on emotionally relevant parts of the speech in-
put. Moreover, we introduced a new LSTM-based attention
model which can learn in a more robust way to localize the
emotionally salient part of speech by taking into account the
sequentiality of the speech data. The improvements in per-
formance given by this new LSTM-attention model shows
that the context of a given frame is important to compute the
attention vector. Additionally, a standardized evaluation pro-
cedure for benchmarking models on the IEMOCAP dataset
was introduced and showed that the proposed model consti-
tutes as the new state-of-the-art model, with respect to both
the full dataset and the improvised part only.
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