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ABSTRACT

We address the problem of American Sign Language fin-
gerspelling recognition “in the wild”, using videos collected
from websites. We introduce the largest data set available so
far for the problem of fingerspelling recognition, and the first
using naturally occurring video data. Using this data set, we
present the first attempt to recognize fingerspelling sequences
in this challenging setting. Unlike prior work, our video
data is extremely challenging due to low frame rates and vi-
sual variability. To tackle the visual challenges, we train a
special-purpose signing hand detector using a small subset of
our data. Given the hand detector output, a sequence model
decodes the hypothesized fingerspelled letter sequence. For
the sequence model, we explore attention-based recurrent
encoder-decoders and CTC-based approaches. As the first
attempt at fingerspelling recognition in the wild, this work
is intended to serve as a baseline for future work on sign
language recognition in realistic conditions. We find that, as
expected, letter error rates are much higher than in previous
work on more controlled data, and we analyze the sources of
error and effects of model variants.

Index Terms— American Sign Language, fingerspelling,
connectionist temporal classification, attention models

1. INTRODUCTION

Sign languages, consisting of sequences of grammatically
structured handshapes and gestures, is a chief means of com-
munication among deaf people around the world.1 In the
US, American Sign Language (ASL) is the primary language
for about 350,000 to 500,000 deaf people [1] and is used by
many others as a second language. Automatic recognition of
sign language would help facilitate communication between
deaf and hearing individuals. It could also enable services
such as search and retrieval in deaf social and news video
media, which often has little or no text associated with it.

A number of challenges are involved in sign language
recognition. Sign language employs multiple elements such

1In some settings there is a cultural distinction between the terms “deaf”
and “Deaf”. In this paper, we use the term “deaf” to refer to both.

as handshapes, arm movement and facial expressions. All of
these gestures are subject to coarticulation and phonological
effects, so they often do not appear in their canonical forms.
In addition, there is a great deal of variability in the appear-
ance of different signers’ hands and bodies. Finally, the lin-
guistics of sign language is less well studied than that of spo-
ken language, and there is much less annotated data than there
is for spoken languages.

In this paper we focus on the recognition of ASL finger-
spelling, a component of ASL in which words are signed by
a series of handshapes or trajectories corresponding to single
letters (using the English alphabet). The ASL fingerspelling
alphabet is shown in Figure 1. Fingerspelling is mainly used
for lexical items that do not have their own ASL signs, such
as proper nouns or technical terms, which are often important
content words. Overall, fingerspelling accounts for 12–35%
[2] of ASL, and appears frequently in technical language,
colloquial conversations involving names, conversations in-
volving current events, emphatic forms, and the context of
codeswitching between ASL and English [3, 4, 5]. Transcrib-
ing even only the fingerspelled portions of videos in online
media could add a great deal of value, since these portions
are often dense in content words.

Compared to sign language recognition in general, fin-
gerspelling recognition is in some ways more constrained be-
cause it involves a limited set of handshapes, and in ASL it is
produced with a single hand (unlike in some other sign lan-
guages), which makes hand occlusion less problematic [6].2

On the other hand, fingerspelling recognition presents its own
challenges. It involves very quick, small motions that can be
highly coarticulated. In lower-quality video, motion blur can
be very significant during fingerspelled portions.

Most publicly available sign language data sets have been
collected in a studio or other carefully controlled environ-
ment. Collecting such data is expensive and time-consuming,
and as a result most existing sign language data sets are
fairly small. On the other hand, there are large amounts of
fingerspelling (and, more generally, sign language) video
available online on deaf social media and news sites (e.g.,

2Two-handed fingerspelling occasionally occurs, including in our data.
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Fig. 1. The ASL fingerspelling alphabet, reproduced from
[7].

deafvideo.tv, aslized.org).
In this paper we focus on recognition of fingerspelling oc-

curring in online videos, which allow us to study the recog-
nition problem in a more natural and practical setting than in
previous work. This work is to our knowledge the first attempt
at fingerspelling recognition (or any sign language recogni-
tion) “in the wild”, that is in naturally occurring video. For
this purpose we use a newly collected data set (see Section 3),
which we make available publicly.3 Collecting and annotat-
ing such naturally occurring video clips involves some effort,
but it is much quicker to obtain a large quantity of video from
a large variety of signers than in studio data collection.

Our recognizer consists of a hand detector trained to de-
tect the signing hand, whose output (the cropped signing hand
image) is fed to an end-to-end neural sequence model. As ex-
pected, we find that our new data set is challenging, leading
to accuracies that are significantly lower than previously re-
ported results on studio-based data sets [8] when using simi-
lar models. We explore a number of neural sequence models
including encoder-decoder and connectionist temporal classi-
fication (CTC)-based models.

Our experiments show the importance of the signing hand
detector for obtaining high-resolution regions of interest, and
that CTC-based models outperform encoder-decoder models
on our task. We analyze the sources of error and the effect of
a number of design choices.

2. RELATED WORK

There has been a significant amount of work on automatic
sign language recognition. Video corpora have been collected
for a variety of sign languages [9, 10, 11]. These data sets are
all recorded in a studio environment, which makes the vari-
ability lower than in natural day-to-day signing. One exam-
ple of a more naturalistic data set is the RWTH-PHOENIX-
Weather corpus [12], which contains German Sign Language
in the context of daily television weather forecasts; however,
the number of signers is still limited (7 signers) and the vi-
sual variability is fairly controlled. Fingerspelling-specific
data sets are much rarer. The ChicagoFSVid data set is the
largest of which we are aware; it includes 4 native ASL sign-
ers fingerspelling 600 sequences each, and has been used in

3The data set is available for download from
http://ttic.edu/livescu/chicago-fingerspelling-
in-the-wild.

recent work on lexicon-free recognition and signer adapta-
tion [13, 8]. The National Center for Sign Language and
Gesture Resources (NCSLGR) Corpus includes about 1,500
fingerspelling sequences (as well as a variety of other ASL
signs) [14, 15]. In addition to video, many efforts have been
devoted to using depth sensors instead of or in addition to
video, which can be very helpful for developing new inter-
faces [6, 16]. In this work, however, we focus on naturally
occurring online data, which is typically in the form of video.

Automatic sign language recognition can be approached
similarly to speech recognition, with image frames and signs
being treated analogously to audio signals and words or
phones respectively. As in a number of other domains,
convolutional neural networks (CNNs) have recently been
replacing engineered features in sign language recognition
research [17, 18, 19, 11, 8]. For sequence modeling, most
previous work has used hidden Markov models (HMMs)
[20, 17, 18, 13], and some has used segmental conditional
random fields [21, 22, 13]. Much of this work relies on
frame-level labels for the training data. Due to the diffi-
culty of obtaining frame-level annotation, recent work has
increasingly focused on learning from sequence-level labels
alone [17, 11, 19].

Specifically for fingerspelling recognition, most prior
work has focused on restricted settings. When the lexicon is
restricted to a small size (20 - 100 words), letter error rates
lower than 10% have been achieved [23, 24, 25]. Another
important restriction is the signer identity. In [13, 8], letter
error rates of less than 10% were achieved in a lexicon-free
setting (unrestricted vocabulary) when training and testing on
the same signer, but the error rate increases to above 40% in
the signer-independent setting. The large performance gap
between these two settings has also been observed in general
sign language recognition [12].

Most fingerspelling recognition approaches begin by ex-
tracting the signing hand from the image frames [21, 13, 11].
Due to the high quality of video used in prior work, hand
detection (or segmentation) is usually treated as a pre-
processing step with high accuracy, with little analysis of
its impact on performance. In our new data set, the variation
in hand appearance, motion blur, and backgrounds makes the
hand extraction problem much more challenging.

3. DATA

We have collected a new data set consisting of fingerspelling
clips from ASL videos on YouTube, aslized.org and
deafvideo.tv. ASLized is an organization that creates
educational videos that pertain to the use, study, and struc-
ture of ASL. DeafVideo.tv is a social media website for deaf
vloggers, where users post videos on a wide range of topics.
The videos include a variety of viewpoints and styles, such as
webcam videos and lectures. 214 raw ASL videos were col-
lected, and all fingerspelling clips within these videos were



Fig. 2. Illustrations of ambiguity in fingerspelled handshapes.
Upper row: different letters with similar handshapes, all pro-
duced by the same signer. Lower row: the same letter (u)
signed by different signers.

manually located and annotated.
The videos were annotated by in-house annotators at

TTIC and the U. Chicago Sign Language Linguistics lab, us-
ing the ELAN video annotation tool [26] Annotators viewed
the videos, identified instances of fingerspelling within these
videos, marked the beginning and end of each fingerspelling
sequence, and labeled each sequence with the letter sequence
being fingerspelled. No frame-level labeling has been done;
we use only sequence-level labels. Annotators also marked
apparent misspellings and instances of fingerspelling artic-
ulated with two hands. The fingerspelled segments include
proper nouns, other words, and abbreviations (e.g., N-A-D for
National Association of the Deaf). The handshape vocabulary
contains the 26 English letters and the 5 special characters
{<sp>, &, ’,.,@} that occur very rarely.

We estimate the inter-annotator agreement on the label se-
quences to be about 94%, as measured for two annotators who
both labeled a small subset of the videos; this is the letter ac-
curacy of one annotator, viewing the other as reference.

As a pre-processing step, we removed all fingerspelling
video sequences containing fewer frames than the number of
labels. We split the remaining data (7304 sequences) into
5455 training sequences, 981 development (dev) sequences,
and 868 test sequences. Using frames per second (FPS) as
a proxy for video quality, we ensured that the distribution of
FPS was roughly the same across the three data partitions.
The dataset includes about 168 unique signers (91 male, 77
female).4 192 of the raw videos contain a single signer, while
22 videos contain multiple people. Each unique signer is as-
signed to only one of the data partitions. The majority of the
fingerspelling sequences are right-handed (6782 sequences),
with many fewer being left-handed (522 sequences) and even
fewer two-handed (121 sequences). Roughly half of the se-
quences come from spontaneous sources such as blogs and in-
terviews; the remainder comes from scripted sources such as
news, commercials, and academic presentations. The frame
resolution has a mean and standard deviation of 640× 360 ±
290× 156. Additional statistics are given in Figure 3.

This data set collected “in the wild” poses serious chal-
lenges, such as great visual variability (due to lighting, back-

4These numbers are estimated by visual inspection of the videos, as most
do not include meta-data about the signer.

Fig. 3. Histograms of the number of frames per fingerspelled
sequence and frames per second (FPS) for fingerspelled se-
quences in the data set.

ground, camera angle, recording quality) and signing variabil-
ity (due to speed and hand appearance). To illustrate some of
these challenges, Figure 2 shows a number of representative
frames from our data set. There can be a great deal of vari-
ability in fingerspelling the same letter, as illustrated in the
bottom row of Figure 2. In addition, many fingerpselled let-
ters have similar handshapes. For example, the letters a, s, t
and n are only distinguished by the position of the thumb, and
the letters r, u and v are all signed with the index and middle
fingers extended upward. The small differences among these
letters can be even harder to detect in typical lower-quality
online video with highly coarticulated fingerspelling, as seen
in the top row of Figure 2.

4. MODEL

Our approach to fingerspelling recognition consists of a sign-
ing hand detector followed by a sequence recognizer, illus-
trated in Figure 4.

Fig. 4. Sketch of our approach. After the hand detector com-
ponent, the rest of the model is trained end-to-end.

4.1. Signing hand detection

The hand detection problem here is somewhat different from
typical hand detection. A large proportion of the video
frames contain more than one hand, but since ASL finger-



spelling generally involves a single hand, the objective here is
to detect the signing hand. This can be viewed as a problem
of action localization [27]. As in prior work on action local-
ization [27], we train a detection network that takes as input
both the image appearance and optical flow, represented as a
motion vector for every pixel computed from two neighboring
frames [28].5 For the detection network, we adapt the design
of the Faster R-CNN object detector [30]. As in [30], the de-
tector is based on an ImageNet-pretrained VGG-16 network
[31, 32]. Unlike the general object detector, we only preserve
the first 9 layers of VGG-16 and the stride of the network is re-
duced to 4. Lower layers able to capture more fine details [33]
combined with finer stride/localization are beneficial for de-
tecting signing hands, which tend to be small relative to the
frame size.

Unlike much work in action localization [27], which pro-
cesses optical flow and appearance images in two distinct
streams, we concatenate the optical flow and RGB image as
the input to a single CNN. In our video data, motion involves
many background objects like faces and non-signing hands,
so a separate optical flow stream may be misleading.

Given bounding boxes predicted framewise by the Faster
R-CNN, we first filter them by spatial non-maxima suppre-
sion (NMS) [34], greedily removing any box with high over-
lap with a higher-scoring box in the same frame. Next, we
link the surviving boxes across time to form a video region
likely to be associated with a fingerspelling sequence, which
we call a “signing tube” (analogously to action tubes in ac-
tion recognition [35]). Even after NMS, there may be multi-
ple boxes in a single frame (e.g., when the signer is signing
with both hands). Our temporal linking process helps prevent
switching between hands in such cases. It also has a smooth-
ing effect, which can reduce errors in prediction compared to
that based on a single frame.

More formally, the input to the signing tube prediction
is a sequence of sets of bounding box coordinate and score
pairs: {(b1t , s1t ), (b2t , s2t ), ..., (bnt , snt )}, 1 ≤ t ≤ T , produced
by the frame-level signing hand detector. The score sit is the
probability of a signing hand output by the Faster R-CNN.
We define the linking score of two boxes bit and bjt+1 in two
consecutive frames as:

e(bit, b
j
t+1) = sit + sjt+1 + λ ∗ IoU(bit, b

j
t+1) (1)

where IoU(bit, b
j
t+1) is the intersection over union of bit and

bjt+1 and λ is a hyperparameter that is tuned on held-out data.
Generation of the optimal signing tube is the problem of find-
ing a sequence of boxes {bl11 , ..., b

lT
T } that maximizes the se-

quence score, defined as

E(l) =
1

T

T−1∑
t=1

e(bltt , b
lt+1

t+1 ) (2)

5For optical flow we use the OpenCV implementation of [29].

This optimization problem is solved via a Viterbi-like dy-
namic programming algorithm [36].

4.2. Fingerspelling sequence model

We next take the signing tube, represented as a sequence
of image patches {I1, I2, ..., IT }, as input to a sequence
model that outputs the fingerspelled word(s) w. We work in
a lexicon-free setting, in which the word vocabulary size is
unlimited, and represent the output w as a sequence of letters
w1, w2, ..., ws. The model begins by applying several convo-
lutional layers to individual image frames to extract feature
maps. The convolutional layers transform the frame sequence
{I1, I2, ..., IT } into a sequence of features {f1, f2, ..., fT }.

The sequence of image features {f1, f2, ..., fT } is then fed
as input to a long short-term memory recurrent neural net-
work (LSTM) [37] that models the temporal structure, pro-
ducing a sequence of hidden state vectors (higher-level fea-
tures) {e1, e2, ..., eT }. Given the features produced by the
LSTM, the next step is to compute the probabilities of the let-
ter sequences w1, w2, ..., ws. We consider two approaches
for decoding, neither of which requires frame-level labels at
training time: an attention-based LSTM decoder, and con-
nectionist temporal classification (CTC) [38]. In the former
case, the whole sequence model becomes a recurrent encoder-
decoder with attention [39].

In the attention-based model, temporal attention weights
are applied to (e1, e2, ..., eT ) during decoding, which allows
the decoder to focus on certain chunks of visual features when
producing each output letter. If the hidden state of the decoder
LSTM at timestep t is dt, the probability of the output letter
sequence is given by

αit = softmax(vTd tanh(Weei +Wddt))

d′t =

T∑
i=1

αitei

p(wt|w1:t−1, e1:T ) = softmax(Wo[dt;d
′
t] + bo)

p(w1, w2, . . . , ws|e1:T ) =
s∏
t=1

p(wt|w1:t−1, e1:T )

(3)

where dt is given by the standard LSTM update equations
[37]. The model is trained to minimize log loss.

In the CTC-based model, for an input sequence of m-
dimensional visual feature vectors e1:T , we define a contin-
uous map Nw : (Rm)T 7→ (L′)T representing the transfor-
mation from m-dimensional features e1:T to frame-level la-
bel probabilities and a many-to-one map B : L′

T 7→ L≤T

where L≤T is the set of all possible labelings. Letting L be
the output label vocabulary, L′ = L ∪ {blank}, and ytk the
probability of label k at time t, the posterior probability of
any labeling π ∈ L′T is

p(π|e1:T ) =
T∏
t=1

ytπt
=

T∏
t=1

softmaxπt
(Aeet + be) (4)



At training time, the probability of a given labeling w =
w1, w2, ..., ws is obtained by summing over all the possible
frame-level labelings π, which can be computed by a for-
ward/backward algorithm:

p(w|e1:T ) =
∑

π∈B−1(w)

p(π|e1:T ) (5)

The CTC model is trained to optimize this probability for the
ground-truth label sequences.

Finally, in decoding we combine these basic sequence
models with an RNN language model. To decode with a lan-
guage model, we use beam search to produce several candi-
date words at each time step and then rescore the hypotheses
in the beam using the summed score of the sequence model,
weighted language model, and an insertion penalty to balance
the insertion and deletion errors. The language model weight
and insertion penalty are tuned.

5. EXPERIMENTS

All of the experiments are done in a signer-independent,
lexicon-free (open-vocabulary) setting using the data set and
partitions described in Section 3.

Evaluation We measure the letter accuracy of predicted
sequences, as is commonly used in sign language recognition
and speech recognition: Acc = 1 − S+I+D

N , where S, I and
D are the numbers of substitutions, insertions, and deletions
(with respect to the ground truth) respectively, and N is the
number of letters in the ground-truth transcription.

Hand detection details We manually annotated every
frame in 180 video clips from our training set with signing
and non-signing hand bounding boxes.6 Of these, 123 clips
(1667 frames) are used for training and 19 clips (233 frames)
for validation. All images are resized to 640×368×3. We use
stochastic gradient descent (SGD) for optimization, with ini-
tial learning rate 0.001 and decreased by a factor of 2 every 5
epochs. We apply greedy per-frame NMS with intersection-
over-union (IoU)7 threshold of 0.9, until 50 boxes/frame
remain. The bounding boxes are then smoothed as described
in Section 4.1. λ is tuned to 0.3, which maximizes the pro-
portion of validation set bounding boxes with IoU > 0.5.
Using our bounding box smoothing approach, the proportion
of bounding boxes with IoU > 0.5 is increased from 70.0%
to 77.5%.

Letter sequence recognition details The input to the rec-
ognizer is a bounding box of the predicted signing hand re-
gion. All bounding boxes are resized to 224 × 224 before
being fed to the sequence model. For the convolutional lay-
ers of the sequence model, we use AlexNet [40] pre-trained

6The non-signing hand category is annotated in training to help the detec-
tor learn the distinction between signing hands, other hands, and background;
once the detector is trained we ignore the non-signing hand category, and only
use the signing hand detections.

7IoU is the ratio of the area of overlap over area of union of two regions.

on ImageNet as the base architecture.8 For the recurrent net-
work, we use a single-layer long short-term memory (LSTM)
network with 600 hidden units. (A model with more recur-
rent layers does not consistently improve performance.) The
network weights are learned using mini-batch stochastic gra-
dient descent (SGD) with weight decay. The initial learning
rate is 0.01 and is decayed by a factor of 10 every 15 epochs.
Dropout with a rate of 0.5 is used between fully connected
layers of AlexNet. The batch size is 1 sequence in all ex-
periments. The hyperparameters were tuned to maximize the
dev set letter accuracy. The language model is a single-layer
LSTM with 600 hidden units, trained on the letter sequences
in our training set.

5.1. Main results
Table 1 shows the performance of our models (“Hand”)
using the cropped hand region as input to the sequence
model, as well as of a baseline model (“Global”) with the
same sequence model architecture but without hand detection
(i.e., taking the whole image as input). This baseline model
is based on commonly used approaches for video descrip-
tion [41]. For the Global baseline, image frames are resized
to 224 × 224 due to memory constraints. We also report the
result of a “guessing” baseline (“LM”) that predicts words
directly from our language model. This baseline only uses
statistics of fingerspelled letter sequences, uses no visual in-
put for prediction, and always predicts the output of a greedy
decoding of the language model.

The Global baseline outperforms the language model
baseline by a small margin, suggesting that the full-image
model is unable to use much of the visual information. Com-
pared to the baseline, our approach with hand detection per-
forms much better. The hand detection step both filters out
irrelevant information (e.g. background, non-signing hand)
and allows us to use higher resolution image regions. CTC-
based models consistently outperform the encoder-decoder
models on this task. Since fingerspelling sequences are ex-
pected to have largely monotonic alignment with the video,
this may benefit the simpler CTC model.

Human performance Although we do not have a precise
measure of human performance,9 we estimated it informally
in the following way. We took a small set of (153) finger-
spelling sequences that were located and labeled by one anno-
tator who had access to the full videos as usual. Another an-
notator then labeled the fingerspelling sequences only, with-
out access to the surrounding video. Relative to the first an-
notator, the second annotator had a letter accuracy of 82.7%.
We do not have this measure on our full test set, and did not
carefully control for the order of presentation of the data to

8A deeper network like VGG cannot be used due to the memory require-
ments introduced by its small stride.

9Inter-annotator agreement is not a good measure, since the annotators see
the entire video surrounding each fingerspelled sequence, while the automatic
recognizers see only the fingerspelled sequence.



Table 1. Letter accuracies (%) for the language model and
global baseline models and our hand detector-based models.

LM
Global
enc-dec

Global
CTC

Hand
enc-dec

Hand
CTC

Test Acc (%) 9.4 12.7 10.0 35.0 41.9

Table 2. Percentage of several important substitution error
pairs on the development set. For a given label pair (x1 →
x2), this is the percentage of occurrences of the ground-truth
label x1 that are recognized as x2.

(u→ r) (o→ e) (y→ i) (w→ u) (j→ i)
% 17.0 11.7 7.9 7.6 6.7

the annotator; but this provides a rough idea of the difficulty
of the task for humans.

Additional model variants Besides the proposed model,
we also considered a number of variants that we ultimately
rejected. The bounding boxes output by the hand detector fail
to contain the whole hands in many cases. We considered en-
larging the predicted bounding box by a factor of s in width
and height before feeding it to the recognizer. In addition, we
also considered using optical flow as an additional input chan-
nel to the sequence model (in addition to the hand detector),
since motion information is important in our task.

We find that neither of these variants consistently and/or
significantly improves performance (on the dev set) compared
to the baseline with s = 1 and no optical flow input. Thus we
do not pursue these model variants further.

Error analysis The most common types of errors are
deletions, followed by insertions. The encoder-decoder
model makes more insertion errors and fewer deletion er-
rors than the CTC model, that is its error types are more
balanced, but its overall performance is worse. The most
common substitution pairs for the CTC model are (u→ r), (o
→ e), (y → i), (w → u), (y → i) and (j → i) (see Table 2).
(u→ r), (y→ i) and (w→ u) involve errors with infrequent
letters, which may be due to the relative dearth of training
data for these letters. The pair (j → i) is interesting in that
the most important difference between them is whether the
gesture is dynamic or static. Compared to studio data, the
frame rates in our data are much lower, which may make
it more difficult to distinguish between static and dynamic
letters with otherwise similar handshapes.

Since deletions are the most frequent error type, apply-
ing an insertion/deletion penalty is one possible way to im-
prove performance. Using such a penalty produces a negligi-
bly small improvement, as seen in Table 3.

To measure the impact of video quality on performance,
we divided the dev set into subsets according to the frame
rate (FPS) and report the average error in each subset (see
Figure 5). In general, higher frame rate corresponds to higher
accuracy.

Effect of the language model Next we consider to what
extent the language model improves performance. It is not
clear how much the language model can help, or what training

Fig. 5. Development set accuracy for sequences with different
frame rates (FPS) for our CTC and encoder-decoder models.

Table 3. Development set letter accuracies (%) when decod-
ing with a language model (lm: LM trained with words from
our training set, beam: beam search, ins: insertion penalty, no
LM: greedy decoding).

no LM + beam
+ beam
+ ins

+ beam
+ ins +lm

CTC 41.1 41.1 41.4 42.8
Enc-dec 35.7 35.8 35.9 36.7

material is best, since fingerspelling does not follow the same
distribution as English words and there is not a great deal of
transcribed fingerspelling data available. In addition to train-
ing on the letter sequences in our own training set, we also
consider training on all words in the CMUdict (version 0.7a)
dictionary [42], which contains English words and common
names, and no improvement was found. The development
set perplexity of our LM trained with in-house data is 17.3.
Since the maximum perplexity is 32 (31 characters plus end-
of-sequence), this perplexity reflects the difficulty of learning
the statistics of fingerpselled letter sequences. We also exper-
imentally check the effect of the insertion penalty and beam
search. The beam size, language model weight, and inser-
tion penalty are tuned and the best development set results
are given in Table 3. Using a language model, the accuracy is
improved by a small margin (∼1%).

6. CONCLUSION

This work has studied for the first time the recognition of
ASL fingerspelling in naturally occurring online videos. Our
newly collected data set includes a variety of challenging vi-
sual conditions. We have seen that a purpose-built hand de-
tector, with smoothing over time, is very helpful. The best
test set letter accuracies we obtain, using a CTC-based recog-
nizer, are around 42%, indicating that there is room for much
future work. Although our data set is the largest fingerspelling
data set to our knowledge, it is still much smaller than typical
speech recognition corpora, and we are continuing to collect
additional online video data.
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