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ABSTRACT

Joint optimization of multi-channel front-end and automatic speech
recognition (ASR) has attracted much interest. While promising re-
sults have been reported for various tasks, past studies on its meet-
ing transcription application were limited to small scale experiments.
It is still unclear whether such a joint framework can be beneficial
for a more practical setup where a massive amount of single chan-
nel training data can be leveraged for building a strong ASR back-
end. In this work, we present our investigation on the joint modeling
of a mask-based beamformer and Attention-Encoder-Decoder-based
ASR in the setting where we have 75k hours of single-channel data
and a relatively small amount of real multi-channel data for model
training. We explore effective training procedures, including a com-
parison of simulated and real multi-channel training data. To guide
the recognition towards a target speaker and deal with overlapped
speech, we also explore various combinations of bias information,
such as direction of arrivals and speaker profiles. We propose an
effective location bias integration method called deep concatenation
for the beamformer network. In our evaluation on various meeting
recordings, we show that the proposed framework achieves a sub-
stantial word error rate reduction.

Index Terms— Meeting transcription, end-to-end multi-channel
ASR, target-speaker ASR, bias information

1. INTRODUCTION

Meeting transcription with speaker annotation is one of the challeng-
ing tasks in automatic speech recognition (ASR) field [11 12, 3]. It is
difficult not only because of its natural conversational content but
also because of complicated acoustic conditions often with speaker
overlaps [4, 15| 16]. To improve the model robustness in challeng-
ing acoustic conditions, multi-channel front-end speech processing
is often introduced to separate target speaker signals from the back-
ground noise, reverberation and interfering speakers [2].

One of the common approaches for ASR front-end processing is
time-frequency mask-based beamforming by using a mask estima-
tion network [[7, 8, (9, [10} [11} [12]. It has shown promising results in
various ASR benchmarks, such as AMI [13] and CHiME challenges
[[14, [15) [16]. However, the mask estimation network is normally
trained by using simulation data in order to prepare an accurate ref-
erence mask, leading to potential mismatch problems for real data.
Furthermore, the network is often trained by optimizing a signal-
level criterion, which is not necessarily optimal for ASR.

Recent studies suggest that joint optimization of multi-channel
front-end and ASR can yield better recognition results than sequen-
tial processing scheme with separately optimized front-end and ASR
modules [[17} 18} [19, 20, 21} 22]. With the joint optimization ap-
proach, all modules are connected in one computational graph and
trained by back-propagating the ASR training loss to ensure optimal

ASR performance (for the training set). The joint optimization also
enables us to leverage transcribed real data for which reference clean
signals are unavailable. This is advantageous for large scale training,
as the signal level reference is usually extremely difficult to collect
for real data compared with transcription. It would also help reduce
the mismatch of training and testing conditions.

While the joint optimization approach is promising, previous
studies on meeting (or more broadly conversation) transcription were
either all conducted on simulated [23]], small-scale data [17, |18\ [24],
or did not particularly emphasize the capability to deal with over-
lapped speech [4}25]. This is because acquiring accurate transcrip-
tion for multi-channel meeting recordings is much more difficult
than doing so for voice commands or other single-speaker dictation
tasks. On the other hand, it is relatively easy to collect single-channel
audio as the ASR training data. Therefore, it is practically important
to explore the joint front-end and back-end modeling with a mas-
sive amount of single-channel training data and a limited amount of
multi-channel training data. However, to the best of our knowledge,
there has still been no exploration in this direction, especially with a
scale of 75k hours of training data as is done in this paper.

Besides the joint modeling of front-end and back-end, due to
the long recording nature in meetings, it is feasible for meeting tran-
scription systems to leverage long context information that would
help extract a target speech from overlapped sentences [2|]. For in-
stance, the direction of arrival (DOA) information can be encoded as
angle features to get time-frequency masks that are biased toward the
target speaker direction to reconstruct the targer signal from the mix-
ture [26]]. The speaker embeddings could also be utilized to make the
mask estimator biased to the target speaker [20, 27} [28]]. Compared
with the blind separation approach, target speech recognition does
not have the permutation problem and thus could potentially lead to
better result.

In this work, we describe our investigation on the effectiveness
of an end-to-end multi-channel ASR (E2E MCASR) for meeting
transcription under the condition that we leverage a massive amount
of single-channel data for the back-end training while the multi-
channel training data is still limited. The front-end and back-end
models are then jointly optimized, which takes a multi-channel sig-
nal as input and outputs the word sequence of a target speech. We
firstly review several key techniques, including mask-based beam-
forming, the usage of multi-channel features, Attention-Encoder-
Decoder (AED)-based ASR, and joint training of these models. We
then introduce bias information in the front-end module to further
enhance the joint models for meeting transcription. We also explore
a session-based semi-blind decoding strategy in which the bias in-
formation can be accurately estimated, where the SSL and speaker
profile extraction can be simply replaced by online approaches. In
our evaluation on various meeting recordings, we show that the pro-
posed framework achieves substantial word error rate reduction.
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Fig. 1. The E2E MCASR framework for meeting transcription. (a) The AED-based ASR trained with single-channel data; (b) Joint front-
end/back-end model trained with multi-channel meeting data and bias information, where the details of each module are presented within the
dotted lines; (c) Session-based decoding strategy for target-speaker ASR.

2. E2E MCASR FRAMEWORK

Figure [T shows how we leverage the E2E MCASR framework for
the meeting transcription task. The framework consists of several
modules.

2.1. Front-end module
2.1.1. Neural Beamforming

The neural beamformer is defined with parameter s as follows:
O = Beamformer(X; 6y), (1)

where O and X denote the beamformed and noisy short-time Fourier
transform (STFT) of signals for all frames and frequency bins, re-
spectively. For beamforming, which converts the multi-channel sig-
nals x(¢, f) € X (¢, f are time and frequency bin indexes, respec-
tively) to single-channel beamformed signal o(t, f) € O

o(t, f) = WII\{/IVDR(f)X(ty 0, 2

time-invariant minimum variance distortionless response (MVDR)
beamformer wyvpr ( f) in the frequency domain has been employed.
Mathematically, the MVDR filter can be calculated with the follow-
ing formula

_ ()R
Te(En(f) " @s(f))

where u € {0, 1}* is a one-hot vector to choose a reference micro-
phone [29]|. Tr(-) denotes the trace operation. ®n(f) and ®s(f) de-
note the power spectral density (PSD) matrices of noise and speech
at frequency bin f, respectively, which are calculated by
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®,(f) =D My(t, f)d(t, f)d"(t, f) where v € {S,N}  (4)

t=1

Speech mask Ms(t, f) € [0, 1] and noise mask Mx(¢t, f) € [0,1]
are estimated by applying a bidirectional long short-term memory
(BLSTM)-based network to each microphone. The masks are then
averaged over the microphone channels for PSDs estimation. Note

that a two-head (speech head and noise head) training scheme has
been employed [8]][9], where both speech masks and noise masks
are estimated. The respective masks indicate the time-frequency bins
that are dominated by speech and noise. The advantage of the two-
head training scheme is that the BLSTM network has been given ad-
ditional hints for better learning the relationship between the speech
mask and noise mask, potentially leading to better mask predictions.

2.1.2. Unbiased multi-channel features

Multi-channel features have been shown effective for the front-end
network. In [19, 21} 22], the spectrum of M -channel signals were
fed into the mask estimation network (referred to as STFT features
in this work). In [6,120]], the authors utilized inter-microphone phase
difference (IPD) features to capture the spatial pattern from a multi-
channel input, and observed a significant performance boost in both
speech separation and recognition tasks. The IPD features can be
calculated by

xi(tvf)
xl(tv f)

where £ outputs angle of the input argument, M denotes the number
of the microphones, ¢ is the microphone index. Utterance-wise nor-
malization [26] is applied before the IPD features are concatenated
with the STFT features. Unlike the work of [20], we concatenate
the IPD features calculated with respect to the first microphone to
the STFT of each channel, which are fed to the mask estimation
network. This results in multiple mask estimates, which are then
averaged across the channels.

IPD;(t, f) = £

i=2,.., M, )

2.2. Joint front-end and ASR via feature transformation layer

In the joint front-end and back-end training scheme, the signal is
processed by the front-end and back-end layers sequentially, where
a feature transformation layer is applied that maps the beamformed
output from front-end layers to log mel filterbanks. Considering that
back-end ASR usually takes multiple contextual frames as the input,
the frame-based STFT feature is stacked in the feature transforma-
tion layer as follows,

Op = Frame2Superframe(LogMel(]|O|), P), (6)



where P is the number of frames to be stacked. Finally, global mean-
variance normalization (GMVN) is applied on top of the stacked fil-
terbank features Op to derive the input O = {0, ..., or} for back-
end ASR, which is )

O = GMVN(Op), @)

where the mean and variance vectors are obtained from the single-
channel data for back-end training rather than the multi-channel
training data.

We select to combine the front-end and back-end via the feature
transformation layer in order to fully utilize both single-channel and
multi-channel training data. The details of the training scheme will
be explained in Section 4]

2.3. AED-based ASR

The AED-based ASR consists of encoder, attention, and decoder
modules. The AED model follows three steps to generate text se-

quence Y = {y1, ..., Yn, ... } given acoustic feature 0= {o1,...,07}.

Firstly, the encoder module converts the input sequence O into a se-
quence of embeddings H ",

H = {hi{",...,h7"“} = Encoder(O). 8)

Then, for every decoder step n, the attention module outputs context
vector ¢, with attention weight «,, given decoder state vector gn,
the previous attention weight o, —1, and H "¢ as follows,

Cn, o, = Attention(gn, an—1, H"). 9)

Finally, the output distribution y,, is estimated given the context vec-
tor ¢,, and the decoder state vector g, as follows,

gn = DecoderRNN (yn—1, Cn—1, qn—1), (10)
yn = DecoderOut(c,, g). (11

The DecoderRNN consists of several RNN layers and an
affine transform followed by a softmax output layer are used for
DecoderOut. The model is trained to minimize the cross entropy
loss between Y and reference label R = {ri,...,Tn,"N+1 =
(eos)} as follows

N4+1

L£9% =" CE(yn, ), (12)
n=1

where CE() denotes the cross entropy function, N is the number of
symbols in the reference R, and (eos) is the special symbol indicat-
ing the end of a sentence.

3. E2E MCASR WITH TARGET BIAS INFORMATION

The bias information, such as locations of attendees in the meet-
ing [26] and attendees’ profiles [20L 130], guides the framework
towards target speech recognition, and is shown effective in both
separation and recognition task. We incorporate the additional infor-
mation for each target speaker to further improve the E2E MCASR
system in this work. In meeting scenario, both location and speaker
bias can be formed by averaging statistics from long recording
with the help of diarization algorithms. For example, from the di-
arization system [2], we can robustly identify the active region for
each speaker, from which we can roughly estimate the location and
speaker embedding by the sound source localization and speaker
identification systems, under the assumption that the speakers don’t
move frequently during the meeting.

3.1. Location bias in model training
3.1.1. Angle feature

We use angle feature [26] as spatial bias in this work. The angle
feature is calculated by the cosine distance between the steering vec-
tor that derived from DOA [31] and the complex spectrum of each
channel that is normalized by the first microphone or the IPD on all
selected microphone pairs, as suggested in Eqn.(T3).

A(tvf) =

(YTt f)

ez(ﬁ%,izz...,m (13)
‘ei(f) z;“,f) ‘

where e;( f) is the steering vector for target speaker at microphone i
and frequency f.

The target DOA for angle feature extraction is estimated by us-
ing the maximum likelihood sound source localization algorithm
[32] with a 3° resolution.

During testing, following [26]], an additional pre-masking step is
applied in the decoding stage to increase the discrimination resolu-
tion between the target speaker and the others in the same meeting
session. This step has one more assumption that the DOAs from all
the other attendees are known. In this work, we use the session-based
DOA estimation for each speaker. Then the pre-masking is applied
to angle feature which is obtained using the target DOA. The new
angle feature At’ ¢ used for decoding is

A(tv f) = A(t7 f) * Relu(Sign(A(tv f) - An(tv f)))7 (14)

where the Relu(Sign(e)) function outputs 0 if the input is negative
and 1 otherwise. A" is angle features derived from the other speak-
ers with different locations. Eqn.(T4) means the time-frequency bins
dominated by other speakers are set to zero, motivated by the spar-
sity property of speech spectrogram. Here, we restrict |[DOA(A) —
DOA(A™)| > 6, which means we only remove the bins that are
dominated by the speakers whose directions with respect to the tar-
get speaker are larger than angle 6. Empirically, we set it to 30°
(overall 360°) in the meeting transcription experiments.

3.2. Speaker bias in model training

The speaker information is also used as a biased feature for E2E
MCASR in this work. However, compared to location information
that all the directions can be covered in the training set, the speak-
ers in testing phase may be unseen, e.g. the attendee does not have
profiles or was not invited to the meeting.

A d-vector extractor trained on VoxCeleb Corpus [33}34] is em-
ployed in this work [35]. A 128-dim d-vector is extracted from the
first channel of the multi-channel audios and concatenated with each
channel’s input features of the mask estimation network, illustrated
by Fig[I|b). The d-vector extractor is a universal auxiliary network
that provides additional speaker information for learning the masks
of target speech. The reason that we use d-vector is because accurate
speaker profiles or speaker anchors [20l [27]] are not always available
in the real meetings.

3.3. Deep concatenation

Indicated by Fig[T|b), we can concatenate the input of the mask es-
timation network with the same angle feature/d-vector, where the
operation is similar to the IPD feature. Alternatively, the bias fea-
ture can be concatenated to the embedding, which is the output of



the first layer of the mask estimation network. We name it deep con-
catenation in this work and refer to regular feature concatenation as
shallow concatenation.

It is inspired by the SpeakerBeam work that allows tracking
speech from a target speaker using a speaker adaptation layer [27,
30]. Simply using the biased feature at the input level realizes the
bias at the input layer, while the input layer bias can be eliminated
because the input layer also has to encode the other features, e.g.
unbiased IPD feature, which is insufficient to guide the network to
focus on the target speech. This operation is simple yet effective for
target speech recognition, especially in the overlapped regions.

3.4. Session-based bias estimation

Transcribing the speeches of the target speaker can be successfully
achieved by knowing the DOA and d-vector in advance. Due to
that, the joint model is designed for offline meeting transcription,
session-based bias information is valuable in this case. Given the
ground-truth diarization, we use the longest non-overlapped segment
in a specific meeting session to extract the DOA and d-vector for
each speaker, then apply this bias information to all the segments
in the same session. An implicit assumption is that all the speakers
in the session are not moving frequently, which is usually the case
in real meetings. The reason we would like to use this information
is to simplify the procedures in decoding and evaluate how the E2E
MCASR performs given the almost accurate bias information. In a
meeting scenario, both the DOA and d-vector of the target speaker
can be tracked online via diarization or auxiliary cameras [2].

4. MEETING TRANSCRIPTION EXPERIMENT

4.1. Single-channel training data for AED-based back-end

The training set for the AED-based model is 75 thousand (K) hours
of single-channel transcribed data, recorded in various conditions.
Both close-talking and far-field data were included in this training
set, hence it also included non-meeting data.

4.2. Multi-channel training data

We used 165 sessions of real meeting data to train the front-end
module. The meetings were recorded by using a 7-channel circu-
lar microphone array with one microphone in the center, as well
as attendee-wise head-worn close-talking microphones. Hence, we
were able to obtain two training sets with the same speech content - a
real multi-channel set and a multi-channel set simulated from single-
channel close-talking data. Note that the 60-hour close-talking seg-
ments were also included in 75K data for AED training. Information
of these training sets is summarizezd in Table[T}

4.2.1. Real meeting data

Considering the fact that even humans sometimes find it difficult
to accurately transcribe overlapped speech in meeting recordings,
the data (60 hours, denoted by Real) we used for training only con-
tained non-overlap regions, which provided us with accurately seg-
mented and labeled multi-channel audio data. Furthermore, to sup-
port the purpose of overlapped speech extraction, we generated an-
other 60-hour overlapped data (denoted by Real+) on top of the non-
overlap one. Specifically, we classified the segments according to the
speaker labels in each meeting session at first. Given each segment,
we randomly chose an interference segment from another speaker
in the same session, then got a random overlap ratio (1-100%) and

Table 1. Training and evaluation data used for our meeting tran-
scription experiments.

Training set
for Back-end
for Joint Model

75K hours, single-channel

165 meeting sessions -

Simu: 60 hours, 7-channel, simulation, non-overlapped
Real: 60 hours, 7-channel, real, non-overlapped
Real+: 60 hours, 7-channel, generated by mixing Real
(Eval 1)

9 real meetings

Evaluation Set 1
Num. of Sessions
Overlap condition 28,690/ 8,041 words in non-overlapped / overlapped segments
Speakers

Evaluation Set 2

Num. of Sessions

4-17 attendees, unseen in training
(Eval 2)

22 real meetings

Overlap condition 46,774 / 69,200 words in non-overlapped / overlapped segments

Speakers 3-15 attendees, no restriction on the seen / unseen assumption

trimmed this segment based on the interference duration, calculated
by the overlap ratio and length of the segment to be mixed. Finally,
we simply added this trimmed multi-channel interference signal to
the segment to be mixed.

In this way, we manually generated another 60-hour overlapped
data, while keeping the original transcription for each segment. The
only assumption for this overlapped set is the voices’ images from
different speakers at the microphone array position are additive. It is
much closer to what the real overlapped speech would be like than
purely simulated multi-channel signals which we will describe in the
following section.

4.2.2. Simulated meeting data

Given the close-talking utterances with meeting session ids as well
as the corresponding speaker label, we also created 60 hours of sim-
ulated multi-channel audio (denoted by Simu) for training as with
the previous studies [20}127]. We tried to imitate the property of the
multi-channel meeting recordings to the extent possible. Our simu-
lation procedure was as follows,

1. For each meeting session (165 sessions in total), we counted
the number of speakers;

2. We then randomly set the room size, length x width x height,
within [4, 10]mXx[4, 10lmXx[2, 5]m and the reverberation
time, RT60, between 0.15ms and 0.6ms;

3. Assuming all the speakers did not move during the session,
we randomly picked a point to put the 7-channel microphone
array (with the same geometry as the real recording device)
at a [1.0, 1.5]m height. We also randomly determined the
speakers’ positions under the constraint that the speaker-to-
array distance was 1.0m or greater;

4. The room impulse responses (RIR) between the speakers and
the microphone array were derived with the image method
[36] and then applied to the corresponding speakers’ close-
talking segments;

5. 7-channel diffuse noise signals were added to the reverber-
ated signals with a signal-to-noise ratio (SNR) between -5d B
to 10dB. Finally, the simulated 7-channel signals were nor-
malized to a certain volume.

4.3. Evaluation data

We evaluated the proposed method on 31 real meeting recordings,
the statistics of which are presented in Table [ According to the



recording conditions, they were divided into Eval 1 and Eval 2,
which contains the recordings of 9 sessions and 22 sessions, respec-
tively. We used the reference start and end time of each utterance
to extract evaluation segments, and each segment was categorized
to either a non-overlapped or overlapped segment based on the ab-
sence or presence of speech of interference speakers. Note that we
used the reference start and end time for our evaluation in order to
evaluate the effectiveness of joint modeling without being affected
by segmentation errors. In actual applications, segmentation will be
done by using speaker diaraztion [2].

The non-overlap/overlap distribution of Eval 1 is similar to the
validation set we used to train the front-end module and the speak-
ers in Eval 1 were unseen in the 60-hour training set. However, we
did not have such speaker unseen restrictions for Eval 2 (more com-
mon in real applications), though the overlap ratio of which is higher
than Eval 1. Before decoding, we applied weighted prediction error
(WPE) [37] to dereverbrate the multi-channel signals.

4.4. Model architecture and training procedure

Given that the size of the multi-channel training data is much smaller
than that of the single-channel data, we applied a two-step training
strategy. In stage-1, we used the 75k-hour of single-channel data
to train only the AED-based back-end; then in stage-2, the front-
end module was appended to the network, and the parameters of
the front-end module were updated by using the multi-channel data.
The configurations of each module and training parameters are as
follows.

4.4.1. Stage-1: Training AED-based back-end

The AED consisted of 6 layers of 1024-dim bi-directional gated re-
current unit (GRU). Layer normalization was applied between the
GRU layers. The decoder had 2 layers of 1024-dim uni-directional
GRU. A conventional location-aware content-based attention with a
single head was used [38]].

The input feature for AED was 240-dimension log mel filter-
banks, stacked by 3 frames with each frame having 10 msec. Global
mean and variance normalization was applied to the features be-
fore feeding the features to the encoder. We used 32K mixed-unit
with (space) symbol between words as recognition units [39]. Both
teacher forcing [40] and label-smoothed cross-entropy loss [41] were
applied in training. The batch size was 2500 frames and 64 GPUs
were used. Both non-overlap and overlap as well as the overall seg-
ments were evaluated for each meeting session. Weighted average
WERs for Eval 1 and Eval 2 were used as the performance metric
to measure the effectiveness of each approach. Note that we didn’t
well fine-tune the training strategy for this back-end single-channel
ASR model as we just used it as seed and baseline.

4.4.2. Stage-2: Jointly training the front-end

The front-end module, specifically the mask estimation network,
consisted of 2 BLSTM layers with each layer having 300 units. The
front-end module was concatenated with the AED-based back-end
via the feature transformation module which mapped the 257-
dimension beamformer output to the 240-dimension log mel fil-
terbanks. The input feature of the baseline front-end module was
257-dimension Short-time Fourier transform (STFT) of the multi-
channel audios, concatenated with the IPD features which were cal-
culated based on the microphone pairs ” (1, 0), (2, 0), (3,0), (4,0),
(5,0), (6,0)” - center microphone was used as the reference for the

Table 2. Baseline and WER(%) comparisons using simulated or real
data for front-end training.

System Training Data Feature Non-overlap  Overlap  Overall
(Eval 1)

AED-ASR 75K FBANK 17.79 34.37 21.42
E2E-MCASR  75K&Simu 7-ch STFT 16.61 31.46 19.86
E2E-MCASR 75K&Real 7-ch STFT 14.22 2542 16.67
E2E-MCASR 75K&Real +IPD 1441 24.95 16.72

(Eval 2)

AED-ASR 75K FBANK 15.59 30.40 24.42
E2E-MCASR  75K&Simu 7-ch STFT 14.96 28.64 23.12
E2E-MCASR 75K &Real 7-ch STFT 13.99 25.23 20.70
E2E-MCASR 75K&Real +IPD 14.04 24.58 20.31

Table 3. WER (%) of E2E MCASR with different proportions of
overlapped segments in the training set. The training data is ran-
domly sampled from Real (non-overlapped) and Real+ (overlapped)
under a constraint of the total data size. (NO: Non-overlap, OL:
Overlap, All: Overall)

Total data Ratio (%) of Eval 1 Eval 2
size (h) overlapped segments NO/OL/All NO/OL/All
60 0 14.41/24.95/16.72  14.04/24.58 /20.31
60 30 14.36/23.45/16.35 14.17/23.90/19.98
60 60 14.44/22.59/16.22  14.17/23.76 / 19.90
60 1007 14.17/22.48/15.99 14.26/23.95/20.04
120 50 14.33/22.65/16.16  14.05/23.85/19.90

TNote: the 100% overlapped segments still contain non-overlapped regions,
overlap ratio of each segment ranges from 1% to 100%.

rest. The IPD features appended to the 7-channel STFT features
were the same, which resulted in the feature dimension of each
channel expanded from 257 to (1 + 6) * 257.

Given the back-end with parameters frozen that was trained in
Stage-1, the front-end module of the joint model was trained using
the Adam optimizer with a learning rate schedule similar to that de-
scribed in [42]. The learning rate was linearly increased from O to
0.0001 by using the initial 1k iterations, kept until the 120k-th iter-
ation, then exponentially decaying to 0.00001 at 240k iterations. In
this work, we report the results of validation best models found after
200k of training iterations. The minibatch was 3000 frames, and 8
V100 GPUs were used for all the trainings.

4.5. Simulated v.s. real multi-channel training data

Table 2] shows the WERs of the E2E MCASR models that were
trained on simulated data or real data. We can make the following
observations.

* When the model was trained on the multi-channel STFT fea-
tures derived from the simulated meeting data, the overall
WERs for Eval 1 and Eval 2 got improved from 21.42% to
19.86% and from 24.42% to 23.12%, respectively. The im-
provement was observed but limited due to the mismatch be-
tween training and testing.

* When the real data were used for the training, the WERSs were
substantially improved to 16.67% and 20.70% for Eval 1 and
Eval 2, respectively. This implies that a substantial difference
existed between the real and simulated training. It also sug-
gests that the E2E MCASR could be sensitive to the mismatch
of the training/testing conditions, and it is important to utilize
the real training data even when the data quantity is limited.



Table 4. WERs(%) of E2E MCASR using different multi-channel training data, models and bias information. (shallow/deep represents

shallow/deep concatenation.)

Eval 1

Non-overlap / Overlap / Overall

Eval 2

Non-overlap / Overlap / Overall

14.41/24.95/16.72
14.20/24.11/16.37
14.23/23.61/16.28
14.38/24.03/16.49
14.41/24.08/16.53

14.04/24.58 /20.31
14.04/23.91/19.93
14.01/23.23/19.51
13.96 / 24.15 / 20.04
14.00/24.05 / 20.00

Training Data  Location bias ~ Speaker bias  Session-based
(Angle) (d-vector) Bias Info.
Real - - -
Real shallow - -
Real shallow - v
Real - shallow -
Real - shallow v
Real & Real+ - - -
Real & Real+ shallow - -
Real & Real+ shallow - v
Real & Real+ deep - v
Real & Real+ deep - + Pre-masking
Real & Real+ deep shallow T v
Real & Real+ deep shallow’ + Pre-masking

14.33/22.65/16.16
14.01/22.11/15.79
14.06/20.85/15.57
13.80/20.69/15.31
14.01/19.94/15.31
14.13/19.88/15.38
14.25/19.85/15.47

14.05/23.85/19.90
14.24/23.61/19.83
14.22/21.29/18.44
14.06/20.92/ 18.15
14.19720.24/17.79

14.09/20.61/17.98
14.33/19.96 / 17.69

T We didn’t apply deep concatenation for speaker bias because we observed degradation in our preliminary experiments.

e Unbiased IPD features marginally improved the WER for
overlapped regions while the WER for non-overlapped re-
gions was very slightly degraded.

4.6. Investigation of overlap proportion in training

To further improve the model capability to handle overlapped seg-
ments, we introduced the overlapped data Real+ for model training,
where the overlapped data generation was described in Sectiond.2.1}
Table[3]shows how the use of the overlapped data during training af-
fects the ASR performance, especially for the overlapped segments.

The baseline was the model trained on the original 60-hour
multi-channel data. When we increased the ratio of overlapped
segments to 30% in the 60-hour training data, we observed that the
WERs of overlapped segments got improved for both Eval 1 and
Eval 2. With further increasing the ratio to 60% or 100%, the gain
was marginal for Eval 2, but it was substantial for the overlapped
segments of Eval 1. It could be because the non-overlap to overlap
distribution of Eval 1 was more similar to that of the validation set.
Finally, when we simply joined Real and Real+ to form a 120-hour
training set, we obtained overall WERs of 16.16% for Eval 1 and
19.90% for Eval 2. These results were close to 60-hour training with
the data having 100% overlapped segments. It suggests that simply
duplicating the real data with the same content would not benefit
the E2E MCASR front-end training. Due to that the performances
of 120-hour training and 60-hour fully (100%) overlapped training
were on par, we just used the 120-hour set to train the model with
biased information in the following experiments, representing that
we have included overlapped segments in training.

4.7. Evaluation with bias information

Table H] shows the WERs of the E2E MCASR models with different
training sets and different kinds of bias information. Compared to
the model that was trained on the 60-hour non-overlap data (Real)
using unbiased features, shallowly concatenating the angle feature or
d-vector to the model could improve the ASR performance for both
Eval 1 and Eval 2. Greater WER reduction was observed for the
overlapped segments. When session-based decoding was applied,
the model with the location bias achieved additional gains thanks to
more accurate DOA estimation. Meanwhile, using a session-based
d-vector for each speaker did not show any superiority, which means

the d-vector is not sensitive to partially overlapped segments. Over-
all, it suggests that both location and speaker biases are helpful for
the E2E MCASR, especially for overlapped segments. The gain
from the location bias is larger than that from the speaker bias as
all directions can be covered in training.

Given the fact that the location bias yielded greater WER reduc-
tion, we continued investigation by using the angle-feature-based
joint model trained on Real&Real+ as the basis. The overall WERs
obtained by using the location bias for Eval 1 and Eval 2 were
15.57% and 18.44%, respectively, and were improved from 16.16%
and 19.90% obtained with the unbiased features. The deep concate-
nation of the location bias further reduced the WERs for both sets
(15.31% and 18.15%). Using the shallow-concatenated d-vector on
top of the deep concatenation of the angle feature yielded better
WERs for overlapped segments, as can be seen in the last two rows
of Table ] The extra pre-masking process greatly improved the
WERs for the overlapped segments, while it slightly degraded the
WERs for the non-overlapped segments. Applying pre-masking
benefited more for Eval 2 which had more overlapped segments. We
finally obtained the WERs of 15.47% for Eval 1 and 17.69% for
Eval 2 with the training and decoding strategies, suggested by Fig[l|
and the last row of Table

5. CONCLUSION

This work investigated application of E2E MCASR to offline meet-
ing transcription under practical settings. We started from an AED-
based baseline ASR model trained with 75k hours of single-channel
data, then improved the ASR performance of both non-overlapped
and overlapped segments. We presented a practical way for leverag-
ing a relatively limited amount of multi-channel data for joint front-
end/back-end training and examined the impact of using real multi-
channel training data. In addition, the ASR performance for over-
lapped segments was further improved by introducing the bias infor-
mation which helps the front-end module focus on target speakers.
Our meeting transcription experiment results showed that the frame-
work could largely benefit from the real data training and the use of
the bias information. 10+% relative WER reduction was observed by
replacing the simulation data with the real one. Overall, we achieved
27% relative WER reduction on real meeting recordings compared
with the strong single-channel model trained on the large quantity of
data.
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