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ABSTRACT

This paper proposes a novel online speaker diarization al-
gorithm based on a fully supervised self-attention mech-
anism (SA-EEND). Online diarization inherently presents a
speaker’s permutation problem due to the possibility to assign
speaker regions incorrectly across the recording. To circum-
vent this inconsistency, we proposed a speaker-tracing buffer
mechanism that selects several input frames representing the
speaker permutation information from previous chunks and
stores them in a buffer. These buffered frames are stacked
with the input frames in the current chunk and fed into a self-
attention network. Our method ensures consistent diarization
outputs across the buffer and the current chunk by checking
the correlation between their corresponding outputs. Ad-
ditionally, we trained SA-EEND with variable chunk-sizes
to mitigate the mismatch between training and inference
introduced by the speaker-tracing buffer mechanism. Ex-
perimental results, including online SA-EEND and variable
chunk-size, achieved DERs of 12.54 % for CALLHOME and
20.77 % for CSJ with 1.4 s actual latency.

Index Terms— Online speaker diarization, speaker-
tracing buffer, end-to-end, self-attention.

1. INTRODUCTION

With the recent advances in technology, audio-based hu-
man interaction systems are becoming quite popular. For
them to work correctly, it is crucial to provide relevant in-
formation about the speakers and the speech transcription.
Speaker diarization — which answers the question “who
speaks when”— is a crucial stage in the pipeline, since it can
locate speaker turns and assign speech segments to speakers.
Nowadays, speaker diarization has been widely studied in
different scenarios; for example, meetings [1, 2], call-center
telephone conversations [3, 4], and the home environment
(CHiME-5, CHiME-6) [5–7].

Currently, few speaker diarization systems can be applied
in practical scenarios because most of them work well only
under specific conditions such as long latency, no overlap, or
low noise level [8, 9]. An online speaker diarization system
with low latency is still an open technical problem. Online
speaker diarization outputs the diarization result as soon as

the audio segment arrives, which means no future information
is available when analyzing the current segment. In contrast,
in an offline mode, the whole recording is processed so that
all segments can be compared and clustered at the same time
[10].

State-of-the-art speaker diarization systems mostly con-
centrate on integrating several components: voice activity de-
tection, speaker change detection, feature representation, and
clustering [11, 12]. Current research focuses primarily on the
speaker model or speaker embeddings, such as Gaussian mix-
ture models (GMM) [10, 13], i-vector [14–16], d-vector [17,
18], and x-vector [19, 20], and on a better clustering method
such as agglomerative hierarchical clustering or spectral clus-
tering [19, 21–23]. The issue with these methods is that they
cannot directly minimize the diarization error because they
are based on an unsupervised algorithm. A supervised online
speaker diarization method UIS-RNN [12, 24] was proposed
while the method still assumes only one speaker in one seg-
ment (no overlapping).

To solve these issues, Fujita, et al. [25–27] proposed
an end-to-end speaker diarization system (EEND). Instead
of applying several separate independent modules, EEND
directly minimizes the diarization error by training a neu-
ral network using Permutation Invariant Training (PIT) with
multi-speaker recordings. The experimental results show
that the self-attention based end-to-end speaker diarization
(SA-EEND) system [26,27] outperformed the state-of-the-art
i-vector and x-vector clustering and long short-term memory
(LSTM) [25] based end-to-end method. Although SA-EEND
has achieved significant improvement, it is only working in
the offline condition which outputs speaker labels only after
the whole recording is provided.

This paper aims to extend offline SA-EEND to online
speaker diarization. First of all, we investigate a straightfor-
ward online extension of SA-EEND by performing diariza-
tion independently for each chunked recording. However, this
straightforward online extension degrades the diarization er-
ror rate (DER) due to the speaker permutation inconsistency
across the chunk, especially for short-length chunks. To
circumvent this inconsistency, our proposed method, called
speaker-tracing buffer, selects several input frames repre-
senting the speaker permutation information from previous
chunks and stores them in a buffer. These buffered frames are
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stacked with the input frames in the current chunk and fed
into the self-attention network together so that our method
obtains consistent diarization outputs across the buffer and
the current chunk by checking the correlation between the
corresponding outputs. Additionally, we also propose to train
SA-EEND with variable chunk-sizes, which can mitigate the
chunk size mismatch between training and inference due to
the additional frames introduced by the above speaker-tracing
buffer mechanism. Lastly, we focus on the performance of the
proposed method with respect to the original SA-EEND in an
online situation by testing on the simulated dataset which was
created using two speaker recordings with controlled over-
lap ratio, and two real datasets, CALLHOME and Corpus of
Spontaneous Japanese (CSJ) datasets. In order to make our
results reproducible, the code will be published online.

2. RELATED WORK

Several online speaker diarization systems have already been
developed along the last decade [8, 10, 12, 13, 16, 24]. Early
online speaker diarization systems [10, 13] usually trained
a Gaussian Mixture Model (GMM) from a huge amount
of speech from different speakers to produce a universal
background model. When a speech region was assigned to
a new speaker, maximum a posteriori adaptation was ap-
plied to adjust the GMM to these new speakers. Later on,
the GMM approach was replaced by adapted i-vector or
d-vector [12, 16, 24] which are referred to as speaker em-
beddings that represent individual information from each
speaker. The speaker embeddings are then compared and
grouped using unsupervised or supervised clustering [12,24].
In [8], an all-neural online approach that performed source
separation, speaker counting, and diarization all together was
proposed making it possible to optimize the entire online pro-
cess. However, these systems are based on several separate
modules and/or they can not directly minimize the diarization
error.

Recently, end-to-end neural networks have been suc-
cessfully applied to various speech processing fields such
as speech recognition, speech synthesis, and voice conver-
sion. Following this trend, Fujita et al., [25,26] first proposed
an end-to-end neural diarization (EEND) with several ex-
tensions, e.g., to deal with variable numbers of speakers
in [28–30]. While these extensions only consider an offline
scenario, this paper focuses on extending the offline EEND
method to an online scenario.

3. ANALYSIS OF ONLINE SA-EEND

3.1. SA-EEND

In SA-EEND [26], the speaker diarization task is formulated
as a probabilistic multi-label classification problem. Given
the T length acoustic featureX =

(
xt ∈ RD | t = 1, · · · , T

)
,

with a D-dimensional observation feature vector at time in-
dex t, SA-EEND predicts the corresponding speaker label
sequence Ŷ = (ŷt | t = 1, · · · , T ). Here, speaker label ŷt =
[ŷt,s ∈ {0, 1} | s = 1, · · · , S] represents a joint activity for S
speakers at time t. For example, ŷt,s = ŷt,s′ = 1 (s 6= s′)

means both s and s′ spoke at time t. Thus, determining Ŷ is
the key to determine the speaker diarization information as
follows:

Ŷ = SA (X) ∈ (0, 1)
S×T

, (1)

where SA(·) is a multi-head self-attention based neural net-
work.

Note that the vanilla self-attention layers have to wait for
all speech features in the entire recording to be processed
in order to compute the output speaker labels. Thus, this
method causes very high latency determined by the length
of the recording, and cannot be adequate for online/real-time
speech interface.

3.2. Chunk-wise SA-EEND for online inference

This paper first investigates the use of SA-EEND as shown in
Eq. (1) for chunked recordings with chunk size ∆, as follows:

Ŷti+1:ti+∆︸ ︷︷ ︸
,Ŷi

= SA(Xti+1:ti+∆︸ ︷︷ ︸
,Xi

) ∈ (0, 1)
S×∆

. (2)

i denotes a chunk index, and ti=1 , 0. Xi and Ŷi denote
subsequences of X and Ŷ at chunk i, respectively. The la-
tency can be suppressed by chunk size ∆ instead of the entire
recording length T . We first investigate the influence of chunk
size ∆ in terms of the diarization performance.

3.2.1. Model configuration and dataset

The SA-EEND system was trained using simulated train-
ing/test sets for two speakers following the procedure in [27].
Here, four encoder blocks with 256 attention units contain-
ing four heads without residual connections were trained.
The input features were 23-dimensional log-Mel-filterbanks
concatenated with the previous seven frames and subsequent
seven frames with a 25-ms frame length and 10-ms frame
shift. A subsampling factor of ten was applied afterwards.
As a summary, a (23× 15)-dimensional feature was inputted
into the neural network every 100 ms.

Two datasets were used for this analysis. The first one,
a subset of CALLHOME [3], consists of actual two-speaker
telephone conversations. Following the steps in [27], we split
CALLHOME into two parts: 155 recordings for adaptation
and 148 recordings for evaluation. The overall overlap ratio
(including the test set) is of 13.0 %. The average duration
is 72.1 s. The second dataset is the Corpus of Spontaneous
Japanese (CSJ) [31] which consists of interviews, natural con-
versations, etc. We selected 54 recordings from this data with
an overlap ratio of 20.1 %. There are consistently two speak-
ers in each recording with an average duration is 767.0 s.
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Fig. 1: Recording-wise and oracle chunk-wise DER (%).

3.2.2. Analysis results

In this section, we analyzed the relationship between chunk
size ∆ in Eq. (2) and the DER. The recordings to be analyzed
were first divided equally according to predefined chunk size
and then fed into a SA-EEND system. These chunk-wise di-
arization results were then combined with the original order
as the final diarization result of the whole recording. We call
it as recording-wise DER which was calculated on the entire
recording. When computing the DER in both overlapping and
non-speech regions, a 0.25 s collar tolerance was used at the
start and the end of each segment.

Note that this chunk-wise SA-EEND method does not
guarantee that the permutation of speaker labels obtained
across the chunk is the same due to the speaker permutation
ambiguity underlying in the general speaker diarization prob-
lem. Thus, the recording-wise DER would be degraded due
to this across-chunk speaker inconsistency. To measure this
degradation, we also computed the oracle DER in each chunk
separately (chunk-wise DER), which does not include the
across-chunk speaker inconsistency error.

The analytical results are shown in Figure 1 for the
CALLHOME and CSJ datasets. In these figures, the x-
axis represents a chunk size ∆ during inference. Here, one
chunk unit corresponds to 0.1 s, which means the latency
of the system (without considering the excution time) is 1 s
when the chunk size is 10 (i.e., 0.1 s × 10 = 1 s). The y-axis
represents the final DER of the whole dataset. As shown in
Figure 1, the recording-wise DER decreased as the chunk
size increased for both datasets. When the chunk size was
larger than 800, the recording-wise DER tended to converge
for CALLHOME. On the other hand, the oracle chunk-wise
DER was much smaller and more stable than the recording-
wise DER even when the chunk size was small, for both
datasets. This indicates that the main degradation of online
chunk-wise SA-EEND comes from the across-chunk speaker
permutation inconsistency.

Algorithm 1: Online diarization using speaker-
tracing buffer.

Input: {Xi}i // Chunked acoustic subsequences

S // #speakers

Lmax // Buffer size

SA(·) // SA-EEND system

Output: Ŷ // Diarization results

1 Xbuf ← ∅, Y buf ← ∅ // Initialize buffer

2 for i = 1, . . . do
3

[
Ŷ buf ; Ŷi

]
← SA

([
Xbuf ;Xi

])
4 if Y buf 6= ∅ then
5 ψ ← arg maxφ∈perm(S) CC

(
Y buf , Ŷ buf

φ

)
6 Ŷi ← Ŷi,ψ

7 Ŷ ←
[
Ŷ ; Ŷi

]
8 Update Xbuf and Y buf according to selection

rules // Sec. 4.2

4. SPEAKER-TRACING BUFFER

In this section, we propose a method called speaker-tracing
buffer (STB), that utilizes previous information as a clue to
solve the across-chunk permutation issue.

4.1. Speaker-tracing with buffer

Let Lmax be the size of STB, and Xbuf ∈ RD×L and Y buf ∈
(0, 1)

S×L
(0 ≤ L ≤ Lmax) be the L-length acoustic feature

and the corresponding SA-EEND outputs stored in STB, re-
spectively, which contain the speaker-tracing information. At
the initial stage, Xbuf and Y buf are empty. Our online di-
arization is performed by referring and updating this STB, as
shown in Algorithm 1. The input of the SA-EEND system
is the concatenation of acoustic feature subsequence Xi ∈
RD×∆ at current chunk i and the acoustic features in buffer
Xbuf , i.e.,

[
Xbuf ;Xi

]
∈ RD×(L+∆). The corresponding out-

put of SA-EEND is
[
Ŷ buf ; Ŷi

]
∈ (0, 1)

S×(L+∆). If Y buf is

not empty, the correlation coefficient CC (·, ·) between Y buf

and the current buffer output Ŷ buf
φ at speaker permutation out-

put φ is calculated as

CC
(
Y buf , Ŷ buf

φ

)
=∑S

s=1

∑L
l=1

(
ybufs,l − ybuf

)(
ŷbufφs,l

− ŷbufφ

)
√∑S

s=1

∑L
l=1

(
ybufs,l − ybuf

)2
√∑S

s=1

∑L
l=1

(
ŷbufφs,l

− ŷbufφ

)2
,

where

ybuf =

∑S
s=1

∑L
l=1 y

buf
s,l

SL
, ŷbufφ =

∑S
s=1

∑L
l=1 ŷ

buf
φs,l

SL
. (3)
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Fig. 2: Applying speaker-tracing buffer (STB) for SA-EEND.

Permutation ψ with the largest correlation coefficient is
chosen as follows:

ψ = arg max
φ∈perm(S)

CC
(
Y buf , Ŷ buf

φ

)
, (4)

where perm(S) generates all permutations according to the
number of speakers S. The corresponding buffer output Ŷ buf

i,ψ

is chosen as the final output Ŷi of chunk i, which can main-
tain a consistent speaker permutation across the chunk. The
obtained output Ŷi is stacked with the previously estimated
output to form the whole recording’s output Ŷ in the end.
An example of applying the STB to SA-EEND in the first
two chunks is shown in Figure 2, where ∆ is equal to 10, the
buffer size Lmax is 5, and the speaker number S is 2.

Speaker-tracing buffer
(
Xbuf ;Y buf

)
for the next chunk i+

1 is selected from
[
Y buf ; Ŷi

]
and

[
Xbuf ;Xi

]
in the current

chunk. We consider four selection strategies, as explained in
the next section.

4.2. Selection strategy for speaker-tracing buffer

If chunk size ∆ is not larger than the predefined buffer size
Lmax, we can simply store all the features in the buffer until
the number of stored features reaches the buffer size. Once
the number of accumulated features becomes larger than the
buffer size Lmax, we have to select and store informative fea-
tures that contain the speaker permutation information from[
Xbuf ;Xi

]
and

[
Y buf ; Ŷi

]
. In this section, four selection

rules for updating the buffer are listed. Here, we assume that
the number of speakers S is 2.

• First-in-first-out. The buffer is managed in a first-in-
first-out manner to store the most recent Lmax features.

• Uniform sampling. Lmax acoustic features from[
Xbuf ;Xi

]
and the corresponding diarization results

from
[
Y buf ; Ŷi

]
are randomly extracted based on the

uniform distribution.

• Deterministic selection using the absolute difference
of probabilities of speakers, as

δm = |ym,1 − ym,2| , (5)

where y1,m, y2,m are the probabilities of the first
and second speakers at time index m. The maxi-
mum value of δm (= 1) is realized in either case of
ym,1 = 1, ym,2 = 0 or ym,1 = 0, ym,2 = 1. This
means that we try to find dominant active-speaker
frames. Top Lmax samples with the highest δm are
selected from

[
Xbuf ;Xi

]
and

[
Y buf ; Ŷi

]
• Weighted sampling: This is a combination of the uni-

form sampling and deterministic selection. We ran-
domly select Lmax features but the probability of se-
lecting m-th feature is proportional to δmin Eq. (5).

4.3. Efficient training scheme for SA-EEND

The additional frames introduced by the speaker-tracing
buffer mechanism cause the length of the input chunks to get
larger overtime at the inference stage. However, the model
trained in [26] used a fixed chunk size. This will originate
a mismatch between training and evaluation, which would
degrade the performance of this system [32, 33].

Since self-attention modeling does not depend on the in-
put length, we propose a variable chunk size training (VCT)
scheme to mitigate the chunk size mismatch issue. First, we
split each recording into chunks with size γ, randomly sam-
pled from {50, 51, . . . , 500}. When we created a minibatch, it
contained variable-length sequences due to the variable chunk
size, and we used a padding technique to compensate for the
different lengths. VCT scheme is applied to both training and
adaptation stages. Due to the padding technique, the train-
ing efficiency was marginally degraded compared with fixed
chunk-size training.



Table 1: DERs (%) of online diarization using STB with four
buffer selection strategies. We varied buffer size Lmax, but
fixed chunk size ∆ = 10. Note that online diarization without
STB with ∆ = 10 showed 38.29 % and 44.57 % DERs on
CALLHOME and CSJ, respectively.

(a) CALLHOME

Lmax

System 10 50 100 200 500 1000

First-in-first-out 48.71 29.49 18.05 14.09 12.80 12.66
Uniform sampling 45.03 22.38 16.28 13.95 13.05 12.65
Deterministic selection 37.56 23.23 17.11 14.47 12.80 12.66
Weighted sampling 42.23 20.10 15.47 13.26 12.84 12.66

(b) CSJ

Lmax

System 10 50 100 200 500 1000

First-in-first-out 51.32 44.08 37.22 26.21 22.02 20.45
Uniform sampling 39.24 31.06 26.38 24.99 24.51 20.59
Deterministic selection 45.70 29.89 27.06 25.32 24.70 24.13
Weighted sampling 49.87 30.11 25.44 22.69 21.64 21.62

5. EXPERIMENTAL RESULTS

5.1. Effect of selection strategy

We analyzed the effect of the speaker tracing buffer (STB)
and the selection strategy in the section. For the effect of
selection strategy, we used the same chunk size ∆ = 10 and
several buffer sizes Lmax varied from 10 to 1000 in Table 1.
The model used here is the fixed-length training model with
four encoder blocks and four heads.

Note that online diarization without STB with ∆ = 10
showed 38.29 % and 44.57 % DERs on CALLHOME and
CSJ, respectively. Comparing online diarization without STB
and with STB, applying the STB improved the performance
of online SA-EEND regardless of which selection strategy
was used. As for the strategies, weighted sampling performed
best for both datasets in most cases when Lmax was large.
Therefore, we considered weighted sampling as a selection
strategy for future analysis.

5.2. Effect of buffer and chunk size

Next, we analyzed the effect of the buffer and the chunk size.
The DER results for the CALLHOME and CSJ when apply-
ing the weighted sampling selection strategy are shown in
Figure 3. Chunk sizes ∆ were 10 and 20 with the latency
time of 1 s and 2 s respectively. Regarding the chunk size in
Figure 3, all DERs from the large chunk size ∆ = 20 are bet-
ter than those from the small chunk size ∆ = 10 even if the
buffer size is the same. As for the buffer size, DER decreased
as buffer size increased. These results were in line with our
assumption that a large input size would lead to a better result.
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Fig. 3: Relationship among DER, chunk size and buffer size.

The model used here was the fixed-length training model with
four encoder blocks and four heads.

5.3. Real-time factor

Real-time factor (RTF) was calculated as the ratio between the
summation of the execution time of every chunk to a record-
ing duration It measures the speech decoding speed and ex-
presses the time performance of the proposed system. To
avoid the unequal size of buffers in the first several chunks,
we first filled the buffer with dummy values and then calcu-
lated the RTF. Our experiment was conducted on an Intel®

Xeon® CPU E52697A v2 @ 2.60GHz using one thread. RTFs
are equal to 0.40, 1.07 when the chunk size ∆ = 10 and
the buffer size Lmax = 500, 1000. This indicates that the
proposed method is acceptable for online applications when
buffer size is smaller than 1000 (100 s). So, the actual la-
tency time for online SA-EEND is 1.4 s when ∆ = 10 and
Lmax = 500.

5.4. Comparison with other methods

For a comparison with other methods, we evaluated our pro-
posed methods using two real datasets (CALLHOME and
CSJ), and three simulated datasets which are shown in Ta-
ble 2. The simulated datasets were created by using two
speaker segments. The background noise and room impulse
response come from MUSAN corpus [34] and Simulated
Room Response corpus [35] following the procedure in [26].
Three kinds of simulated datasets were created with overlap
ratios equal to ρ = 34.4 %, 27.2 %, and 19.5 %, respectively.

Note that we included errors in overlapping speech seg-
ments and speech-activity-detection-related errors in contrast
with most works, e.g., the Kaldi CALLHOME diarization
recipe, that did not evaluate such errors.

For the offline i-vector and x-vector method, we used ver-
sion 1 and 2 (v1 and v2) from Kaldi CALLHOME diariza-
tion recipe [19, 36, 37]. These are offline methods that em-
ploy probabilistic linear discriminant analysis [38] along with



Table 2: DERs (%) on simulated mixtures and real datasets. ρ denotes the overlap ratio of each simulated dataset. Note that all
results include the overlapping regions without oracle speech activity detection.

Simulated Real

System ρ = 34.4 % 27.2 % 19.5 % CALLHOME CSJ

Offline i-vector 33.73 30.93 25.96 12.10 27.99
Offline x-vector 28.77 24.46 17.78 11.53 22.96
Offline SA-EEND (γ = 500) 4.56 4.50 3.85 9.54 20.48

Online x-vector (∆ = 15) 36.94 34.94 33.19 26.90 25.45
Online SA-EEND (∆ = 10) 33.18 37.31 41.41 38.29 44.57
Online SA-EEND w/ STB (∆ = 10, Lmax = 500) 7.91 7.31 6.91 12.84 21.64
Online SA-EEND w/ STB (∆ = 5, Lmax = 500) 7.87 7.48 7.15 13.08 22.54
Online SA-EEND w/ STB and VCT (∆ = 10, Lmax = 500) 7.41 6.98 6.27 12.54 20.77
Online SA-EEND w/ STB and VCT (∆ = 5, Lmax = 500) 7.79 7.53 6.88 12.66 21.62

Table 3: DERs (%) on real datasets with 30 s of calibration period.

CALLHOME CSJ

System Within 30 s After 30 s All Within 30 s After 30 s All

Offline SA-EEND 9.38 9.53 9.53 23.43 20.23 20.48
Online SA-EEND w/ STB 15.91 10.05 12.84 25.37 21.30 21.64
Online SA-EEND w/ STB and VCT 14.89 10.58 12.54 23.52 20.49 20.77

agglomerative-cluster, a TDNN-based speech activity detec-
tion [39] and oracle number of speakers. Offline SA-EEND
refers to the method that uses the entire recording as one
chunk. The system in [27] which achieved the best perfor-
mance is applied here, not only for the offline SA-EEND but
also for the online SA-EEND w/ STB. For the online SA-
EEND, the chunk size is ∆ = 10 without applying STB. The
proposed method applied the weighted sampling based STB
as shown in Section 4.2 to the SA-EEND.

For the online x-vector, the speech segments were divided
into subsequent 1.5 s chunks (∆ = 15). Then, the system de-
cided whether the entire chunk was speech or silence based
on the output of the energy VAD for real datasets and ora-
cle VAD for simulated datasets. If the percentage of voiced
frames of the entire chunk was fewer than 20 %, it was con-
sidered as silence, and the process was skipped. If it was
a voiced chunk, we extracted an x-vector and assigned it to
the first cluster until a dissimilar x-vector arrives according to
the probabilistic linear discriminant analysis (PLDA) score.
Here, we applied a suitable threshold of 0.1 as the dissimilar
criterion after scanning thresholds from 0.2 to -0.2 with a step
of 0.1. Once two clusters exist we computed the PLDA score
between the new segment and the two clusters. Finally, we
assigned an x-vector to the nearest cluster.

As shown in Table 2, among these online systems includ-
ing the system based on x-vector, online SA-EEND with STB
and VCT achieved the best result. The proposed online SA-
EEND performed even better than the offline i-vector and x-
vector based methods on the CSJ dataset.

The online SA-EEND w/ STB and VCT increased the

DER by about 3 % when compared with the offline SA-EEND
system for CALLHOME and Simulated dataset when buffer
size is 500 and the chunk size is 10. It is also shown that the
online SA-EEND with STB and VCT almost achieved the of-
fline performance by 20.77 % DER as the DER of the offline
SA-EEND is 20.48 %. As the average duration of the record-
ings in CSJ (767.0 s) is much longer than CALLHOME (74 s)
and Simulated (87.6 s). It indicates that online SA-EEND
with STB can achieve better results for long recordings.

In order to explore the increase of DER, we broke down
the DER with a calibration period of 30 s as described in Ta-
ble 3. We can observe that within the 30s, the model trained
with VCT performs better than with a fixed length. But after
the 30s, the model trained with fixed length can achieve better
results. Both methods show comparable results with offline
SA-EEND after the 30s which also explains the reason why
STB is much more suitable for long recordings.

6. CONCLUSION

In this paper, we proposed a speaker-tracing buffer to memo-
rize the permutation information of the previous chunk which
enables the pre-trained offline SA-EEND system directly
work online. In addition, the variable chunk size training
scheme was proposed to handle the variable input length us-
ing speaker tracing buffer. The latency time can be reduced
to 500 ms with comparable diarization performance. Future
work will be focused on a variable number of speakers as the
current method is limited to the two-speaker case. In addi-
tion, the combination of fixed-length training and the variable



training scheme will be considered.
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Bredin, Alain Komaty, Guillaume Wisniewski, Claude
Barras, Nicholas WD Evans, and Sébastien Marcel,
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