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ABSTRACT

Nowadays voice search for points of interest (POI) is becom-
ing increasingly popular. However, speech recognition for
local POI names still remains a challenge due to multi-dialect
and long-tailed distribution of POI names. This paper im-
proves speech recognition accuracy for local POI from two
aspects. Firstly, a geographic acoustic model (Geo-AM) is
proposed. The proposed Geo-AM deals with multi-dialect
problem using dialect-specific input feature and dialect-
specific top layers. Secondly, a group of geo-specific lan-
guage models (Geo-LMs) are integrated into our speech
recognition system to improve recognition accuracy of long-
tailed and homophone POI names. During decoding, a spe-
cific Geo-LM is selected on-demand according to the user’s
geographic location. Experiments show that the proposed
Geo-AM achieves 6.5%∼10.1% relative character error rate
(CER) reduction on an accent test set and the proposed Geo-
AM and Geo-LMs totally achieve over 18.7% relative CER
reduction on a voice search task for Tencent Map.

Index Terms— multi-dialect speech recognition, local
POI recognition, geographical acoustic model, geographical
language model

1. INTRODUCTION

Automatic speech recognition (ASR) provides a more natural
way to human-machine interaction (HMI). The point of in-
terest (POI) search with voice is one of typical HMI scenes.
Assuming you are driving a car on the road and don’t know
how to reach your destination, you can give a voice com-
mand to a map app to set your destination and start navigation.
However, although deep learning techniques improve speech
recognition accuracy by a large margin recently, there are still
some challenging problems for local POI recognition.

This paper mainly focuses on Chinese POI recognition. In
China, dialects vary from geographical regions to geograph-
ical regions. Although different dialects may share some
similarities, there are obvious differences at the phonological
level. As a result, ASR system trained on many dialects si-
multaneously may fail to generalize well for each individual
dialect.

∗ Both authors contributed equally to this work.

There are massive POI names in China. The total amount
of POI names to be searched in a navigation system is usually
more than 1,200 million. Since POI names follow a long-
tailed distribution, it is ineffective to model infrequent POI
names using a general language model (LM). Another diffi-
culty for POI recognition is that there are many homophone
POI names, which is especially serious in China.

In order to alleviate the above problems in POI recog-
nition, geographical location information is used for both
acoustic modeling and language modeling in this paper. The
main contributions of this paper are as follows:

• This paper proposes a geographical acoustic model
(Geo-AM) to deal with the multi-dialect problem. Di-
alects are usually specific to geographical regions or
social groups. Therefore, the Geo-AM encodes users’
geographical location into a dialect-specific vector as
an additional input feature. Furthermore, the Geo-AM
introduces multiple dialect-specific top layers, each of
which corresponds to a dialect region. With dialect-
specific top layers, the proposed Geo-AM can effi-
ciently exploit geographical information while keeping
flexibility for further optimization.

• Generally, users are only interested in nearby POI
names. In a specific region, the total number of POI
names is much smaller and there are less homophone
POI names. Starting from this, we build and integrate a
group of geo-specific language models (Geo-LMs) into
the ASR system to improve the recognition accuracy
of long-tailed and homophone POI names. During de-
coding, a specific Geo-LM will be selected on-demand
according to geographic location information, which
is attached to user queries. To further improve recog-
nition accuracy, the n-best rescoring is done with a
neural network LM combined with another group of
Geo-LMs built for rescoring.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss some related works on multi-dialect speech
recognition and POI recognition. Section 3 describes the de-
tails of the baseline ASR system used in this paper. Geo-AM
and Geo-LMs are described in Section 4 and Section 5 respec-
tively. Section 6 shows the experimental results and analysis.
Finally, Section 7 concludes this paper.
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2. RELATED WORKS

Recently, there have been some attempts to solve the multi-
dialect problem in speech recognition, which mainly fall
into two ways: “multi-model” and “single-model”. In multi-
model approaches, an individual AM is trained for each
dialect when enough data is available for each dialect. When
dialect-specific data is scarce, Huang et al. [1] and Chen
et al. [2] provide a solution that jointly train an universal
AM which will be fine-tuned with dialect-specific data to
get dialect-specific AMs. In single-model approaches, a sin-
gle AM is trained to deal with all dialects. Some of them
feed dialect-related features, such as I-vectors [3] or dialect
information [4, 5, 6], into AMs to deal with the dialect prob-
lem. Some researchers introduce multi-task learning into
multi-dialect speech recognition. Yang et al. [7] adopts di-
alects classification as the secondary learning task. Compared
with multi-model approaches, single-model approaches are
usually more efficient but less flexible.

In this paper, we first construct a “single-model” baseline
like [4]. In order to further optimize the corresponding com-
ponent for a specific dialect when additional data is available,
dialect-specific top-layers are further introduced into the pro-
posed model.

An efficient way to improve speech recognition accuracy
of POI names is to utilize geo-location dependent LMs [8,
9, 10, 11]. For each user, Sten et al. [9] trains a Geo-LM
dynamically using nearby POI names and combines the Geo-
LM with a baseline LM before or at decoding. In [11], a
class-based Geo-LM is constructed dynamically for each user
depending on users’ geographic location, within a difference-
LM based weighted finite state transducer (WFST) system.
All above approaches construct LMs or WFSTs on-the-fly ac-
cording to users’ geographical locations, which is time con-
suming and hard to incorporate plenty of POI names into a
Geo-LM. Moreover, the class-based Geo-LMs can only deal
with pre-defined grammars.

In this paper, for each pre-defined region a Geo-LM is pre-
trained and Geo-LMs are dynamically combined with a base-
line LM during decoding. In addition, prior works mainly
integrate Geo-LMs into first-pass decoding. To further im-
prove recognition accuracy, we integrate Geo-LMs into both
first-pass decoding and n-best re-scoring.

3. BASELINE SYSTEM

The baseline AM is trained with lattice-free maximum mu-
tual information (LF-MMI) [12] criterion. It consists of two
CNN layers and three TDNN-OPGRU [13] blocks, which in-
terleave TDNN and output-gate PGRU (OPGRU) layers. Be-
sides, SpecAugment [14] algorithm is used to improve the
robustness of the AM.

The baseline LM is a word-level Kneser–Ney smoothed
5-gram model. For further improvement, a character-level

Kneser–Ney smoothed 5-gram LM and a QRNN [15] model
are used to rescore n-best lists of the first-pass decoding out-
put.

4. GEOGRAPHICAL ACOUSTIC MODEL

4.1. Dialect-specific Input Feature

From the aspect of linguistics, China can be divided into sev-
eral dialect regions. People from some adjacent provinces
usually have similar acoustic characteristics. Therefore, such
provinces can be clustered into one dialect region.

Like [4], we represent dialect information as a one-hot
vector (Geo-vector) which will be served as an additional fea-
ture fed into the AM as depicted in Figure 1. Dialect-specific
input feature will be transformed by an affine layer before
added to the output of TDNN or OPGRU layers. In this way,
the proposed Geo-AM can utilize additional dialect informa-
tion at both training and inference stage.
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Affine Affine Affine
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Fig. 1. Architecture of the proposed Geo-AM.

4.2. Dialect-specific Top Layer

The model mentioned in Subsection 4.1 can achieve gains
generally over the baseline model due to the additional su-
pervised information. However, it is hard to improve the
accuracy of a specific dialect while maintaining the per-
formance on other dialects. This may be attributed to that
dialect-specific information and dialect-independent infor-
mation are coupled together in that model. In order to make
the Geo-AM more flexible, here we introduce dialect-specific
layers into the Geo-AM.

As found in [1, 2], the top layer can capture dialect in-
formation. Here we introduce dialect-specific top layers into
the proposed Geo-AM as depicted in Figure 1. Each dialect
has its own top layer which is adapted from the model in Sub-
section 4.1. During the adaptation training, only top layer’s



parameters update while other parameters are fixed, which is
easy for deployment.

5. GEOGRAPHICAL LANGUAGE MODEL

For simplicity, this paper divides China into 34 local regions
at province-level. For each region, a word-level Geo-LM and
a character-level Geo-LM are trained with local POI names in
that region.

5.1. Geo-LMs in first-pass decoding

The underlying ASR system is based on a WFST based de-
coder, which employs the difference LM principle as follows:

HCLGbi ◦ F (1)

where ◦ denotes on-the-fly composition, H contains HMM
definitions, C represents the context dependency, L is the lex-
icon, Gbi is a small LM consisting only of uni-grams and bi-
grams of the baseline 5-gram LM, and

F = G−
bi ◦Gb ◦Gl (2)

where G−
bi is negated score version of Gbi, Gb is the 5-gram

baseline LM and Gl is a Geo-LM.
For each query, we first get the province, in which the

user locates, by location based services (LBS). Then the cor-
responding Geo-LM is selected to do on-the-fly composition
according to Eq.(1) and Eq.(2). As a result, the probability of
a word w in first-pass decoding is

P (1)(w|h) = λP
(1)
b (w|h) + (1− λ)P (1)

l (w|h) (3)

where h is context, P (1)
b (w|h) is the probability from the

baseline LM, P (1)
l (w|h) is the probability from a Geo-LM

and λ is a scalar that controls the contribution of different
LMs.

5.2. Geo-LMs in n-best rescoring

In order to further improve recognition accuracy of local POI
names, a QRNN [15] model is used to rescore n-best lists of
the first-pass decoding outputs. A single neural model usually
fails to model long-tailed POI names. Moreover, it is imprac-
tical to train a geographical neural model for each region due
to data sparsity. Therefore, we also incorporate a group of
character-level Geo-LMs into the process of n-best rescoring.
Like Eq.(3), the probability of the word w in second-pass de-
coding is

P (2)(w|h) = αP
(2)
b (w|h) + βP (2)

r (w|h)

+ (1− α− β)P (2)
l (w|h)

(4)

where P (2)
b (w|h) is the probability from the character-level

baseline LM, P (2)
r (w|h) is the probability from the QRNN

model, P (2)
l (w|h) is the probability from a character-level

Geo-LM, α and β control the contribution of different LMs.
After getting probabilities P (1)(w|h) and P (2)(w|h), the

final probability of the word w is

P (w|h) = γP (1)(w|h) + (1− γ)P (2)(w|h) (5)

where γ is a constant.

6. EXPERIMENTS

We train AMs on hand-transcribed, anonymized utterances
from our production including Tencent Map. Our train-
ing data are collected from all regions of China, which is
amounted to about 20K hours. Only one fifth training data
have region information. In all experiments, 40-dimensional
PNCC [16] is used as acoustic feature.

Both the word-level baseline LM and the character-level
baseline LM are trained with 1,200M POI names collected
from Tencent map. In order to limit the model size, the base-
line LMs are trained with large cutoffs 0-3-5-10-15. As a re-
sult, many long-tailed or infrequent POI names are excluded
from the baseline LMs. For each province, a word-level Geo-
LM and a character-level Geo-LM are trained with local POI
names in that province collected from Tencent map and the
Internet. The amount of training data for Geo-LMs varies
from 30K POI names to 12.6M POI names. The Geo-LMs are
trained with small (standard) cutoffs 0-2-2-2-2, which keeps
more long-tailed POI names in Geo-LMs. In addition, the
QRNN model adopts a adaptive softmax output layer [17] to
reduce computational complexity.

Based on the dialect regions and users’ distribution, this
paper splits China into 10 dialect regions as shown in Table 1.
Table 1 also gives the amount of training corpus for each re-
gion.

Table 1. Dialect region division and the amount of training
corpus (in hours) for each region.

Regions Provinces Corpus
1 Zhejiang Jiangsu 522
2 Sichuan Chongqing Guizhou 345
3 Shandong Henan 598
4 Heilongjiang Jilin Liaoning 372
5 Guangdong 450
6 Shanxi Gansu Shaanxi 247
7 Hunan Hubei Anhui 396
8 Yunnan Guangxi Fujian 301
9 Beijing Tianjin Hebei 429

10 Others 337

Both development set and test set are collected from our
POI voice search production, Tencent Map. The development
set consists of 13,350 utterances collected from users across



the whole China. The test set contains 15,205 utterances col-
lected from users of top-10 provinces with most traffic. The
detailed data distribution in the development set and test set
is presented in Table 2.

Table 2. Number of utterances for each dialect region in the
development set and the test set.

Regions Development Test
1 1744 3299
2 1200 1300
3 1986 2845
4 1308 1910
5 1201 1502
6 801 1396
7 1218 1519
8 648 0
9 1349 1434

10 1895 0
Total 13350 15205

6.1. Geo-AM

The baseline AM (A0) is trained with all corpora, which is
geo-location independent. We obtain a Geo-AM, A1, by at-
taching dialect-specific input feature to the baseline AM and
fine-tune it using corpora with dialect information. We also
try to directly fine-tune A0 using the same corpora as A1, but
achieve no improvement. Table 3 shows that our model ben-
efits from the dialect-specific input feature, with an overall
CER reduction of 4.3%. Only slight improvement is found in
some regions (e.g., Region 5, Region 6). We argue that divi-
sion of dialect regions and distribution of training data should
account for this.

For further improvement, a more superior Geo-AM A2 is
obtained by introducing dialect-specific top layer to the model
A1. The model A2 is initialized from A1. Dialect corpora
are only used to train dialect-specific top layer while other
parameters are frozen. Results in Table 3 show that we can
get more gains by introducing dialect-specific top layers. This
indicates that Geo-vector is not powerful enough to encode
dialect information. Besides, dialect-specific top layers make
it easy to improve the performance of a certain dialect, as we
can train each top layer individually.

To show A2’s superiority, we try to increase the amount
of training data for dialect region 1, from 522 hours to 892
hours. Then we train another two Geo-AMs A1+ and A2+.
A1+ is fine-tuned from A0 and A2+ is fine-tuned from A1.
Results of Table 4 show that both A1+ and A2+ achieve bet-
ter performance on dialect region 1 compared to A1 and A2.
However, A1+ gets worse performance on several other di-
alect regions compared to A1 while A2+ maintains the per-
formance on other dialect regions with the help of dialect-

Table 3. CER (%) of Geo-AMs on the development set.
Region A0 A1 A2

1 4.93 4.73 4.63
2 6.41 5.96 5.60
3 5.23 4.93 4.80
4 4.64 3.96 3.89
5 4.98 4.91 4.86
6 6.07 6.05 5.60
7 6.21 6.03 5.71
8 6.61 6.69 6.56
9 4.01 3.79 3.73

10 5.75 5.73 5.87
Total 5.37 5.14 5.02

specific top layers. As we argued above, A2 gives us more
flexibility which is important in real production service.

Table 4. CER (%) of Geo-AMs on the development set after
adding more data for dialect region 1.

Region A1 A1+ A2 A2+
1 4.73 4.59 4.63 4.45
2 5.96 6.03 5.60 5.60
3 4.93 5.15 4.80 4.80
4 3.96 4.05 3.89 3.89
5 4.91 4.90 4.86 4.86
6 6.05 5.89 5.60 5.60
7 6.03 6.14 5.71 5.71
8 6.69 7.30 6.56 6.56
9 3.79 3.76 3.73 3.73
10 5.73 5.74 5.87 5.87

Total 5.14 5.20 5.02 4.99

To further verify the relationship between Geo-AM and
multi-dialect problem, we divide the development set into 4
subsets according to the level of accent and provide results in
Table 5. It suggests that Geo-AM performs better on heavy-
accent utterances.

Table 5. CER(%) and CERR(%) of Geo-AMs on datasets
with different level of accent.

Level A0 A2 CERR
Serious 11.30 10.16 10.1
Medium 9.46 8.67 8.4
Slight 5.21 4.87 6.5
None 3.72 3.54 4.8

6.2. Geo-LMs

Results in Section 6.1 show that the proposed Geo-AM can al-
leviate multi-dialect problem to some extent. However, it can-
not deal with long-tailed and homophone POI names. There-



fore, we adopt Geo-LMs in first-pass decoding as described
in Section 5. Detailed results on the development set are pre-
sented in Table 6. In order to evaluate whether Geo-LMs are
effective in all provinces, Table 6 provides the overall results
as well as the results of top-5 provinces with the most traffic
(Guangdong, Henan, Shandong, Jiangsu, Zhejiang) and tail-
5 provinces with the least traffic (Gansu, Hainan, Ningxia,
Xizang, Qinghai). Results show that Geo-LMs can signifi-
cantly improve the recognition accuracy of local POI names
both in top provinces and tail provinces.

Table 6. CER (%) on the development set of integrating Geo-
LMs in first-pass decodeing (L1), rescoring n-best lists of the
first-pass decoding output without Geo-LMs (L2), integrating
Geo-LMs in n-best rescoring (L3).

Province A2 L1 L2 L3
Guangdong 4.88 4.56 4.35 4.42
Henan 4.53 4.24 4.08 3.70
Shandong 5.10 4.91 4.74 4.27
Jiangsu 4.64 4.40 4.18 3.73
Zhejiang 4.75 4.18 4.32 3.88
Gansu 7.84 5.56 6.15 5.26
Hainan 7.16 6.97 8.26 6.97
Ningxia 7.19 6.47 6.29 6.12
Xizang 5.88 5.88 5.88 4.24
Qinghai 5.08 3.86 4.47 3.25
Nationwide 5.02 4.51 4.48 3.90

Rescoring n-best lists of the first-pass decoding output
with a neural LM generally provides further improvements.
We use a QRNN model and a 5-gram character-level ngram
model to rescoring the n-best lists like Eq.(4) but without
Geo-LMs. Results are shown in the forth column in Table 6.
Rescoring n-best lists reduces the CER on 4 top provinces and
1 tail province but increases the CER on 1 top province and 3
tail provinces. This is probably due to both the QRNN model
and the 5-gram character-level ngram model do not utilize ge-
ographical information. Therefore, we also integrate a group
of Geo-LMs in the process of n-best rescoring as Eq.(4). Re-
sults are shown in the last column in Table 6. Results show
using Geo-LMs in second-pass decoding can further improve
recognition accuracy of local POI names both in top provinces
and tail provinces.

Finally, we evaluate the proposed Geo-AMs and Geo-
LMs on the test set. Results are consistent with those on
the development set and details are shown in Table 7. The
proposed Geo-AM and Geo-LMs totally achieve a 18.7%
relative CER reduction.

7. CONCLUSION

Speech recognition of local POI names is still a challeng-
ing task due to multi-dialect and massive long-tailed POI

Table 7. CER (%) on the test set of using Geo-AMs and Geo-
LMs.

Province A0 A1 A2 L1 L2 L3
Jiangsu 5.92 6.11 5.9 5.57 5.27 5.06
Zhejiang 4.78 4.73 4.25 4.11 3.94 3.85
Sichuan 3.69 3.44 3.38 3.06 3.2 3.18
Shandong 3.75 3.74 3.6 3.54 3.05 3.06
Henan 5.05 4.87 4.74 4.46 4.19 4.57
Liaoning 4.33 4.02 3.94 3.44 3.36 3.0
Guangdong 5.9 5.54 5.5 5.22 4.86 4.68
Shaanxi 4.98 4.87 4.55 4.45 4.0 3.88
Anhui 4.92 4.82 4.56 4.73 4.26 4.16
Hebei 3.93 3.7 3.65 3.43 3.37 3.11
Total 4.70 4.58 4.38 4.17 3.99 3.82

names. This paper proposes a Geo-AM to deal with the
multi-dialect problem by combining dialect-specific input
feature and dialect-specific top layers. In order to improve
recognition accuracy of long-tailed POI names, a group of
Geo-LMs are integrated into the process of first-pass decod-
ing and n-best rescoring. Experiments show the proposed
Geo-AM can indeed alleviate the accent problem and achieve
6.5%∼10.1% relative CER reduction on test sets of different
accent levels. The proposed Geo-AM and Geo-LMs totally
achieve 18.7% relative CER reduction on the POI voice
search task of Tencent Map. In addition, introducing Geo-
LMs into the process of n-best rescoring can achieve much
better results.
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