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ABSTRACT

Automatic speaker verification (ASV) systems utilize the bio-
metric information in human speech to verify the speaker’s
identity. The techniques used for performing speaker verifi-
cation are often vulnerable to malicious attacks that attempt
to induce the ASV system to return wrong results, allowing
an impostor to bypass the system and gain access. Attack-
ers use a multitude of spoofing techniques for this, such as
voice conversion, audio replay, speech synthesis, etc. In re-
cent years, easily available tools to generate deepfaked au-
dio have increased the potential threat to ASV systems. In
this paper, we compare the potential of human impersonation
(voice disguise) based attacks with attacks based on machine-
generated speech, on black-box and white-box ASV systems.
We also study countermeasures by using features that capture
the unique aspects of human speech production, under the
hypothesis that machines cannot emulate many of the fine-
level intricacies of the human speech production mechanism.
We show that fundamental frequency sequence-related en-
tropy, spectral envelope, and aperiodic parameters are promis-
ing candidates for robust detection of deepfaked speech gen-
erated by unknown methods.

Index Terms— Impersonation, Deepfakes, ASV, Spoof
detection

1. INTRODUCTION

Automatic speaker verification (ASV) systems utilize the bio-
metric information in human speech to verify the identity of
a speaker by matching it with the information present in a
database (which is also derived from speech samples). Such
systems are also vulnerable to malicious attacks where the at-
tacker tries to provide fake biometric information to fool the
ASV systems. There are many spoofing methods in use by
attackers nowadays, including direct human impersonation of
the target, machine assisted-speech generation such as voice
conversion (VC), customized and manipulated text-to-speech
synthesis (TTS) system outputs, etc. With the advancement
of deep learning techniques, especially with advancements in
generative models such as generative adversarial networks [1]

and wavenet models [2, 3], the quality of synthetic speech is
getting much closer to natural speech [3]. Attacks carried out
using synthetic speech generated by these methods pose se-
rious threats to ASV systems. As a first step, in this paper,
we compare the threats from impersonation attacks with the
synthetic speech attacks and establish that deep synthesized
fakes are in fact the most dangerous attacks for ASV systems.

It is therefore important to be able to distinguish between
fake/synthesized and human-generated speech. This is the
broader goal of our paper. However, we do not focus on mere
feature selections as [4–6], which would be influenced by the
dataset choices, models and training procedures. Instead, we
start with the hypothesis that machine-generated speech is too
consistent in many respects, and machines are unable to em-
ulate the finer level variations found in naturally produced
speech signals. In other words, because of the complexity
of the human speech production mechanism, human speech
has a greater degree of inconsistency than machine-generated
speech. We devise experiments to investigate a select set of
features that we believe capture some intricacies of human-
generated speech in a manner that machines cannot. To verify
the correctness of our hypothesis, we must not only evaluate
the features directly on detecting fake and real speech sig-
nals but also establish this through applications such as ASV
systems, that must then, by the use of these features in the
countermeasures, become more impervious to malicious at-
tacks. We propose several speech-generation-related features
and verify them to be effective in improving the overall per-
formance of the detection model and ASV systems. The ex-
periments diagram of this paper is shown as in Fig. 1.

1.1. Prior work

A number of approaches of varying success have been pro-
posed in the literature to detect fake speech to increase the
security of ASV systems against spoofing attacks. For exam-
ple, the long-running ASVspoof challenge [7–9] has raised
wide efforts in fake speech spoofing attack countermeasures
on ASV systems. The main focus of the challenge, however,
has been to rank spoof detection countermeasures, and not
to carry out an in-depth evaluation of the ASV systems’ per-
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Fig. 1. Diagram for the experimental setups

formance under attacks. Another significant problem with the
spoof detection study is that, with the rapid evolution of deep-
fake generation methodologies, the sheer variety of attacks
that an AVS system may be subject to is also rapidly increas-
ing. Detection models trained on a specific provided dataset
synthesized using a limited set of methods are not likely to
generalize well to newer types of fake/generated audio [10].
In ASVspoof2019, for example, detection algorithms [11–14]
that work very well on training datasets are often found to
perform much worse on evaluation sets that have been pro-
duced using attack techniques not present in the training data.
The detection performance on the evaluation sets could be an
indicator of the generalization capacity of those proposed al-
gorithms as one purpose of the challenge.

To include the latest deep-learning speech synthesizers,
[15] provides a synthetic speech dataset called Fake or Real
(FoR), improving variety of the deepfake speech data for this
purpose. We have, in fact, also used it effectively in the con-
text of this work.

2. COMPARING HUMAN AND MACHINE
GENERATED SPEECH IN SPOOFING ATTACKS

As a first step, in this paper, we compare the threats from
impersonation attacks with the synthetic speech attacks and
establish that deep synthesized fakes are in fact the most dan-
gerous attacks for ASV systems.

2.1. Datasets

For our experiments we use four datasets: the logical access
(LA) of ASVspoof 2019 dataset [9], the VoxCeleb dataset
[16], the FoR dataset [15] and our own collected imperson-
ation dataset (CID).

The CID dataset is collected from the performances of
expert impersonators on YouTube, and segmented carefully
to only keep the speech segments corresponding to target
speakers. All impersonators in the CID dataset are profes-
sionals mimicking political figures for amusement, collecting
from TV shows and talk shows on YouTube. The dataset

comprises 1091 utterances of genuine speech from both the
impersonators and the political figures and 981 utterances
of impersonated speech. The data are further segregated
into paired sets, each pair containing an impersonator’s real
speech and target/mimicked speech, or the target’s real speech
and the speech produced for the same target by an imperson-
ator. These are indicated in Table 1, in which pairs that
originate from the same speaker are called positive pairs, and
pairs from different speakers are called negative pairs.

As shown in Table 1, we have two sets of positive pairs
and four sets of negative pairs. They are 19086 positive pairs
of same target speaker’s real utterances (R), 14844 negative
pairs of different target speaker’s real utterances (RI), 3382
positive pairs of same impersonator’s impersonations for dif-
ferent target (IAB), 37554 negative pairs of target and im-
personation pair (TI), 1988 negative pairs of different imper-
sonator’s real utterances (IRAB) and 28080 negative pairs of
target/impersonator’s real utterance pair (IRT).

For synthetic data, ASVspoof2019 dataset contains logi-
cal access data and physical access data. In this study, we only
use the logical access data which contains machine-generated
speech using multiple text-to-speech synthesis and voice con-
version methods. The logical data has 2580 bonafide utter-
ances and 22800 synthetic utterances from 20 speakers in the
training set; 2548 bonafide utterances from 20 speakers and
22296 spoof utterances from 10 speakers in the development
set [9]. The evaluation set contains 7355 bonafide utterances
from 67 speakers and 63882 spoof utterances from 48 speak-
ers. The spoof audios are generated using unseen spoofing al-
gorithms intentionally, aiming to give insights of the general-
ization performance of the proposed countermeasure models.
In order for a general ASV system to evaluate this dataset, we
generate 4914 bonafide positive pairs and 4914 negative pairs
for each attack (A07-A19) from original evaluation set. We
also generate 15970 positive pairs and 15970 negative pairs
to evaluate the overall attacking ability over all attacks.

To best evaluate the threats of different attacks, we train
ASV systems under unconstrained recording and speaking
conditions (essentially data-in-the-wild). For this, we use the
VoxCeleb dataset, which is a large scale publicly dataset con-
taining millions of utterances collected from unconstrained
speech samples [16]. It has many speakers and millions of
utterances under different recording conditions. This can be
effectively used to evaluate the potential of any given ASV
methodology to generalize to unseen speakers and uncon-
strained conditions [16, 17].

2.2. Analyzing performance under attacks on black-box
and white-box ASV systems

The ASV model we use is proposed by Joon Son Chung, et
al. [17], which applies the Thin ResNet-34 [16] as backbone,
and Self-attentive Pooling(SAP) [18] as aggregation strategy.
This model, when trained with short-time Fourier transform



(STFT) spectrogram of Voxceleb, generalizes extremely well
to unconstrained conditions as shown by the low EER of real
utterance pairs, mentioned earlier in this section.

The black-box ASV system is pretrained with the Vox-
Celeb dataset. STFT, mel-frequency cepstral coefficients
(MFCCs), aperiodic parameters(AP) and spectral enve-
lope(SP) are used as input features to this model. The original
input audios comprise segments of 2sec duration. We use the
same STFT feature as in [17] [16]. MFCC feature is com-
puted from 16kHz sampled signals: which comprise 13 cep-
stral coefficients, to which first and second-order derivatives
respectively are concatenated, making the feature dimension-
ality 39. (AP and SP are not the focused of this section and
will be further discussed in Section.3 and Section.4)

The white-box model is trained with the ASVspoof 2019
data, as a multi-class classifier for speaker identification. We
make small modification on the initial ASVspoof2019 train-
ing set by assigning each spoofed utterance an identity which
uniquely incorporates both speaker and attack. There are 20
speakers and 6 types of attack in the ASVspoof2019 LA train-
ing set, meaning that there are 120 ”spoofed identities”. Thus
our modified training set contains 140 identities. We call
these ASVspoof training identities (ASVTIs).

2.2.1. Impersonation attacks

Our black-box evaluations on impersonation attacks use the
CID dataset. We run several experiments to evaluate the
dataset’s attacking potential. The results are shown in Table
1. The model that is pretrained on VoxCeleb2 is able to ver-
ify open-set speakers best and gives 1.71% EER for target
speakers’ real utterances (positive and negative pairs R + RI);
This pretrained model can be seen as a black box ASV under
open-set evaluation.

From our tests, we observe that combining the imperson-
ation/target pairs (TI) with the positive pairs from real speak-
ers (R) improves the speaker verification EER to 11.42%,
which indicates that professional impersonation can fool the
ASV system to a certain extent, although it is still ineffective
in most attacks. The group with real speaker positive pairs (R)
and negative pairs (IRAB) built from the real voices of differ-
ent impersonators has a low EER of 4.86%, showing that the
pre-trained ASV system is indeed generalized to verify un-
seen target speakers and cross impersonators pairs.

The IAB is the same impersonator mimicking different
targets. IAB + RI has an EER of 13.3%, showing that even
if the same speaker tries to impersonate different targets,
their utterances are mostly considered as the same speaker,
although still having some capacity to fool the ASV sys-
tem. Note that this EER value gets significantly larger to
22.09% with less generalized models, such as the VoxCeleb1
pre-trained model. This indicates that impersonation from
professional impersonators is still threatening to some ASV
systems. The IAB + IRAB set has comparable EERs as the

(a) (b)

(c) (d)

Fig. 2. (a) 20 bonafide speakers in training set; (b) 20
bonafide and spoof speakers in training set; (c) 10 bonafide
speakers in development set; (d) 10 bonafide and spoof speak-
ers in development set.

IAB + RI, showing that the IRAB pairs are valid, also indi-
cating the true differences between the impersonator’s real
voices. And the IAB + TI gives an EER of 43.52%. This high
EER comes from the formation of this evaluation set. Differ-
ent from other sets, both the negative pairs and positive pairs
can be seen as the spoofing attacks because the professional
impersonator could impersonate different target to a certain
extent, which makes the ’positive’ pairs negative in nature.
Therefore, both the positive pairs of IAB and the negative
pairs of TI are hardest cases, also showing by the EERs of
their combination with the R and RI.

The R + IRT corresponds to positive pairs for the real
voice utterances of the same targets and negative pairs of im-
personator’s real voice with the targets’ real voice. The 5.21%
EER shows that the impersonator’s real voices are indeed not
similar to the targets’ voices.

The overall results show that while mimicry from ama-
teur impersonators is reported to not succeed in fooling ASV
systems in previous research [19, 20], mimicries rendered by
professional impersonators still poses threats to a certain ex-
tent.

2.2.2. Synthetic speech attacks

To further understand the attacks of synthetic speech gener-
ated from different methods, we perform extensive ASV eval-
uations on the ASVspoof evaluation set under the black-box
and white-box conditions. The evaluation set contains attack
methods from A07 to A19 which are different voice conver-
sion or speech synthesis techniques [21].

Comparing human-generated attacks and machine gener-
ated attacks, as in the black-box scenarios for both cases, we
found that the general attack ability of the machine gener-



Table 1. EERs of impersonation attacks to the ASV under black-box scenario
ASV EER%

Impersonation Data R1+RI2 IAB3+RI R+TI4 IAB+TI R+IRAB5 IAB+IRAB R+IRT6 IAB+IRT

blackbox

VoxCeleb2(STFT)
VoxCeleb1(STFT)
VoxCeleb1(MFCC)

VoxCeleb1(AP)
VoxCeleb1(SP)

1.71
4.16

17.21
39.75
53.58

13.30
16.41
22.09
41.27
49.42

11.42
14.95
22.01
44.89
54.36

43.52
42.02
48.77
45.46
50.36

4.86
4.74
9.22
45.58
55.04

17.76
15.90
26.80
46.06
51.11

5.21
5.06
8.86

41.65
53.76

19.45
15.64
20.11
42.94
49.43

1 R: Same target speaker’s real utterance pair (+, #19086) 2 RI: Different target speaker’s real utterance pair (−, #14844)
3 IAB: Same impersonator, impersonations for different target pair (+, #3382) 4 TI: Target and impersonation pair (−, #37554)
5 IRAB: Different impersonator’s real utterance pair (−, #1988) 6 IRT: Target and impersonator’s real utterance pair (−, #28080)
7 The model pre-trained with VoxCeleb2 dev set using Spectrogram feature

Table 2. EERs of evaluation set for ASVspoof2019 LA under black-box and white-box scenarios

ASV EER%
Attack A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 ALL3

blackbox

VoxCeleb2(STFT)
VoxCeleb1(STFT)
VoxCeleb1(MFCC)

VoxCeleb1(AP)
VoxCeleb1(SP)

Todisco et al., [9]

34.03
27.93
45.12
39.89
51.47
59.68

23.20
25.30
28.89
24.92
50.73
40.39

5.70
11.01
16.02
31.63
53.51
8.38

48.51
47.77
45.01
38.66
51.46
57.73

37.37
37.36
48.88
21.93
53.97
59.64

43.42
44.77
45.09
43.05
49.52
46.18

23.67
30.93
38.13
30.99
54.51
46.78

40.45
43.33
35.06
28.25
49.92
64.01

43.14
40.91
43.01
42.21
51.39
58.85

50.51
43.36
46.04
45.55
50.66
64.52

4.99
7.65

11.07
31.56
52.71
3.92

7.10
10.83
25.64
31.92
49.18
7.35

11.26
13.97
25.02
39.27
54.97
14.58

21.42
22.03
25.66
35.55
50.60

-

whitebox

ASVSpoof(STFT)1

ASVSpoof(MFCC)
ASVSpoof(AP)
ASVSpoof(SP)

VoxCeleb2+ASVSpoof(STFT)
VoxCeleb1+ASVSpoof(STFT)
VoxCeleb1+ASVSpoof(MFCC)

VoxCeleb1+ASVSpoof(AP)
VoxCeleb1+ASVSpoof(SP)

2.33
7.12
38.93
50.97
1.16
1.21
4.99
22.04
50.24

2.65
5.08
32.46
49.94
2.31
2.63
4.51
17.77
44.30

3.75
8.12

32.59
40.07
0.77
1.75
1.99

28.13
40.51

47.56
39.76
42.37
49.75
43.42
45.85
37.28
33.68
49.21

40.89
28.99
38.29
49.25
27.62
17.40
19.02
37.78
48.82

47.59
49.01
43.28
52.04
41.23
45.69
45.08
37.20
50.45

37.01
33.81
37.02
52.30
15.46
20.84
33.18
19.72
48.74

29.09
19.04
33.96
51.03
34.48
25.85
15.92
6.50
48.62

35.48
41.39
41.12
51.74
36.26
25.41
33.65
33.16
49.43

4.09
9.08

49.06
51.99
6.63
4.66
6.01

44.43
50.86

12.07
18.00
40.05
41.49
1.26
2.24

11.30
33.25
33.63

28.61
16.47
34.57
46.16
5.75
8.24

11.44
32.33
42.10

1.88
2.09

44.53
45.78
0.68
0.73
2.98

41.01
38.06

22.24
15.99
39.25
42.08
11.99
13.35
14.94
32.45
36.79

1 The model trained directly with ASVTIs4 using Spectrogram feature
2 The model pre-trained with VoxCeleb1 dev set using Spectrogram(blackbox) and subsequently trained with ASVTIs 3 Evaluation on general pairs as described
in 2.1, indicating overall EER 4 As defined in 2.2

ated speech are stronger than the human-generated attacks, as
shown in Table.1 and Table.2. For the blackbox of VoxCeleb2
trained using STFT, most of the synthetic attacks have a EER
of over 20%, much higher than the EER of impersonation at-
tacks (IAB).

As is shown in Table 2, A09/A17/A18/A19 are relatively
weaker attacks showing lower ASV EER% in STFT/MFCC-
based black-boxes, which is consistent with the results given
by [9]. These attacks are generated through waveform gener-
ators such as waveform filtering and spectral filtering, which
may be simpler methods compared to hard cases using neu-
ral vocoders. Most of attacks tend to be more dangerous for
MFCC-based black-box than STFT-based black-boxes. Also
for STFT and MFCC, EERs for most attacks are lower under
the white-box scenario, compared to attacks on black-boxes
with the same dataset and feature settings. However, it does
not result in much improvement of EER for A10, A12, and
A15, which are generated by neural waveform models, indi-

cating increased threat from deepfakes.
In conclusion, the feature robustness ranks as ’STFT >

MFCC’ with finetuning under white-box scenario. This con-
clusion is consistent with our hypothesis that features that
capture information about prosodic nuances are more robust
under attacks for ASV systems.

In Figure. 2, we draw the embedding features from the
bottleneck layer of the white-box ASV model on a sphere.
When spoofed utterances are introduced, it is not easy to
discriminate the embeddings anymore, which indicates their
threats to the ASV system.

3. STRATEGY FOR ESTABLISHING THE
GOODNESS OF FEATURES FOR FAKE SPEECH

DETECTION

The threatens shown above from the deepfakes indicates the
urgent needs for fake speech detection to assist the anti-



spoofing capacity of ASV systems. To do so, our final goal
is to find robust features for detecting fake speech, espe-
cially deepfakes. To re-iterate, our hypothesis is that features
that capture the fine-level nuances of human speech from
a speech-production perspective are likely to be able to ef-
fectively help distinguish between real and fake speech. In
addition, they are also likely to improve the performance of
countermeasures that are used for thwarting ASV spoofing
attacks carried out through synthetic speech.

3.1. Human voice-production based features

In the production of speech, there are several sources that are
either aperiodic or periodic that generate acoustic energy in
the vocal tract. The aperiodic sources are aspiration generated
at the glottis, friction generated in the vocal tract, and tran-
sient bursts from the rapid release of complete constrictions.
The periodic source is the vibration of the vocal folds that
creates periodic energy at the glottis. Identifying and quanti-
fying these various sources has several applications in speech
coding, speech recognition, and speaker recognition [22].

Synthetic utterances generated by deep generative sys-
tems lack specific aspects of naturalness. One notable ex-
ample is that of prosody. While we do have high quality
and plain prosody TTS datasets, these are far from perfect.
This is likely to make prosody a promising candidate for our
work. Prosody is partially represented through variations in
the fundamental frequency (F0) of the speech signal. In addi-
tion, features that capture prosody variations are the F0 se-
quence, spectral envelope, and spectral aperiodicity. We eval-
uate all of these in our work. Our hypothesis is that features
that capture the fine-level nuances of human speech from a
speech-production perspective are likely to be able to help
distinguish between real and fake speech effectively. Besides,
they are also likely to improve the performance of counter-
measures that are used for thwarting ASV spoofing attacks
carried out through synthetic speech. For example, as shown
in Fig.3, the spectral envelope information of fake speech
lacks natural transition and nuances, consistent with our hy-
pothesis that the synthetic utterances may lack some aspects
of naturalness.

In the vocal production process of a human, the funda-
mental frequency we refer to is the natural frequency of the vi-
bration of the vocal cords. A specific nuance we can leverage
is (known from prior literature) that the larynx can be approx-
imated a nonlinear dynamic system, and the vocal folds can
be approximated to coupled oscillators that are theoretically
capable of an infinite number of different vibration patterns.
However, these are persistently in a perturbed state. In vocal
acoustics, perturbation typically refers to a deviation from an
expected regularity in vocal-fold vibration. No biological sys-
tem can produce truly periodic oscillations, and some instan-
taneous fluctuation can always be expected [23]. Features
that capture such instant-to-instant perturbations are the

Fig. 3. The same text utterance (”Very early in my life, I
separated from my mother.” )’s spectral envelope (log scale)
of real speech contains natural transition and nuances while
the fake speech does not. And the short pause is unnaturally
sharp in fake speech.

well-studied jitter and shimmer measurements, which gauge
the cycle-to-cycle variations in frequency and amplitude of
the speech signal, respectively. It is expected that the in-
formation captured by jitter and shimmer may be differently
“enacted” in machine-synthesized speech (if at all). We thus
choose also to evaluate these features in our work.

3.2. Analyzing robustness of speech-production moti-
vated features

We are now in a position to analyze the robustness of speech
production motivated features for detecting fake speech and
improving the robustness of ASV systems against synthetic
speech-based attacks. In fact an ASV countermeasure model
that evaluates verification performance (based on t-DCF [24]
and EER measurement) automatically consolidates and veri-
fies both goals. For reasons explained earlier, we choose to
use jitter, shimmer, and other features that capture F0 varia-
tions.

For experiments with jitter and shimmer, we only use the
utterance-wise average jitter and shimmer values (extracted
using Praat [25]), which may not be the best way to use such
transient information from speech signals. Nevertheless, we
build a three-layer MLP as a countermeasure model that uses
these features. In our implementation, we set the F0 range
to be within 75-500 Hz. The results show a 31% EER on
the development set, showing that even simple aggregates of
these features (the average across an utterance in this case)
already make a positive difference to performance.

For experiments with aperiodic and spectral envelope sig-
nal features, we verify the spoofing countermeasures in per-
formance improvements. We use the detection model that is
modified from the residual net architectures proposed in [11].
To evaluate the proposed features, we do not focus on fine-
tuning parameters and use five residual blocks compared to
the 9-11 blocks in [11] for all input features. We set the kernel
to be of different sizes to accommodate the dimensionality re-
quirements of the spectral envelope and aperiodic information



Table 3. ASV countermeasure-based evaluation

Countermeasure EER% t DCF
Features DEV EVAL DEV EVAL

Aperiodic parameters (AP)
Spectral envelope (SP)

MFCC
CQCC

Spectrogram
AP+SP

AP+SP+MFCC
AP+SP+CQCC

AP+SP+Spectrogram

21.19
10.55
7.14
1.37
0.48
9.41
5.14
3.85
0.62

20.65
9.31

11.64
10.89
9.39
8.91
8.48
6.73
6.67

0.4374
0.3520
0.1942
0.0407
0.0132
0.2872
0.1560
0.1293
0.0201

0.4445
0.2453
0.2663
0.2746
0.1954
0.2462
0.2169
0.1777
0.1604

ASV dataset

FoR dataset

Fig. 4. Spectral entropy distributions. Blue is for fake speech
and orange is for real speech

extracted using WORLD [26]. In our evaluation of these fea-
tures, from Table 3, the EERs are similar for the dev and eval
set using these features alone. We can also see that the fusion
of aperiodic information and spectral envelope with MFCC or
spectrogram or Constant Q cepstral coefficients (CQCC) [27]
features can improve the detection performance as evaluated
by EER and the joint performance with ASV evaluated by the
t-DCF [9, 24] and decrease the gap between the EERs of the
evaluation set and development set.

In the case of spectral entropy of F0 sequence, our hy-
pothesis is that the F0 sequence of synthetic speech may lack
the characteristic shift and variation of natural speech. We
use the Shannon entropy of the power spectral density of the
F0 sequence to capture this. The equations for the computa-
tion of this spectral density are as equations (1), (2) and (3),
which first calculate the power spectral density (PSD) of your
signal’s spectrum X(wi); then normalize the PSD as proba-
bility density function; and finally compute the power spectral
entropy.

P (wi) =
1

N
|X(wi)|2 (1)

Pi =
P (wi)∑
i P (wi)

(2)

PSE = −
n∑

pi ln pi (3)

The F0 sequence is extracted using WORLD [26], and
is trimmed to remove the zero values at the beginning and
end of the sequence. We plot the spectral entropy distribu-
tions for the ASVspoof 2019 logical data’s train/dev/eval set
and find consistent patterns in them. To evaluate the stabil-
ity/significance of the patterns, we also compute the distri-
bution from the FoR dataset, as shown in Fig. 4. Results
show that the spectral entropy of F0 sequence is a surpris-
ingly good indicator that captures statistical differences be-
tween synthetic speech and natural speech across datasets.

4. DISCUSSIONS

To further understand the anti-spoofing properties of the
aperiodic signal and spectral envelope signals, we evalu-
ated their performance with the direct usage in the ASV
model. As shown in Table 1 and Table 2, AP/SP-based black-
boxes and white-boxes show much larger ASV EER% than
STFT/MFCC based manners under most attacks. This is even
much more obvious in SP-based boxes. The potential specu-
lation is that both AP and SP are the features corresponding
to identity-independent attributes like content-dependent at-
tributes. SP is even mostly disentangled from speaker identi-
ties. These results are expected since the AP and SP signals
are chosen to capture the nuances differences between nat-
ural speech and fake speech, while ASV systems requires
features that distinguish the speakers’ voice characteristics in
a finer level. Still, one interesting phenomena we noticed is
that AP/SP features, especially AP, seems to be good supple-
mentary information that gives lower EER% for attacks that
STFT/MFCC are not good at. This is consistent with our hy-
pothesis that they could capture the signature information to
distinguish human-generated speech and machine-generated
speech.

5. CONCLUSIONS

In this study, we have established that spoofing attacks carried
out using deep-fake speech are more likely to be effective than
those using other synthetic methods or human impersonation;
even the speech is produced by professional impersonators.
We have also established that features that capture the fine-
level inconsistencies and nuances of the speech production
process could consistently exhibit differences between syn-
thetic speech and genuine speech. All of these result in more
robust detection of spoofed speech, and result in rendering
ASV systems more robust to attacks generated using unseen
methods.



6. REFERENCES

[1] Yang Gao, Rita Singh, and Bhiksha Raj, “Voice
impersonation using generative adversarial networks,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 2506–2510.
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