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ABSTRACT

This paper presents a novel self-supervised learning method

for handling conversational documents consisting of tran-

scribed text of human-to-human conversations. One of the

key technologies for understanding conversational documents

is utterance-level sequential labeling, where labels are esti-

mated from the documents in an utterance-by-utterance man-

ner. The main issue with utterance-level sequential labeling is

the difficulty of collecting labeled conversational documents,

as manual annotations are very costly. To deal with this issue,

we propose large-context conversational representation learn-

ing (LC-CRL), a self-supervised learning method specialized

for conversational documents. A self-supervised learning task

in LC-CRL involves the estimation of an utterance using all

the surrounding utterances based on large-context language

modeling. In this way, LC-CRL enables us to effectively

utilize unlabeled conversational documents and thereby en-

hances the utterance-level sequential labeling. The results of

experiments on scene segmentation tasks using contact center

conversational datasets demonstrate the effectiveness of the

proposed method.

Index Terms— Utterance-level sequential labeling, large-

context conversational representation learning, self-supervised

learning, conversational documents

1. INTRODUCTION

The development of automatic speech recognition technolo-

gies has made it increasingly important to utilize the rich in-

formation in human-to-human conversations. One of the most

famous applications is the data-mining system used in contact

centers, where telephone conversations between an operator

and customer are utilized for identifying the customer’s needs

or a problem with the product. Our objective is to develop

natural language processing technologies to linguistically un-

derstand conversational documents consisting of transcribed

text of these human-to-human conversations.

One of the key technologies for understanding conversa-

tional documents is utterance-level sequential labeling, where

labels are estimated from conversational documents in an

utterance-by-utterance manner. Utterance-level sequential la-

beling is often utilized for building topic segmentation [1, 2],

scene segmentation [3, 4], dialogue act classification [5–10],

and end-of-turn detection [11, 12]. To build stable utterance-

level sequential labeling methods for the conversational doc-

uments, it is essential to precisely capture conversational

contexts, i.e., who spoke what in what order. In fact, linguis-

tic information about not only the text but also the speaker

labels is often taken into consideration [3, 12]. Needless to

say, a large amount of labeled conversational documents are

required for stable modeling.

However, it is usually difficult to collect enough labeled

conversational documents because the manual annotations

are very costly. To address this problem, we focus on self-

supervised learning using unlabeled datasets [13–18]. Self-

supervised learning is a form of unsupervised learning in

which unlabeled data is only utilized for designing super-

vised training settings. It is usually applied during the pre-

training stage of several supervised tasks. We suggest that

self-supervised learning is a suitable approach for handling

conversational documents because unlabeled conversational

documents can be collected by utilizing a large number of

speech recognition datasets. The key challenge is how to set

the self-supervised task for the conversational documents.

In this paper, we propose a self-supervised learning for

conversational documents called large-context conversational

representation learning (LC-CRL). Our concept is to esti-

mate an utterance by using all the surrounding utterances. To

this end, we introduce a novel large-context language model,

which is an extended model of the forward-backward hierar-

chical recurrent encoder-decoder [19], so that we can estimate

not only linguistic information but also speaker information.

After performing the self-supervised learning, we utilize the

pre-trained network for building state-of-the-art utterance-

level sequential labeling based on hierarchical bidirectional

long short-term memory recurrent neural network condi-

tional random fields (H-BLSTM-CRF) [6, 7]. To the best of

our knowledge, this is the first study in which self-supervised

learning has been applied to conversational documents. In

experiments using contact center dialogue datasets, we exam-

ine call scene segmentation using utterance-level sequential

labeling and demonstrate that out proposed self-supervised

learning method yields a better performance than conven-

tional ones.

Our contributions are summarized as follows.

http://arxiv.org/abs/2102.08147v1


• We provide a detailed definition of LC-CRL and its im-

plementation method based on large-context language

modeling. We also provide a two-stage representation

learning method in which context-dependent word rep-

resentations, i.e., ELMo [17], are trained in the first

stage and context-dependent utterance representations,

i.e., LC-CRL, are trained in the second stage.

• We provide a building method of H-BLSTM-CRF-

based utterance-level sequential labeling after perform-

ing LC-CRL-based pre-training. Our building method

enables us to utilize pre-trained networks other than a

CRF-based classifier for training the H-BLSTM-CRF.

2. RELATED WORK

Self-supervised learning: Self-supervised learning is a

form of unsupervised learning in which unlabeled data is

only utilized for designing the supervised training settings.

It is usually utilized in the pre-training stage of several su-

pervised tasks. In natural language processing, word repre-

sentations and sentence representations are often acquired by

self-supervised learning. Initial studies examined context-

independent word representations such as continuous bag-of-

words, skip-gram [13], and GloVe [14], while more recent

studies have developed context-dependent word representa-

tions such as ELMo and BERT [16–18]. Context-independent

sentence representations such as skip-thought vector [15]

have also been developed. In this paper, we propose a self-

supervised learning method for acquiring context-dependent

utterance representations that can consider all past and all

future conversational contexts beyond the utterance bound-

aries. We also present a method that combines the context-

dependent utterance representations with context-dependent

word representations.

Large-context language modeling: Large-context language

models that can efficiently capture long-range linguistic con-

texts from conversational documents beyond the utterance

boundaries have received significant attention in recent stud-

ies [20–32]. These models can assign generative probabilities

to words while considering contexts beyond the utterance

boundaries. Several studies have reported that leveraging the

context information of past utterances can improve the per-

plexity and the word error rate [20–23]. Other studies have

shown that large-context end-to-end methods offer a superior

performance to utterance-level or sentence-level end-to-end

methods in automatic speech recognition [25–27], machine

translation [28–30], and response generation for dialogue sys-

tems [31, 32]. Furthermore, large-context language models

that can consider not only past but also future contexts have

been presented [19]. In this paper, we utilize large-context

language models for self-supervised learning specialized to

conversational documents.

Utterance-level sequential labeling: Utterance-level se-

quential labeling, which estimates utterance-level labels from

conversational documents, is used for topic segmentation [1,

2], scene segmentation [3], dialogue act classification [5–10],

and end-of-turn detection [11, 12]. Most of these techniques

use hierarchical recurrent neural networks in which word-

level networks and utterance-level networks are hierarchically

structured to capture not only contexts within an utterance

but also contexts beyond the utterance boundaries. In this

paper, we focus on speaker-aware hierarchical recurrent neu-

ral networks that can consider not only textual information

but also speaker information [3]. In addition, we combine

the speaker-aware hierarchical recurrent neural networks with

a CRF layer that can take consistencies between labels into

consideration. While the previous studies used only labeled

datasets to train the utterance-level sequential labeling, we

leverage unlabeled conversational documents for mitigating

the data scarcity problem.

3. PROBLEM FORMULATIONS

3.1. Definition of conversational documents

A conversational document is represented as a sequence of

utterance-level information U = {U1, · · · , UT }. The ut-

terance information is composed of speaker information and

text information. Thus, we represent the t-th utterance as a

speaker label qt and text W t. The t-th text is represented as

a word sequence W t = {wt
1, · · · , w

t
Nt}. Table 1 shows an

example of a conversational document in a contact center di-

alogue. In this case, the speaker label is either operator or

customer.

3.2. Definition of utterance-level sequential labeling

In the utterance-level sequential labeling for conversational

documents, utterance-level labels O = {o1, · · · , oT } are

estimated from a sequence of utterance-level information

U = {U1, · · · , UT }. In this paper, we construct the

utterance-level sequential labeling from unlabeled sentences

Dsentences = {W 1, · · · ,W J}, unlabeled conversational

documents Dunpair = {U1, · · · ,UM}, and labeled con-

versational documents Dpair = {(UM+1,OM+1), · · · ,
(UM+K ,OM+K)}. Dunpair and Dsentences are used for

the pre-training step, and Dpair is used for the fine-tuning

step.

4. LARGE-CONTEXT CONVERSATIONAL

REPRESENTATION LEARNING

This section details our proposed large-context conversational

representation learning (LC-CRL).



Table 1: Example of a conversational document in a contact center dialogue.

Speaker Text

U1 Operator Thank you for calling XXX Bank, my name is Jerry, how can I help you today?

U2 Customer Hi Jerry, {um} I lost my wallet {um}.

U3 Customer And I need to deactivate the card that {I} I lost inside there.

U4 Operator Oh, that’s terrible news, but yeah, I can definitely help you out with that.

U5 Operator {uh} Give me one second here.

U6 Operator So, could I get your, I need some information.

U7 Operator To check this on our computer system, could I get your name please?

U8 Customer Yeah, my name is Maria Wilson.

U9 Operator Maria {mhm}.

U10 Customer {uh} Yeah, that’s W I L S O N.

U11 Operator Thank you for that, and could I get your account number please?

U12 Customer Yeah, it’s {uh} two one eight five.

U13 Customer One nine, six six, four five.

U14 Operator {uh} And your current address.

U15 Customer Yeah, it’s one two three, main street {uh} Brick tower, number four five one three.

... ... ...

4.1. Modeling

Our self-supervised task is to estimate an utterance from all

past utterances and all future utterances. In other words, we

simultaneously estimate both a speaker label and a word se-

quence from all conversational contexts. We estimate the pre-

dicted probability of the t-th utterance from all conversational

contexts as

P (U t|U1:t−1, U t+1:T ;Θ) =

P (qt|U1:t−1, U t+1:T ;Θ)

Nt∏

n=1

P (wt
n|w

t
1:n−1, q

t, U1:t−1, U t+1:T ;Θ), (1)

where Θ represents the model parameter of the model. This

model is composed of an utterance encoder, a past-context

encoder, a future-context encoder, and an utterance decoder.

The network structure of the LC-CRL modeling is shown in

Fig. 1.

4.2. Utterance encoder

In the utterance encoder, a speaker label and all words in an

utterance are embedded into a continuous vector using bidi-

rectional long short-term memory recurrent neural networks

(LSTM-RNNs) and the self-attention mechanism. The t-th

utterance’s continuous vector is computed by

St = SelfAttention(Ct; θs), (2)

where SelfAttention() is a function that uses an attention

mechanism to summarize several continuous vectors as one

continuous vector [33]; θs is the trainable parameter. Ct is

computed from the word continuous vector as

Ct = BLSTM([qt⊤,wt
1
⊤
]⊤, · · · , [qt⊤,wt

Nt

⊤
]⊤; θc), (3)

where BLSTM() is a function of bidirectional LSTM-RNNs;

θc is the trainable parameter. The n-th word in the t-th ut-

terance wt
n and the speaker label for the t-th utterance qt are

defined as

wt
n = EMBED(wt

n; θw), (4)

qt = EMBED(qt; θq), (5)

where EMBED() is a linear transformational function that em-

beds a symbol into a continuous vector; θw and θq are the

trainable parameters. Note that we can utilize pre-trained

word representations including both continuous bag-of-words

and ELMo.

4.3. Past-context encoder

The past-context encoder embeds continuous vectors of the

past utterances into a continuous vector using an utterance-

level forward LSTM-RNN. The continuous vector that em-

beds utterances from the 1-st utterance to the t−1-th utterance

is defined as

Lt =
−−→
LSTM(S1, · · · ,St−1; θl)

=
−−→
LSTM(St−1,Lt−1; θl),

(6)

where
−−→
LSTM() is a function of the forward LSTM-RNN; θl is

the trainable parameter.

4.4. Future-context encoder

The future-context encoder embeds the continuous vectors

of the future utterances into a continuous vector using an
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Fig. 1: Network structure for LC-CRL modeling.

utterance-level backward LSTM-RNN. The continuous vec-

tor that embeds utterances from the t + 1-th utterance to the

T -th utterance is defined as

Rt =
←−−
LSTM(St+1, · · · ,ST ; θr)

=
←−−
LSTM(St+1,Rt+1; θr),

(7)

where
←−−
LSTM() is a function of the backward LSTM-RNN; θr

is the trainable parameter.

4.5. Utterance decoder

The utterance decoder estimates both a speaker label and the

words in an utterance by leveraging continuous vectors out-

put by both the past-context encoder and the future-context

encoder. A predicted probability of the t-th speaker label is

formulated as

P (qt|U1:t−1, U t+1:T ;Θ) =

SOFTMAX([Lt⊤,Rt⊤]⊤; θy), (8)

where SOFTMAX() is a linear transformational function with

softmax activation; θy is the trainable parameter. In addi-

tion, the generative probabilities of words are estimated on

the basis of auto-regressive generative modeling. The gener-

ative probabilities of the n-th word in the t-th utterance are

produced by

P (wt
n|w

t
1, · · · , w

t
n−1, q

t, U1:t−1, U t+1:T ;Θ)

= SOFTMAX(vt
n; θd), (9)

where θd is the trainable parameter, and vt
n, which represents

context information, is given by

vt
n =
−−→
LSTM([wt

n−1
⊤
, qt⊤,Lt⊤,Rt⊤]⊤,vt

n−1; θv), (10)

where θv is the trainable parameter. Thus, the context infor-

mation includes not only long-range linguistic contexts within

an utterance but also long-range past and future contexts be-

yond the utterance boundaries.

4.6. Optimization

The proposed method utilizes unlabeled conversational doc-

uments Dunpair = {U1, · · · ,UM} for learning networks

to extract conversational document representations from the

conversational document. Here, model parameters are repre-

sented as Θ = {θs, θc, θw, θq, θl, θr, θy, θd, θv}. The model

parameters can be optimized by

Θ̂ = argmin
Θ

−
∑

U∈Dunpair

T∑

t=1

logP (U t|U1:t−1, U t+1:T ;Θ). (11)

The optimization is achieved by means of a mini-batch

stochastic gradient decent algorithm with conversation-level

mini-batches.

We can also apply a two-stage representation learning

method in which context-dependent word representations

are trained in the first stage and context-dependent utter-

ance representations, LC-CRL, are trained in the second

stage. For the first stage, we construct ELMo [17] from

Dsentences = {W 1, · · · ,W J}. This two-stage representa-

tion learning method enables us to utilize not only unlabeled

conversational documents but also unlabeled sentences.

5. UTTERANCE-LEVEL SEQUENTIAL LABELING

WITH LC-CRL

This section describes a method to build an utterance-level

sequential labeling model based on a speaker-aware hierar-

chical bidirectional long short-term memory recurrent neural

network conditional random field (SA-H-BLSTM-CRF) with

LC-CRL.

5.1. Modeling

In SA-H-BLSTM-CRF-based utterance-level sequential la-

beling, we model the conditional probabilities of utterance-

by-utterance labels O given an entire conversational doc-

ument U . The utterance-by-utterance labels are estimated

by

Ô = argmax
O

P (O|U ;Λ), (12)

where Λ indicates the model parameters of SA-H-BLSTM-

CRF. This model is composed of an utterance encoder, a past-

context encoder, a future-context encoder, and a CRF-based

classifier. Fig. 2 shows the network structure of the SA-

H-BLSTM-CRF. In comparison to the network in Fig. 1,
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the structure of SA-H-BLSTM-CRF is pretty similar to LC-

CRL modeling. There are two key differences between these

two network structures: one, the type of network output, and

two, how the outputs from the past-context encoder and the

future-context encoder are aggregated. Note that the utter-

ance encoder, past-context encoder, and future-context en-

coder have the same structures between SA-H-BLSTM-CRF

and LC-CRL modeling.

5.2. CRF-based classifier

The CRF-based classifier estimates the predicted probabilities

of utterance-by-utterance labels O from continuous represen-

tations generated from both the past-context encoder and the

future-context encoder. The predicted probabilities are com-

puted from

P (O|U ;Λ) =

∏T

t=1 expφ(o
t−1, ot,yt; θo)∑

Ō

∏T

t=1 expφ(ō
t−1, ōt,yt; θo)

, (13)

where φ() is the linear transformational function in the lin-

ear CRF layer and θo is the model parameter. yt refers to

the t-th continuous representations generated from both the

past-context encoder and the future-context encoder. yt is

constituted by

yt = [Lt+1⊤,Rt−1⊤]⊤. (14)

Note that the CRF-based classifier uses the outputs of both the

past-context encoder and future-context encoder differently

from the utterance decoder in the LC-CRL.

5.3. Optimization

To optimize the utterance-level sequential labeling based on

SA-H-BLSTM-CRF, the model parameters Λ = {θs, θc, θw,

Table 1: Experimental datasets.

Business No. of No. of No. of

type calls utterances words

Finance 59 6,081 55,933

Internet provider 57 3,815 47,668

Government unit 73 5,617 48,998

Mail-order 56 4,938 46,574

PC repair 55 6,263 55,101

Mobile phone 61 5,738 51,061

All 361 32,452 305,351

θq, θl, θr, θo} are optimized from labeled conversational

documents Dpair. Note that {θs, θc, θw, θq, θl, θr} are the

pre-trained parameters when LC-CRL-based pre-training is

performed. The model parameters can be optimized by

Λ̂ = argmin
Λ

−
∑

(U ,O)∈Dpair

logP (O|U ;Λ). (15)

The optimization is performed using the mini-batch stochas-

tic gradient decent algorithm with conversation-level mini-

batches.

6. EXPERIMENTS

6.1. Datasets

We performed our experiments using simulated contact cen-

ter dialogue datasets consisting of 361 labeled conversational

documents in six business fields. One dialogue means one

telephone call between one operator and one customer. All

utterances were manually transcribed. Each dialogue was au-

tomatically divided into speech units using speech activity de-

tection. We manually annotated five call scenes: C1: open-

ing, C2: requirement confirmation, C3: response, C4: cus-

tomer confirmation, and C5: closing [3]. Detailed setups are

shown in Table 2, where No. of calls, No. of utterances, and

No. of words indicate the number of calls, words, and utter-

ances with respect to the call scenes, respectively. We also

prepared 4,000 unlabeled conversational documents collected

from various contact centers for self-supervised learning and

prepared an additional 500 million sentences collected from

the Web.

6.2. Setups

The evaluation involved 6-fold cross validation open to busi-

ness type, where five business types were used for training

and the remaining one for testing. As baselines, we con-

structed H-BLSTM-CRF and speaker-aware H-BLSTM-CRF

(SA-H-BLSTM-CRF) models. The network configurations



Table 2: Experimental results in terms of classification accuracy (%) and F-measure (%) with respect to output labels.

Model Self-supervised learning Accuracy (%) F-measure (%)

C1 C2 C3 C4 C5

1. H-BLSTM-CRF – 83.8 77.4 55.2 88.3 83.6 80.1

2. SA-H-BLSTM-CRF – 85.0 78.7 58.5 90.6 85.6 81.3

3. SA-H-BLSTM-CRF ELMo 88.2 83.5 63.3 91.1 88.3 82.9

4. SA-H-BLSTM-CRF STV 87.2 80.2 60.6 91.6 88.2 83.8

5. SA-H-BLSTM-CRF ELMo+STV 88.7 85.2 68.4 92.7 90.6 85.8

6. SA-H-BLSTM-CRF LC-CRL 89.6 84.0 64.3 91.6 89.6 84.2

7. SA-H-BLSTM-CRF ELMo+LC-CRL 90.4 85.7 70.4 93.4 92.1 87.3

in these models were unified as follows. We defined the

word vector representation as a 512-dimensional vector and

the speaker vector representation as a 32-dimensional vec-

tor. Words that appeared only once in the training datasets

were treated as unknown words. We used two-layer BLSTM-

RNNs with 512 units for the utterance encoder and two-layer

LSTM-RNNs with 512 units for both the past-context en-

coder and future-context encoder. Dropout with the rate set

to 0.2 was used for BLSTM() and LSTM(). In addition, we

constructed ELMo [17], skip-thought vector (STV) [15], and

LC-CRL models for comparison. ELMo was trained only

from sentences collected from the Web, and STV and LC-

CRL were trained from unpaired conversational documents.

Note that we examined two-stage training individually for

STV and LC-CRL using the pre-trained ELMo.

For training, the mini-batch size was set to five conversa-

tional documents. The optimizer was Adam with the default

settings. Note that a part of the training sets was used as the

datasets utilized for early stopping. We constructed five mod-

els by varying the initial parameters and performed our eval-

uations using the model that had the lowest validation loss for

individual setups.

6.3. Results

Table 3 shows the experimental results in terms of classifica-

tion accuracy (%) and F-measure (%) with respect to output

call scene labels. We can see that line 2, which captures not

only textual information but also speaker information, out-

performed line 1, which only uses textual information. This

indicates that considering who spoke what in what order is

important for utterance-level sequential labeling for conver-

sational documents. Next, lines 3–7 yielded a higher per-

formance than line 2. This shows that self-supervised learn-

ing can improve the utterance-level sequential labeling perfor-

mance. Our proposed method, LC-CRL, outperformed both

ELMo and STV, because LC-CRL can learn the relationships

between utterances. The highest performance was achieved

by line 7, which utilizes both ELMo and LC-CRL for two-

stage self-supervised learning. This confirms that the pro-

posed method that utilizes both unlabeled sentences and un-
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labeled conversational documents for self-supervised learning

is an effective approach.

Fig. 3 shows the classification accuracy results when the

data size of paired datasets was varied. When the paired

data size was small, the classification performance of SA-

H-BLSTM-CRF+ELMo was not high. This is because

ELMo-based self-supervised learning cannot capture rela-

tionships between utterances. In contrast, SA-H-BLSTM-

CRF+ELMo+LC-CRL could attain a higher performance

even when the labeled datasets were small. These results

demonstrate that our proposed LC-CRL is effective for the

utterance-level sequential labeling of conversational docu-

ments.

7. CONCLUSIONS

In this paper, we proposed large-context conversational rep-

resentation learning (LC-CRL), a self-supervised learning

method specialized for conversational documents. The key

strength of LC-CRL is that it can leverage unlabeled con-

versational documents for acquiring networks to generate

context-dependent utterance representations. The pre-trained

networks can then be used for the utterance-level sequen-

tial labeling networks. Experiments on scene segmentation



tasks using contact center datasets showed that the proposed

method yielded a better performance than methods without

self-supervised learning and those with conventional self-

supervised learning. We also demonstrated that the proposed

method could show superior performance even when few

paired datasets were used.
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