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ABSTRACT

Although Sequence-to-Sequence (S2S) architectures have become
state-of-the-art in speech synthesis, capable of generating outputs
that approach the perceptual quality of natural samples, they are
limited by a lack of flexibility when it comes to controlling the out-
put. In this work we present a framework capable of controlling the
prosodic output via a set of concise, interpretable, disentangled pa-
rameters. We apply this framework to the realization of emphatic
lexical focus, proposing a variety of architectures designed to ex-
ploit different levels of supervision based on the availability of la-
beled resources. We evaluate these approaches via listening tests
that demonstrate we are able to successfully realize controllable fo-
cus while maintaining the same, or higher, naturalness over an estab-
lished baseline, and we explore how the different approaches com-
pare when synthesizing in a target voice with or without labeled data.

Index Terms— prosody control, sequence-to-sequence speech
synthesis

1. INTRODUCTION

Sequence-to-Sequence (S2S) speech-synthesis architectures have
become the state-of-the-art in the field, providing high-quality out-
puts that approach or match the perceived quality of natural speech
in many studies. Aside from the level of quality attained, there
are many attractive features to these models. They are able to
jointly model different aspects of a waveform (e.g., segmental and
prosodic), so interactions between them can be implicitly learned.
They also do away with classical pipeline architectures in favor of a
single unified model, which is appealing when some of the modules
in the pipeline are difficult to develop (e.g., text-processing for a new
language). On the other hand, they suffer from well-documented
shortcomings, such as lack of interpretability (it can be difficult to
tell which parts of the model are responsible for what functions),
lack of controllability (it is more difficult to intervene into the model
in order to control some aspects of the synthesis, which is often
desired, such as when providing SSML support), and potential in-
stability (small deviations at inference time can become exacerbated
and generate highly degraded speech).

In this work, we address the controllability issue by expanding
the S2S architecture with mechanisms that can be exposed to the
user to manipulate some property of the output. Although usability
factors are not the focus of this work, we nonetheless advocate for
a set of properties that will make such controls accessible to the end
consumer of the system, namely:

• Interpretability: The listener should be able to clearly hear and
identify the effect of varying a control (e.g., speech is slower,

faster, higher-pitched, sounds happier, etc.).
• Monotonicity: A design that results in perceptual effects that vary

monotonically as the user varies a control has a more intuitive feel,
and is more easily tunable.

• Low-dimensionality: The user should not be expected to manipu-
late a large number of parameters to control the output. The model
should either expose a low-dimensional controllable representa-
tion, or be able to step in and fill in defaults to obviate the task for
the user.

• Disentanglement: Though this may be difficult due to the many
ways different speech parameters interact, a set of controls that are
more decoupled from each other facilitates the tuning of the out-
put along fairly independent (perceptual) dimensions (e.g., tempo
and volume could be tuned separately without needing to revisit a
previously tuned parameter).

We explore the realization and controllability of narrow lexical focus
as a case study for the above. Our objective is the realization of an
emphatic level of prominence that is distinct from the type of accen-
tuation that we observe in “neutral” broad-focus prosody. Consider
the intonational phrase in the examples below when they occur as a
reaction to the context in parentheses. In E1, as a reply to a general
question, we see a likely case of broad focus prosody, where wine
acts as the nuclear element and receives some sort of pitch accent.
The same accented word, however, might be given a more emphatic
degree of prominence when it happens in the context of E2. Fur-
thermore, we can switch the focal point to a different word in the
phrase when it is primed by a different context, as in E3. The [...] in
these examples delimit the domain of focus, which the speaker may
delineate, for instance, by employing a higher degree of disjuncture
between the focal element and its context.
• E1: Mary is [pouring the wine]. (What’s Mary doing?)
• E2: Mary is pouring the [wine]. (Is Mary pouring the beer?)
• E3: [Mary] is pouring the wine. (Is John pouring the wine?)
We are interested in the prosodic realizations that arise in examples
such as E2 and E3 above (but also in other scenarios, such as con-
trastive emphasis, requesting clarification, etc.). In Sec. 2 we intro-
duce an S2S architecture that supports this type of prosodic control,
review in Sec. 3 how our approach compares to relevant research
in the literature, evaluate competing approaches to this question in
Sec. 4, and conclude in Sec. 5 with some analysis of these results
and an outline of future steps.

2. ARCHITECTURE

The model (Fig. 1) is a variant of the Tacotron2 architecture pro-
posed in [1], augmented with components in the decoder to facili-
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tate both the injection of controls, and improved stability during de-
coding [2]. This sequence-to-sequence model generates an acoustic
spectral-prosodic representation that is then fed to an independently-
trained, LPC-Net-based [3] neural vocoder to generate high-quality
samples in real time [2].

The Encoder comprises the following components, combined
as in Fig. 1 before being sent to the decoder:

• The emphasis embedding (A) from a Boolean indicator fea-
ture encoding emphatic focus within the utterance, as a way
to provide direct supervision to the model.

• The embedding of various linguistic symbols (B) extracted
from an extended phonetic dictionary comprising phone iden-
tity, lexical stress, phrase type, and other symbols for word
boundaries and silences. This analysis is carried out exter-
nally by a rules-based TTS Front End module, adopted from
a unit selection system [4].

• A front-end encoder (C) consisting of convolutional and bi-
directional Long Short-Term Memory (Bi-LSTM) layers (as
in [1]), encoding the merged embeddings from (A) and (B).

• A global utterance-level speaker embedding (D), broadcast
over the length of the sequence, to support training in a multi-
speaker setting.

• A set of 4-dimensional hierarchical prosodic controls (which
will be introduced in Sec. 2.1) designed to enable the type of
fine, word-level modification needed to realize the prosodic
patterns associated with emphatic focus. Since these prosodic
controls are a set of statistics extracted from the acoustic sig-
nal, the ground-truth values from the training set are used
during training (F). At inference time a separate predictive
module (E) steps in to provide default predictions for the hi-
erarchical prosodic trajectories.

• An optional user-exposed control (G) to modify the default
predictions generated by (E). In particular, we propose a set
of additive controls that are linguistically intuitive and in-
terpretable (Sec. 2.1). Note that the feed-forward operation
in block H is placed after the (optional) user request in G.
This design choice is made to preserve the interpretability of
the quantities the user gets to manipulate (which would not
be the case if the order was reversed, and the independent
prosodic targets were blended via a non-linear feed-forward
operation).

The Decoder is an autoregressive network that largely follows
the standard Tacotron2 architecture, but with modifications on the
attention mechanism, autoregressive feedback, choice of targets,
and training losses. These have already been described in [2] and
are summarized here as follows. The attention is an augmented
two-stage attention where the content- and location-based attention
of Tacotron2 are followed by a structure-preserving mechanism
encouraging monotonicity and unimodality in the alignment ma-
trix. This modification has been found to be crucial to increase
stability during inference, particularly in the presence of external
controls. A double feedback approach is used during training to
expose the model both to the previous ground-truth output value
(i.e., teacher forcing) as well as the previous predicted value (i.e.,
inference mode). At inference time, the predicted value is repli-
cated. The model is trained in a multi-task fashion to predict the
80-dim mel cepstral features in tandem with the parameters needed
as inputs for an independently trained LPC-Net neural vocoder. For
22kHz signals, these features (which we denote as “LPC features”)
consist of a 22-dim vector with 20 cepstral coefficients, log f0 and

Fig. 1. System architecture. The dashed line indicates the output of
the S2S model is sent to a separately trained neural vocoder which
does not play a role in the optimization of Eqn. 1.

f0 correlation. The predicted LPC features are also processed with
two post-nets (one to refine the cepstrum, and one to refine the pitch
parameters); no post-net refinement is applied on the mel task. Let
yMt and yLt represent the target sequences for the mel and LPC
tasks respectively, ỹMt and ỹLt their final predictions, and ŷLt the
“intermediate” LPC-feature prediction (before the post-net). Then
the following differential loss function is used to train the system:

L = MSE(ỹMt , y
M
t ) + 0.8MSE(ŷLt , y

L
t )

+ 0.4MSE(ỹLt , y
L
t ) + 0.4MSE(∆ỹLt ,∆y

L
t ), (1)

where the ∆ operator applies the first difference in time to a se-
quence, and MSE(, ) is the mean-squared error. For the sake of
space, we omit some detail in this exposition, and refer the reader
to [5, 2] for additional background and formulae.

This architecture accommodates some variants depending on the
availability of labeled resources and types of control that are expos-
able to a user. Among them, we explore the following:

• Classic Supervision: When labeled data is available, this archi-
tecture conditions directly on a Boolean indicator feature. Dur-
ing training, the ground truth values of the audio signals are used.
During inference a binary request is passed to the system1. This
corresponds to blocks {A, B, C, D} on the encoder side.

• No Supervision: Under the assumption that no labeled data exists,
the architecture defined by {B, C, D, E, F, G, H} provides a way to
introduce sensitivity into the S2S system during training, and, at
inference time, control the realization of the prosodic patterns via
a tunable set of controls (cf. the binary control of the supervised
architecture).

• Hybrid: Though components E through H are motivated by an
unsupervised approach, they may facilitate the realization of
prosodic patterns even when labeled data exists by working in
tandem with an explicit feature. To investigate this, we consider a
“hybrid” approach (defined by the full model {A-G}) that mixes
supervised knowledge with the infrastructure designed to tackle
the case when we don’t have access to it.

1This value could be either user-specified for given words (e.g., via mark-
up) or inferred from text. We do not address here the problem of inference
from text (though we have previously in [6]), and focus on the realization of
prosodic controls assuming an existing request.



2.1. Hierarchical Prosodic-Control Model

Following the motivation for a perceptually-interpretable, low-
dimensional control mechanism for prosody discussed in Sec. 1, we
propose a hierarchical set of four prosodic controls that summarize
information about the duration and pitch excursion of a signal over
linguistically-meaningful and intuitive intervals of the prosodic hi-
erarchy. These controls include global and local properties, and are
an extension of the approach in [5], which allowed for controlling
global aspects like overall tempo, but which lacked any control to
effect the kind of deviation from long-term trends needed to real-
ize local emphatic focus. To arrive at these, let us first define the
following statistics:

• Sdur: The log of the average per-phone durations, along a sen-
tence (and excluding any silence).

• Sf0 : The log-f0 “spread” (defined as the difference between the
95- and 5-percentiles of log-f0), along a sentence.

• Wdur: The log of the average per-phone durations (as above),
along each word.

• Wf0 : The log-f0 “spread” (as above), along each word.

Note that the average per-phone durations in the above definitions
are estimated as the duration of speech (in seconds) along the rel-
evant spans (word or sentence) divided by the number of phone
symbols contained therein, and that therefore no fine-level phonetic
alignment is required in the computation (only coarse word-level
alignments and either phonetic transcriptions or a dictionary). These
sentence- and word-level properties are propagated down to the
temporal granularity of the phonetic encoder outputs (i.e., phones)
to form piecewise functions that are constant within a (sentence
or word) unit. From this we define the following four-component
prosodic-control target vector:

PC = Normσ{[Sdur, Sf0 ,Wdur − Sdur,Wf0 − Sf0 ]}, (2)

where Normσ{} is the linear map [−3σ2, 3σ2] → [−1, 1], and σ2

is the global (corpus-wide) variance for each of the statistics in PC.
At inference time, the predictions of the prosodic-control subnet are
rectified to be piecewise constant as the oracle values that the S2S
system was trained with. In the evaluated systems, a mean pool-
ing function is applied to the prediction to be constant between the
(known) sentence and word boundaries.

Fig. 2. Architecture of the hierarchical prosodic sub-network for
predicting targets from encoder-level features.

The architecture of the prosodic-control predictor (Fig. 2) con-
sists of a stack of N blocks, each comprising a concatenation of the
speaker embedding with the block’s input, a Bi-LSTM, Layer nor-
malization [7], and Drop-Out. Models are trained in a multi-speaker
fashion via a speaker-embedding layer whose output is fed into ev-
ery cascaded block. (We will discuss how we instantiate model sizes
for the different components of this architecture when we discuss the

details of selecting models for evaluation in Sec. 4.) Since the repli-
cation to the phone level artificially introduces an over-contribution
to the loss, each observation in each of the prosodic targets is down-
weighted by this replication factor (e.g., for the sentence-level tar-
gets, each phone-level observation in a 10-phone sentence receives
a weight of 0.1; a similar approach is applied to the word-level
targets). These observation-level weights (uniquely determined by
prosodic constituency) are then combined with global target-specific
weights α that can be set during training to trade-off between the
different targets (in this evaluation α = [1, 1, 1.5, 3.5]). The model
is then trained with ADAM [8] to minimize the weighted L1 loss
between predictions and targets. A set of 10% of the sentences in
the training set are held out to tune structure (e.g., number of hidden
units and blocks) and learning rate hyper-parameters .

Fig. 3. Sample phone-level trajectories of the four prosodic controls
for a two-sentence input.

At run time, lexical focus is controlled by the process illustrated
in Fig. 4: The prosodic-control predictions generated by component
E in Fig. 1, and post-processed to be piecewise constant, are off-
set by 4 tunable parameters (α, β, γ, δ) where the (α, β) are global
sentence-level offsets (that are applied uniformly and therefore only
contribute to the overall expressiveness of the utterance) and (γ, δ)
boost the word-level predictions of only those words we wish to
make salient (remaining non-focal words receive no offset). These
run-time hyperparameters can be tuned via an independent develop-
ment set.

3. PREVIOUS AND RELATED WORK

Synthesizing emphasis has been previously explored within other
architectures like unit selection [9, 10, 11], classical parametric syn-
thesis [12, 13, 14], and pipeline systems using neural networks [15].
Within S2S models, controllability has recently received a moderate
amount of attention, with the Global Style Tokens (GST) proposal
of [16] being one of the earliest works to discover latent styles in an
unsupervised fashion. GST-based approaches have found wide us-
age (see, e.g., [17, 18, 19]), but as these representations are discov-
ered, rather than explicitly formulated, they often lack a priori in-
terpretability (though post hoc listening often reveals some uniform
perceptual quality). GST and others [20] where global tempo is con-
trollable lack the finer-grained level of control we pursue due to its
global nature. Non-GST approaches include works like [21], where
direct conditioning on estimated indicators of emotion are used to
control the output. Recent work by [22, 23] has also looked at the
controllability of prosodic properties in Transformer-based neural
TTS systems, although at the core of that approach is a move away



Fig. 4. Boosting the prosodic-control predictions of sentence- and
word-level targets to realize focus. The example shows a fragment
of an utterance where the word blue is to be emphasized (e.g., I don’t
want the red one; I want the blue one). The predicted prosodic con-
trols are offset by global and local offsets, where the local offsets are
applied to the focal words only.

from S2S models that, for the sake of speed, replaces a S2S teacher
with feed-forward student models that decouple prosodic from spec-
tral modeling. We, in contrast, retain the full S2S framework in
our implementation. Hierarchical representations and controllability
have been explored together in [24, 25] though these approaches lack
the level of interpretability for fine word-control. The work of [26]
targets interpretable and controllable hierarchical prosodic controls
and comes closest to the approach we pursue. However, their dis-
entanglement is data-driven and leaves some residual couplings be-
tween the (pitch and duration) dimensions we control separately; we
model f0 dynamics (as opposed to levels), which is more perceptu-
ally relevant to realizing emphatic focus; and as we will see in the
next section, our controllable systems attain the same or higher level
of quality when introducing this prosodic variation. Prosody transfer
across databases bearing different labels is one of the main applica-
tions of our framework, as we will discuss in Sec. 4. The works
of [27, 28] pursue similar goals although, being based on global-
sentence level embeddings, they do not address fine-level control as
we do.

4. EVALUATION

The training material comprised four corpora from three profes-
sional native speakers of US English, broken down as follows: a set
of 10.8K sentences from a male speaker (M1); a set of 1K sentences
from the same male speaker, where each sentence contains several
emphasis-bearing words (M1emp); and two corpora from two dis-
tinct female speakers (F1 and F2) containing approximately 17.3K
and 11K sentences respectively. The corpus M1emp was collected
by indicating to the speaker the emphasis-bearing words within
each sentence, and instructing him to realize an emphatic level of
prominence on those target words. His prosodic realizations differ
in marked ways from the style of broad focus prosody in terms of
tempo, relative pitch accent height, and disjuncture from adjacent
material. The sentences were intended to serve as elicitors for var-
ious cases of narrow focus (e.g., contrast, disambiguation, etc.).
Notice that labeled data is available for only one speaker, and that
the size of this corpus is considerably smaller than that of the base
corpora. A sentence from M1emp contains three emphatic words
on average, and the overall percentage of such words was approx-

imately 23%. We define the following data partitions to facilitate
the ensuing discussion: a set of data with all the resources pooled,
including the emphatic dataDemp = {M1, 10×M1emp, F1, F2},
and a base set Dbase = {M1, F1, F2}. Note that Demp uses 10-
fold replication of the M1emp subset to compensate for the lower
prior.

We would like to investigate the trade-offs between approaches
that use labeled data (when available), and the fully unsupervised
approach that is possible within the framework proposed in Sec. 2.
To that end, consider the following systems:

• Base (NoEmph): A baseline S2S system, which uses global
(sentence-level) prosodic controls, but no word-level prosodic
control. The training set (Demp) subsumes the emphatic data, but
no other emphasis-marking feature is used.

• Base (Sup): A baseline system with Classic Supervision (as in
Sec. 2) with global controls, trained with Demp and an explicit
binary feature encoding the location of emphasis.

• PC-Unsup: A Fully Unsupervised system (as per Sec. 2) with
variable prosodic control, where both the S2S and prosody-
prediction components are trained with Dbase.

• PC-Hybrid: A Hybrid system with variable prosodic control,
trained with Demp, and an explicit Boolean emphasis indicator as
in the Baseline (Sup) model.

Table 1. Summary of the different properties and training strategies
among the different systems evaluated.

Base Base PC- PC-
(NoEmph) (Sup) Unsup Hybrid

Control? N Y Y Y
Type of None Binary Tunable Binary /
Control? Tunable
Training? Demp Demp Dbase Demp

Emph. feat? N Y N Y

The architecture of Base (NoEmph) with global controls was
already presented and evaluated in [5]. Since it lacks fine-grained
lexical prosodic control, we do not expect it to perform well on
an emphasis-evaluation task. It is used here, however, to provide
a strong anchor point with respect to overall quality to ensure that
the alternative proposals do not degrade with respect to the natural-
ness afforded by this approach. A common LPC-Net neural vocoder,
also trained in a multi-speaker fashion using Dbase, was used for all
experiments [2].

Model selection and tuning was done as follows. First, for the
prosodic sub-network, 10% of the training data was held out to do
a grid search over structures and learning rate by tracking the held-
out loss. The models thus selected were, for the PC-Unsup con-
dition, a stack of 5 blocks with 175 hidden units in the Bi-LSTM
layer, and, for the Hybrid model, a stack of 4 blocks with 200 hid-
den units in the Bi-LSTM layer. The speaker embedding was of
dimension 20 in both cases. Once this was fixed, a development set
of 20 sentences not used in training was used to perceptually tune
remaining hyper-parameters of the different configurations, includ-
ing the dimension of the emphasis-embedding space (dim = 8 for
the Hybrid model, and 16 for the Base (Sup) system), and the run-
time additive word-level boosting parameters (γ, δ) (see the “control
offset” component G in Fig. 1, and Fig. 4) for the PC-Unsup and
PC-Hybrid word-level controls (set to (0.25, 1.30) and (0.0, 1.5)
respectively). These word-level offsets were applied only to the item



in a sentence that was intended to be the focus carrier; the predic-
tions of the prosodic-control model remain unboosted for all other
lexical items. Sentence-level boosting was not found to provide any
advantages over word-level boosting, and the parameters (α, β) (see
Fig. 4) were therefore only used for the two reference systems (Base
(NoEmph) and Base (Sup)), and set to (0.0, 0.5)). The non-negative
boosting values we employ match our theoretical expectations, and
what we empirically observe in the M1emp subset, that focused
items receive more pronounced pitch accents, and slower speaking
rate/longer durations. We observed that the Base (Sup) system al-
ready realized these tempo differences quite well, and only boosted
the pitch excursions when tuning the Hybrid systems. In general, we
find that after tuning a single set of boosting parameters works quite
well across a variety of sentences and voices2.

4.1. Subjective Listening Tests

We wish to evaluate how the different multi-speaker approaches we
have described fare in a perceptual listening task. In particular,
we are interested in examining two test-case scenarios. In the first
case, we operate under the assumption that the target synthesis voice
matches a speaker for whom we have existing training data (i.e.,
the matched condition). In the second, and more interesting case,
we assume that the target synthesis voice lacks any such labeled re-
sources for training (though some exists for a separate speaker), and
that therefore any use the system makes of supervised information
is done indirectly by transferring knowledge from one speaker to
another (we refer to this as the transplant condition). Notice that
the distinction we have just introduced applies to the systems that
are sensitive to supervision in some way (i.e., Base (Sup) and PC-
Hybrid); system PC-Unsup, by construction, is not.

To evaluate the systems defined in the previous section, while
addressing the matched and transplant cases respectively, we con-
ducted two independent listening tests where the target speakers
were M1 (whose training data contains an emphatic subset) and
F1 (whose training data does not)3. No natural recordings were in-
cluded (which could have provided a topline performance) since no
common set of utterances with emphasis existed for both voices, and
we wanted to run parallel tests. Instead, we opted for an evaluation
set of 43 unseen sentences, with each containing a single focused
word.

Table 2. MOS (σ) results for the matched condition (M1). For em-
phasis all systems are statistically significantly different from each
other. For quality, there are no statistically significant differences
between the pairs {Base (NoEmph), PC-Unsup} and {Base (Sup),
PC-Hybrid}; all other pairwise differences are significant. Signifi-
cance is assessed at the p = 0.01 level via one-tailed t-tests.

System Attribute
Emph Quality

Base (NoEmph) 2.21 (1.3) 3.87 (0.8)
Base (Sup) 4.08 (1.0) 4.10 (0.1)
PC-Unsup 3.35 (1.2) 3.82 (0.9)
PC-Hybrid 3.96 (1.0) 4.08 (0.8)

The listening tests were designed to evaluate the systems in
terms of two attributes on 5-point scales: (i) how well they realize

2Samples and additional listening test details are available at
http://ibm.biz/SLT2021.

3In informal listening, we found F1 and F2 to be of comparable quality,
so only one voice was selected to keep the test manageable.

narrow focus on a given word, and (ii) the overall quality of the
sentence. Listeners were recruited through a crowd-sourcing plat-
form and presented with one audio sample at a time, accompanied
by a transcript of the text where the intended focus-carrying word
had been capitalized. To facilitate comprehension of the task we
provided the listeners with the following set of instructions, and
collected their responses in the provided 5-point scales:
The UPPERCASE word (excluding the word ”I”, if it exists) in the
text above should sound emphasized in this sample. Assess the level
of emphasis you hear in the UPPERCASE word. It sounds: 1 (neu-
trally spoken), 2, 3 (somewhat emphasized), 4, 5 (definitely em-
phasized). Assuming the UPPERCASE word is emphasized as re-
quested, rate the overall quality and naturalness of this audio sam-
ple: 1 (Bad), 2 (Poor), 3 (Fair), 4 (Good), 5 (Excellent).

Each {sentence, system} combination received 25 independent
rating tuples (one for each of the 2 attributes). The texts were de-
signed to make the choice of focus semantically congruent with the
context-providing sentence. Tables 2-3 summarize the restuls in
terms of Mean Opinion Scores (MOS), standard deviation (σ), and
pairwise statistical significance.

Table 3. MOS (σ) results for the transplant condition (F1). All pair-
wise differences are statistically significantly different for emphasis.
For quality, {Base (Sup.), PC-Unsup} are statistically equivalent;
all other pairwise differences are statistically significantly different.
Significance is assessed at the p = 0.01 level via one-tailed t-tests.

System Attribute
Emph Quality

Base (NoEmph) 2.20 (1.3) 3.87 (0.9)
Base (Sup) 3.71 (1.2) 3.97 (0.9)
PC-Unsup 3.58 (1.1) 3.97 (0.9)
PC-Hybrid 4.02 (1.0) 4.08 (0.8)

5. DISCUSSION AND CONCLUSIONS

From these evaluations, we can make the following remarks for both
speakers. All controllable systems achieved a much higher degree
of emphasis than Base (NoEmph) (which, as expected, attained low
scores in terms of emphasis realizability), and this was achieved at
no expense of overall quality since the remaining systems are sta-
tistically better or the same. We hypothesize this improvement in
quality is due to the fact that conditioning on additional prosodic
attributes of the outputs steers the model toward more natural (and
stable) points during training. We observe differences between the
approaches, however, comparing the matched vs. transplant condi-
tions: when labeled data is available for a target speaker, our experi-
ments suggest that the fully-supervised approach offers the best op-
erating point in terms of both quality and emphasis (Table 2). This
approach, however, does not generalize as well as the hybrid ap-
proach does to a new target speaker lacking labeled data (Table 3).
For the latter, combining supervision with the prosodic-conditioning
framework supplements the performance for both attributes when
training a multi-speaker model to enable the transfer of knowledge.
Lastly, we see that even lacking any labeled data, the framework
is able to provide a good point of quality and emphasis control by
means of boosting the predictions of the fully unsupervised model.
This is facilitated by our use of a set of controls that are readily inter-
pretable and can be perceptually linked to the task at hand. Though
the results are very encouraging, some difficult test cases remain.

http://ibm.biz/SLT2021


For instance, we have observed in informal listening the challenge
posed by some function words, particularly clitics or words contain-
ing only unstressed vowels in broad-focus realizations.

We have introduced and validated a framework that allows for a
finer degree of control over lexical prosody to guide the realization of
narrow focus in S2S synthesis. This framework encompasses a set of
user-driven controls that meet the criteria that we highlighted and ad-
vocated for in Sec. 1 of the paper: they consist of a low-dimensional
representation of prosody, they are intuitive in the sense that changes
to the controls map to identifiable perceptual effects in the output,
and they offer a mechanism that disentangles different components
of prosody (duration and pitch) that can be tuned separately. The
approach requires only a moderate amount of knowledge external to
the framework in the form of coarse word-level alignments, and we
have shown that it can accommodate various degrees of supervision
depending on available resources, with different variants bringing
in different strengths depending on the operating conditions (e.g.,
synthesizing from a speaker with labeled supervised data vs. trans-
planting to a novel speaker that lacks such resources).

We should note that this framework can also be extended to in-
clude other levels of the prosodic hierarchy to explore expressive ef-
fects beyond localized narrow focus. For instance, incorporating the
intonational phrase into the analysis might provide a way to better
model the pitch reset associated with parentheticals. Addressing the
shortcomings already mentioned and incorporating these extensions
remain the subject of ongoing and future work.
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