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ABSTRACT

Emotion recognition is a challenging task due to limited avail-
ability of in-the-wild labeled datasets. Self-supervised learn-
ing has shown improvements on tasks with limited labeled
datasets in domains like speech and natural language. Models
such as BERT learn to incorporate context in word embed-
dings, which translates to improved performance in down-
stream tasks like question answering. In this work, we ex-
tend self-supervised training to multi-modal applications. We
learn multi-modal representations using a transformer trained
on the masked language modeling task with audio, visual and
text features. This model is fine-tuned on the downstream
task of emotion recognition. Our results on the CMU-MOSEI
dataset show that this pre-training technique can improve the
emotion recognition performance by up to 3% compared to
the baseline.

Index Terms— self-supervised, multi-modal, emotion
recognition

1. INTRODUCTION

Human communication is inherently multi-modal in nature.
Our expressions and tone of voice augment verbal com-
munication. This can include vocal features like speaking
rate, intonation and visual features like facial expressions
[1]. Non-verbal communication is important for tasks that
involve higher level cognitive expressions like emotions [2],
persuasiveness [3] and mental health analysis [4]. We focus
on a multi-modal approach to emotion recognition because
humans fundamentally express emotions verbally using spo-
ken words [5], as well as with acoustic signals [6] and visual
expressions [7].

Getting large-scale labeled datasets for emotion recogni-
tion can be challenging. Our primary motivation for this paper
is to study effective utilization of large unlabeled datasets to
improve performance of multi-modal emotion recognition
systems. The signals we consider are speech, visual informa-
tion and spoken text. Our motivation stems from the popular
use of pre-trained models in natural language, speech and
visual understanding tasks to circumvent data limitations.

BERT is a popular model for natural language understanding
[9] that was trained using self-supervision. Devlin et al. use
the masked language modeling (LM) task on the Wikipedia
corpus for pre-training. The model was successfully fine-
tuned to improve performance on several tasks like question
answering and the general language understanding evalua-
tion benchmarks [9]. Self-supervised learning has also been
successfully applied to speech based applications. Schneider
et al. in [10] use unsupervised pre-training on speech data
by distinguishing an audio sample in the future from noise
samples. Fine-tuning this model shows state of the art results
on automatic speech recognition (ASR). Liu et al. show in
[11] that a BERT-like pre-training approach can be applied
to speech. By predicting masked frames instead of masked
words, the performance on tasks like speaker recognition,
sentiment recognition and phoneme classification can be im-
proved. For emotion recognition, Tseng et al. show in [12]
that text-based self-supervised training can outperform state
of the art models. The authors use a language modeling task,
that involves predicting a word given its context, to pre-train
the model. Another area of work that has leveraged unlabeled
data is detection and localization of visual objects and spoken
words in multi-modal input. Harwath et al. in [13, 14] train
an audio-visual model on an image-audio retrieval task. The
models are trained to learn a joint audio-visual representation
in a shared embedding space. This model can learn to recog-
nize word categories by sounds without explicit labels. Moti-
vated by the success of these approaches, we study if similar
methods can be applied to multi-modal emotion recognition.
To the best of our knowledge, a joint self-supervised training
approach using text, audio and visual inputs has not been well
explored for emotion recognition.

Multi-modal emotion recognition models have been well
studied in literature and typically outperform uni-modal sys-
tems [8]. These models need to combine inputs with varying
sequence lengths. In video, the sequence lengths for audio and
visual frames differ from the length of text tokens by orders of
magnitude. There has been considerable prior work in fusing
multi-modal features. Liang et al. in [8] studied multiple fu-
sion techniques for multi-modal emotion recognition and sen-
timent analysis. Their methods included early and late fusion
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of modalities, and a dynamic fusion graph based network.
They showed that the graph fusion model outperforms other
methods. Early fusion and graph fusion techniques both re-
quire alignment between various modalities. Late fusion can
be performed without alignment, but does not allow interac-
tion of features from different modalities at the frame level. To
overcome this limitation, Tsai et al. introduce the cross-modal
transformer in [15]. It scales the features using cross-modal
attention. In the process, the modalities are projected into se-
quences of equal lengths, eliminating the need for any align-
ment. This architecture has been successfully applied to prob-
lems like emotion recognition, sentiment analysis [15, 16]
and speech recognition [17]. Recently, another transformer-
based method to combine multi-modal inputs was introduced
by Rahman et al. in [18], which uses a multi-modal adapta-
tion gate.

In this paper, we propose using the same pre-training
scheme as BERT, but extend it to a model that uses au-
dio, visual and text inputs. We discuss the relevance of this
approach in Section 2.2. The multi-modal representations
learned in pre-training are fine-tuned for emotion recogni-
tion. We evaluate the efficacy of the pre-training approach.
We also perform experiments to understand the importance
of each modality on the CMU-MOSEI dataset and provide
case-studies to interpret the results.

This paper is organized as follows. In Section 2 we de-
scribe our model architecture and the self-supervised ap-
proach for pre-training, along with further motivation for the
self-supervised learning we choose. In Section 3, we dis-
cuss the training setup and data. We present our results and
analysis in Section 4 and conclude in Section 5.

2. SELF-SUPERVISED TRAINING WITH
CROSS-MODAL TRANSFORMERS

2.1. Model architecture

Not all information in a given sequence is equally important
for emotion recognition. If we consider visual inputs, emo-
tionally relevant cues may appear only in certain frames. Sim-
ilarly, each spoken word in the sentence does not contribute
equally to the expressed emotion. Given this nature of the
sequence recognition problem, transformer-based models are
a good choice for extracting a fixed length representation for
emotion recognition.

We use the cross-modal transformer for emotion recogni-
tion since it showed state of the art results on sentiment anal-
ysis [15]. We chose a modified version of the proposed model
and will describe it in this section. The architecture allows
each sample from each modality to interact with each sample
from each other modality, providing the benefits of low-level
fusion. It also projects all the sequences into equal lengths

which allows for frame level late fusion after the transforma-
tion.

Our overall architecture is shown in Figure 1. The trans-
former model trained for emotion recognition allows for
attending to specific input features (visual frames, words,
speech segments) that are relevant to the task [15]. The first
part of our model architecture achieves this by using self-
attention based transformer encoder for individual modali-
ties. We add positional embeddings to the input features as
discussed in [19]. Intuitively, positional embeddings would
be useful in the task because for extracting the context from
the input, the order of the words matter. We did not study
the importance of positional embeddings since our work is
focused on self-supervised learning. These features are pro-
cessed by the transformer encoder. The architecture of the
encoder layers is identical to [19] and is shown in Figure 1.
The transformer encoder consists of N layers. The first op-
eration in each layer transforms the input into keys, queries
and values. If the input to a given layer for modality M is
represented by FM, then the query QM, the key KM and the
value VM for the corresponding modality is computed as

QM = WqM(FM)
KM = WkM(FM)
VM = WvM(FM)

(1)

where Wαβ represents a linear projection. After obtaining the
keys, queries and values, the self-attention layer scales the
value VM. The output of the attention layer, represented by
AM, is computed as

AM = softmax(
QMK

T
M√

d
)VM (2)

where d denotes the dimensionality of the keys. In practice,
we use the multi-head version of the scaled dot-product atten-
tion that uses k scaled dot-product attention heads. The final
output of the transformer encoder layer, SM, is computed as
following

OM = LayerNorm(VM +AM)
SM = LayerNorm(OM + FeedForward(OM))

(3)

where OM is the normalized output after adding a residual
connection from VM to the output of the scaled dot-product
attention layer. We use N encoder layers to obtain the self-
attended outputs SA, SV and ST from the audio, visual and
text modalities respectively.

Next, we combine the uni-modal transformer encoder out-
puts, SA, SV and ST, to learn the final multi-modal representa-
tion for emotion recognition. This is done by the cross-modal
transformer, which computes the attention map between fea-
tures from two different modalities M1 and M2. The cross-
modal attention allows for increasing attention weights on
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Fig. 1. Cross-modal transformer based self-supervised learning architecture. The figure shows the self-attention based trans-
former encoder layers, the cross-modal attention encoder module and the overall architecture of our self-supervised model.

features that are deemed important for emotion recognition
by more than one modality. This property was shown in [15].

The output EM1−>M2 from the cross-modal transformer
is computed as:

EM1−>M2
= CM(QEM2

,KEM1
, VEM1

) (4)

where CM denotes the transformations applied by the cross-
modal transformer, shown in Figure 1. The cross-modal trans-
former is identical to the transformer encoder, with one ex-
ception. The key and value matrices (KEM1

and VEM1
) are ob-

tained from the encoded output SM1
. The query QEM2

, which
provides contextualization, is obtained from the encoded out-
put of modality SM2 . The keys, queries and values are ob-
tained from the outputs of the corresponding uni-modal trans-
formers by using fully connected layers, similar to the uni-
modal transformer encoders described above. The final en-
coder output EAVT is the weighted sum of the encoded out-
put of the text modality and the cross-modal transformer out-
put attending to the audio and visual inputs using the context
query from the text domain.

EAVT = w1 · ET + w·EA−>T + w3 · EV−>T (5)

For our experiments, we used a fixed weight of 0.33 for w1,
w2 and w3. The classification consists of average pooling fol-
lowed by a linear layer that maps the representation into emo-
tion classes.

Our model differs from the architecture in [15] in two
ways. Instead of using convolutional layers to increase tem-
poral awareness, we use uni-modal encoders to encode the
various modalities. We used a second modification by limit-
ing the cross-modal transformer layers to only compute atten-
tion between audio and text, and visual input and text as de-
scribed above. We call text the anchor modality in this archi-
tecture. For this study, we chose text as the anchor modality
for ease of the self-supervised task. This allows us to train the
self-supervised model without a decoder. For comparison, we
tried training our baseline models with both audio and video
as anchors and the results were similar. Note that our focus
in this work is to study the impact of self-supervised training,
and not to tune the model architecture for emotion recogni-
tion. Hence, we chose the simplified model architecture for
all the experiments. Our work does not compare our model to
the one proposed in [15] and we will do so in our future work.

2.2. Self-supervised training

Our primary motivation for this study is to understand how to
leverage large unlabeled multi-modal datasets to learn repre-
sentations which can be fine-tuned for emotion recognition.
We consider what self-supervised task would be relevant
given our downstream task of interest. We note that spoken
words are one of the strongest expressions of human emotion.
This has been studied in psychological literature [5], and also
in the emotion recognition literature. Embeddings like ELMo,



that encode language context, can be applied successfully to
the emotion recognition task [12]. Such representations from
text have been learned successfully with self-supervised tasks
like skip-gram, continuous bag-of-words model [20] and
more recently using the masked LM task [9]. We extend this
work by learning representations that encode context using
the text input, as well as the audio and visual inputs.

We choose the masked LM task to train the model, simi-
lar to the BERT model [9]. We propose to predict words by
looking at audio and visual context in addition to the con-
text words around the masked input. Intuitively, the auxiliary
information present in visual expressions and audio features
like intonation would provide relevant input for predicting the
masked words. For example, consider the phrase “This movie
is [MASK]” as an input to the model. The [MASK] word
could be predicted as “amazing” if the audio and visual fea-
tures show that speaker is happy. Alternatively, the prediction
could be “terrible” if the speaker seems discontent while talk-
ing. This information cannot be derived from text only in-
put. We posit that the latent representations learned using the
masked LM task with multi-modal input will not just encode
context, but also the relevant emotional information which
could be used to predict those words.

For training, we mask 15% of the input words and the
audio and visual features corresponding to those words. The
word boundaries are obtained using an existing ASR system.
More details on the ASR system used will be discussed in
Section 3.1. The model predicts the words at each sequence,
and the loss is computed only for the words that were masked
in the input sequence. Instead of providing a mask token as
input for masked words, we choose to set the masked in-
put for all modalities to zero. We are able to do so as we
use GLoVe embeddings to represent the text input instead of
learning an embedding layer. Similarly, to mask the audio and
visual inputs for the corresponding masked words, we replace
the input features with zeros. For this task, we replace the av-
erage pooling and linear classifier described in Section 2.1
with a linear layer of output size equal to the model vocabu-
lary. Since the encoder layer uses bi-directional attention, we
do not need a decoder to attend to past predictions from the
model. In addition, since the encoder output length is equal
to the sequence length of the input text, we do not require a
transformer decoder layer. This allows training to be simpli-
fied and was one of the reasons we chose the model architec-
ture.

For the loss function, we use a full softmax loss as well as
noise contrastive estimation (NCE) [21] to train our models.
NCE has been used successfully to learn the inverse language
modeling task, that involves predicting the context words
given a word. Minh et al. show in [22] that NCE can reduce
computation by estimating the normalization factor for com-
puting softmax using noise samples. For a task which has

a similar vocabulary size as our dataset, they demonstrated
a reduction of up to 50% in training time. We compare the
models trained with NCE loss with the full softmax loss.
This would inform if the multi-modal transformer can be
trained with similar accuracy but more efficiently. Our im-
plementation is exactly the same as [22], except we use a
normalization factor of vocabulary size which we found to be
critical for training our model.

3. EXPERIMENTAL SETUP

3.1. Dataset and training details

Our setup involves first training the cross-modal transformer
on the masked LM task on a large dataset, followed by fine-
tuning for emotion recognition. For pre-training, we utilize
the publicly available VoxCeleb2 dataset [23]. We chose this
dataset since it provides all the modalities we are interested
in and is sufficiently large (1.1 million videos in the train par-
tition). More importantly, this data is emotion rich, as shown
in [24]. This dataset does not provide text transcriptions. We
used a TDNN ASR model trained with the standard Kaldi
recipe on the Librispeech dataset to get transcriptions [25].
We use 40-dimensional Log-Filter bank energy (LFBE) fea-
tures using a 10ms frame rate to represent the audio input. Vi-
sual frames are represented by 4096-dimensional features ex-
tracted from the VGG-16 model. 300-dimensional GloVe em-
beddings represent the text input. We chose to use GLoVe em-
beddings for this task instead of an embedding layer because
our dataset has a limited number of sentences and vocabulary.
The vocabulary size for this dataset as obtained from ASR
transcriptions is 88000. Using GloVe embeddings allows the
model to take advantage of pre-trained embeddings trained
on billions of words [26]. The disadvantage is the inability to
handle out of vocabulary words, which we ignore for all our
experiments.

The model is pre-trained using pytorch with the learning
schedule described in [27]. We stack 5-frames of the LFBE
features for a final audio feature dimensionality of 200. This
was done to reduce the memory requirements for training the
model. We select only the English language videos from
VoxCeleb2 for training. The filtering is done by selecting a
heuristic threshold on the likelihood scores from the ASR de-
coder. For all our experiments, we use only the dev portion of
the VoxCeleb2 dataset. Our final training dataset consists of
978k utterances from 4820 speakers. We use the architecture
described in Section 2.1 to train the model. The model has
keys, values and queries of dimension 512, 4 encoder layers,
feed forward layer of dimension 200 and 4 attention heads for
both the uni-modal and cross-modal encoders. We trained the
model for 20 epochs and chose the final model with the lowest
loss on a held-out set.



For evaluating performance on the emotion recognition
task, we fine-tune the model on the CMU-MOSEI dataset
[8]. It is the largest publicly available multi-modal dataset
for emotion recognition with natural conversations. It con-
tains 23,453 single-speaker video segments from YouTube.
The clips have been manually transcribed and annotated for
sentiment and emotion. The dataset consists of 6 emotions;
happy (12135 examples), sad (5856 examples), angry (4903
examples), disgust (4208 examples), surprise (2262 exam-
ples) and fear (1850 examples). The labels for each class are
on a Likert scale of [0, 3]. We convert the labels into binary
targets. A clip is assigned a 0 label if the score on the Likert
scale is 0, and 1 otherwise. A greater than 0 score on the Lik-
ert scale represents the presence of the specific emotion, and
0 the absence of the emotion. This was reflected in the binary
interpretation that we chose. For fine-tuning the model, we
remove the decoder layer for the masked LM task and add the
average pooling and decoder layer for emotion recognition.
Each example in this dataset can be labeled with the presence
of multiple emotions. Therefore, we use a sigmoid output for
each of the 6 nodes in the output layer to get the probability
for each emotion. The positive and negative examples for var-
ious emotions in the dataset are imbalanced. During training,
we weigh the loss for the each training sample appropriately
to ensure that the positive and negative examples across all
emotions contribute equally to the loss.

4. RESULTS

We use the weighted accuracy (WA) and F1-score for each
emotion as the metrics for the task. We also report average of
these two metrics over the 6 emotions, keeping in line with
prior work [8]. For evaluating the baseline model, we follow
the procedure in [12]. The model is randomly initialized and
trained 10 different times. The best model is chosen based on
the average of the weighted accuracy and F1-scores over all
the emotions on the dev set over the 10 runs.

4.1. Results on emotion recognition

Table 1 shows the results of our experiments and state of the
art results on the same dataset from other publications. The
transformer baseline outperforms or is comparable to pub-
lished results for most of the metrics. Our model shows a
2.4% absolute improvement in the weighted accuracy of the
anger emotion and a 2.6% absolute improvement in the F1-
score of the surprise emotion. We observe a degradation in
the weighted accuracy of the fear emotion. This comparison
with other state of the art models is pertinent for the rest of
our work as we want to build upon a strong baseline model.

The next set of results in Table 1 are with the pre-trained
model on the VoxCeleb2 dataset, fine-tuned for emotion

recognition. Our results show up to 3% absolute improvement
in the weighted accuracy of 4 out of the 6 emotions, with a
slight degradation in the weighted accuracy of the anger
emotion. The average weighted accuracy over all emotions
improves by 0.8%. The weighted accuracy of the surprise and
fear emotions improve by 2.2% and 3% absolute respectively.
The 95% confidence intervals of these emotions don’t overlap
with the baseline, demonstrating the statistical significance
of the results. The F1-score is comparable to the baseline for
all emotions other than happy, where we see a 1% absolute
improvement. The model trained using the NCE optimiza-
tion has similar improvements. It shows that we can achieve
the same improvements with a lower computational cost of
training. These results validate our hypothesis that we can
effectively leverage a large unlabeled multi-modal dataset to
improve results on emotion recognition using self-supervised
pre-training.

In order to understand the impact of ASR errors on the
model, we generated transcriptions on the CMU-MOSEI
dataset using a commercial ASR system. The word error rate
of the machine-generated transcriptions was 29%. We then
re-evaluated the performance of our baseline model with ASR
based transcriptions instead of the transcriptions provided as
part of the dataset. We did not observe a degradation in emo-
tion recognition performance. Note that for this experiment,
the baseline model was trained with the original transcrip-
tions. ASR errors have been studied well in literature and it
has been shown that the top contributors to errors are shorter
words like ’on’, ’was’, ’in’ etc. [28]. These words do not
contribute to emotion expression, which would explain the
observations we made.

4.2. Analysis and case studies

We analyze the results to understand the contribution of each
modality towards accuracy. We look at predictions from the
baseline model with missing inputs from select modalities.
Note that we cannot ablate the text input. The output of the
cross-modal transformers will be 0 if the text input is 0 since
the attention maps will be all zeros. For subjective analysis
with missing text input, we trained a baseline model with au-
dio as the anchor modality. As noted in Section 2.1, the choice
of anchor modality does not change the performance of the
baseline model. We describe our subjective analysis below.

The first example we observe is ID “HeZS2-Prhc[8]” in
the dataset. From visual inspection, the video shows that the
speaker is laughing, which conveys a happy emotion. How-
ever, the speaker is talking about the cost for drugs and its
impact on communities. This is why the visual modality is
the key to accurately predicting the emotion, and the model
is not able to classify the emotion as happy with text input
alone. On the contrary, the second example, ID “10219[11]”,



Table 1. Emotion recognition results on the CMU-MOSEI task. The 95% confidence interval for all metrics is less than ±1.4

Model Happy Sad Anger Surprise Disgust Fear Average

WA F1 WA F1 WA F1 WA F1 WA F1 WA F1 WA F1

M-ELMo + NN [12](A+T) 67.0 65.2 63.1 72.0 65.8 74.7 63.8 83.3 74.2 81.7 63.2 85.1 66.2 77.0
Graph-MFN [8] 66.3 66.3 60.4 66.9 62.6 72.8 53.7 85.5 69.1 76.6 62.0 89.9 62.3 76.3

Transformer (baseline) 67.4 67.1 64.6 72.5 68.2 74.7 62.9 88.1 74.8 82.4 61.5 86.5 66.6 78.5

Transformer with pre-training and full softmax loss 68.1 68.1 65.1 72.1 67.0 74.4 65.1 88.0 74.5 82.3 64.5 86.4 67.4 78.6
Transformer with pre-training and NCE loss 68.1 68.2 64.3 72.4 67.3 74.8 65.1 87.7 73.6 82.4 63.0 86.6 66.9 78.7

Table 2. Ablation studies with the baseline model. Note that
the text modality cannot be ablated with this architecture.

WA F1

Text only 64.5 76.7
Audio + Text 65.3 78.1
Video + Text 65.3 78.5

Audio + Video + Text 66.6 78.5

shows the speaker with a neutral face and a neutral tone of
voice. The speaker is talking about a positive movie review,
which leads to the text classifying the emotion as happy. The
model was not able to classify the emotion in this example
as happy without the text input. In the third example, ID “-
9y-fZ3swSY[1]”, the speaker is talking about a neutral topic
with a slightly positive face, but in a very positive tone of
voice. The model predicts that the speaker in this video is
happy only when the audio features are present. This subjec-
tive analysis shows the importance of multi-modal features in
human communication, and how each of them contribute to
emotion recognition.

Next, we show the overall results with each missing
modality in Table 2. Adding audio and visual input along
with text improves both metrics by 2% absolute. The results
show that with text alone, we can recover most of the baseline
performance. The subjective examples, however, suggest that
for several cases, other modalities are required for accurate
prediction. Therefore, the importance of text should not be
generalized for the problem of emotion recognition in-the-
wild. However, for the CMU-MOSEI dataset, text is the most
important modality for emotion recognition. To analyze this,
we look at the distribution of topics in the dataset. The 5 most
frequent topics are: reviews (16.2%), debate (2%), consulting
(1.8%), financial (1.8%) and speech (1.6%). For these top-
ics, the perceived emotion by a human annotator is strongly
based on what is being said. This would explain why text

is the most important input. We posit that for more diverse
topics, specifically involving human to human communica-
tion, the other modalities would start to gain importance for
recognizing the emotions accurately.

5. CONCLUSION

In this paper, we present state of the art results on the emo-
tion recognition task using the cross-modal transformer on the
CMU-MOSEI dataset. We utilize a BERT-like pre-training
scheme using audio, visual and text inputs. We use the Vox-
Celeb2 dataset to pre-train the model and fine-tune it for the
emotion recognition task. We demonstrate up to a 3% im-
provement over the baseline with the fine-tuned model. We
presented our subjective analysis on the contribution of vari-
ous modalities to emotion recognition. We also show results
with missing input modalities to understand the importance
of each modality for the emotion recognition task.

For our future work, we propose to initialize the text en-
coder with a text-only model like BERT, before multi-modal
self-supervised training. VoxCeleb2 dataset, although large in
terms of number of hours of video, is smaller when compared
to the Wikipedia corpus which has billions of words. Taking
advantage of a larger text-only corpus could provide improve-
ments. We would also like to experiment with adapting the
model on the CMU-MOSEI dataset. Both the VoxCeleb2 and
CMU-MOSEI datasets are obtained from YouTube, but there
could be domain mismatch between the two datasets. Adapt-
ing could help bridge the mismatch. We would also like to ex-
plore weak labels to adapt the pre-trained representations for
the downstream task. Tseng et al. showed in [29] that weakly
supervised labels can be used to effectively bias the embed-
dings learned by a pre-trained model. Even though we study
the impact of ASR errors on emotion recognition, we do not
know how these errors impact the self-supervised training.
We would like to study that in the future. As noted before,
our model architecture doesn’t allow ablation of text. For our
future work, we will focus on overcoming that limitation.
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