
ar
X

iv
:2

01
1.

04
78

5v
1

 [
ee

ss
.A

S]
 9

 N
ov

 2
02

0

BENCHMARKING LF-MMI, CTC AND RNN-T CRITERIA FOR STREAMING ASR

Xiaohui Zhang⋆, Frank Zhang⋆, Chunxi Liu⋆, Kjell Schubert, Julian Chan, Pradyot Prakash,
Jun Liu, Ching-Feng Yeh, Fuchun Peng, Yatharth Saraf, Geoffrey Zweig

Facebook AI, USA

ABSTRACT

In this work, to measure the accuracy and efficiency for a latency-

controlled streaming automatic speech recognition (ASR) applica-

tion, we perform comprehensive evaluations on three popular train-

ing criteria: LF-MMI, CTC and RNN-T. In transcribing social me-

dia videos of 7 languages with training data 3K - 14K hours, we

conduct large-scale controlled experimentation across each criterion

using identical datasets and encoder model architecture. We find

that RNN-T has consistent wins in ASR accuracy, while CTC mod-

els excel at inference efficiency. Moreover, we selectively examine

various modeling strategies for different training criteria, including

modeling units, encoder architectures, pre-training, etc. Given such

large-scale real-world streaming ASR application, to our best knowl-

edge, we present the first comprehensive benchmark on these three

widely used training criteria across a great many languages.

Index Terms— LF-MMI, CTC, RNN-T, latency-controlled

ASR

1. INTRODUCTION

Thus far there has been a growing interest in speech community

to investigate ASR modeling techniques that allow for flat-start

(alignment-free) training, e.g., connectionist temporal classifica-

tion (CTC) [1], recurrent neural network transducer (RNN-T) [2],

and attention-based sequence-to-sequence (seq2seq) models [3, 4].

Specifically, CTC criterion learns an encoder-only model, which

can be further composed with an n-gram language model (LM) in

a standard WFST framework. RNN-T or attention-based seq2seq

model jointly learns an encoder with a neural decoder model that

can be considered as a neural LM.

There have been extensive ASR benchmarks on the public

dataset like LibriSpeech [5]. Recently deep transformer based

hybrid models have achieved state-of-the-art results among cross-

entropy (CE) [6] and CTC based models [7] respectively. Improving

accessibility to social media videos remains an important task, which

allows for various applications like automatic video captioning, in-

dexing and retrieval. Transcribing the heterogeneous social media

videos of extensively diverse languages is still highly challenging,

and prior works [8, 9, 10, 11, 7, 12] have examined various ASR

technologies in both real-world high- and low-resource scenarios. In

this work, we particularly focus on streaming and long-form ASR

solutions, where each test utterance is up to 45 seconds long. While

attention-based seq2seq models have shown difficulty in generaliz-

ing well on long utterances given the previous study [10], we thus

do not include attention-based seq2seq model in this study.

To understand the performance distinction of different model

types, it is essential to examine whether the model architecture or

⋆ Equal contribution.

the training criterion is accountable. This is typically a challeng-

ing task, since the model architectures for differing training criteria

are intrinsically different, which makes the training criteria not di-

rectly comparable. However, we note that, for all these training cri-

teria, the majority of model parameters resides in the encoder part.

In order to understand the relative performance difference in a rel-

atively fair manner, we can fix the encoder model architecture for

each training criterion to exclude the respective encoder impact on

ASR performance. Therefore, in this work, we focus on comparing

RNN-T and CTC criteria against a strong hybrid LF-MMI [13] base-

line, and all cases use the same streamable encoder architecture. We

evaluated the modeling performance by word error rate (WER) and

decoding efficiency by real-time factor (RTF) of models trained by

all three training criteria on video ASR tasks of 7 languages with

training data ranging from 3K to 14K hours, with test sets of three

noisy levels for each language. To the best of our knowledge, there

has not been such comprehensive study thus far. For example, prior

work [14] provided comparisons among CTC, RNN-T, and attention-

based seq2seq models, while not including the standard hybrid ASR

model. Recent work in [10, 15] has compared RNN-T with attention-

based seq2seq models with the same encoder architecture; however,

they used different encoder architectures in comparison to hybrid

and CTC models. Besides, [16] has compared RNN-T with LF-MMI

with the same encoder architecture on English.

Additionally, as we understand that RNN-T relies on a neural

decoder - which can be seen as an implicit neural LM - in the first-

pass decoding, however, all model types are able to explicitly per-

form additional online neural LM rescoring in the first-pass decod-

ing (e.g. shallow fusion [17]). So we further exclude any additional

LM rescoring effect in this study.

Besides the comprehensive benchmark of three training crite-

ria, we make further contributions by selectively specifying how

we reach the best modeling strategies for each criterion. We

present studies on: (i) the choice of modeling units, wordpiece v.s.

chenone, and (ii) encoder model architectures, latency-controlled bi-

directitonal LSTM (LC-BLSTM) v.s. time-depth separable (TDS)

convolutions for CTC models of three languages. We also present

optimization efforts - reducing memory consumption and model

pre-training - for RNN-T training, which lead to improvements in

both modeling performance and training efficiency.

2. MODEL TRAINING

For each language we evaluated on, all models were trained on the

same data segmented to up-to 10s, which was achieved by force

aligning the whole audio against the reference using the same cross-

entropy (CE)-trained model. Segmenting training data could sub-

stantially improve the training throughput, and slightly improve the

accuracy as shown in [6]. LF-MMI models were pre-trained with

http://arxiv.org/abs/2011.04785v1

CE criterion on 10s segments, and then fine-tuned with LF-MMI cri-

terion on 1.5s segments. CTC models were trained on 10s segments

directly. The encoder in RNN-T models were pre-trained with CE

criterion [15] and then the whole model was fine-tuned with RNN-T

criterion, all on 10s segments. The chunk size used during training is

1.28s for CTC and RNN-T, and 1.5s for LF-MMI. The right context

in training is 210ms for LF-MMI and 240ms for CTC and RNN-T1.

Here we briefly review the three training criteria which are stud-

ied in this paper. ASR can be formulated as a sequence-to-sequence

problem. Each speech utterance is parameterized as an input acous-

tic feature vector sequence x = {x1 . . . xT } = x1:T , where xt ∈ R
d

and T is the number of frames in x. We define a grapheme set or a

wordpiece inventory as Y , and the corresponding target sequence of

length U as y = {y1 . . . yU} = y1:U , where yu ∈ Y . Besides, we

define Ȳ as Y ∪ {∅}, where ∅ is the blank label, and Ȳ∗ as the set of

all sequences over output space Ȳ .

2.1. LF-MMI

The MMI objective can be formulated as:

FMMI = log
p(x|y)∑
ŷ
p(x|ŷ)

≈ log
p(x|Gnum)

p(x|Gden)
(1)

where ŷ represents any possible hypothesis. In LF-MMI [13], a com-

posite HMM graph called “denominator graph” Gden is used to ap-

proximate the denominator, which encodes all possible hypothesis,

and thereby we have
∑

ŷ
p(x|ŷ) ≈ p(x|Gden). Efficient compu-

tation of the denominator without having to generate lattices is en-

abled by adopting an n-gram phone/character language model (LM)

when generating Gden, and doing full forward-backward computa-

tion on GPUs. Similarly, the numerator p(x|y) is approximated by

p(x|Gnum) where Gnum is another composite HMM graph called

“numerator graph”, encoding all possible sequences of HMM states

pertaining to the transcription y. It could be either an acyclic graph

encoding pre-computed alignments, giving regular LF-MMI (used in

this work), or a graph with self-loops determined solely by reference

transcripts, giving flat-start (alignment-free) LF-MMI.

2.2. CTC

As a sequence-level training criterion, for CTC, the log-likelihood of

a given target sequence y can then be found by summing the proba-

bilities of all allowed alignments. Specifically,

log p(y|x1:T) =
∑

a∈B−1(y)

t=T∏

t=1

p(at|xt) (2)

where B : Ȳ∗ → Y∗ is a mapping operation that removes all blank

labels and repeating symbols in a given sequence. The encoder is

trained to maximize the log-likelihood for each training example

and p can be computed efficiently using the forward-backward al-

gorithm.

Note that the underlying assumption in Eq (2) is that probabil-

ities between timestamps are conditional independent. The Trans-

ducer criterion introduced in the next section will lift this constraint.

1The difference in right context is due to it needs to be divisible by the
stride e.g. 3, 4 or 8. Empirically the slight different in right context did not
affect final WER and real time factor.

2.3. RNN-T

Excluding the conditional independence assumption made in CTC,

RNN-T models the posterior probability as:

P (y|x) =
∑

a∈B−1(y)

P (a|x) (3)

where B : Ȳ∗ → Y∗ is a mapping operation that removes all

blank labels in a given sequence. RNN-T model parameterizes the

alignment probability P (a|x) and computes it with an encoder net-

work (i.e. transcription network in [2]), a prediction network and a

joint network. The encoder performs a mapping operation, denoted

as f enc, which converts x into another sequence of representations

henc = {henc
1 . . . henc

T ′}:

h
enc = f

enc(x) (4)

where T ′ is equal or shorter than T due to subsampled frame rate. A

prediction network f pred, based on RNN or its variants, takes both its

state vector and the previous non-blank output label yu−1 predicted

by the model, to produce the new representation hpred:

h
pred
1:u = f

pred(y0:(u−1)) (5)

where u is the output label index and y0 = ∅. Finally, the joint

network f join is a feed-forward network that combines the encoder

output henc
t and prediction network output hpred

u to compute logits

zt,u, which go through a softmax function and produce a posterior

distribution of the next output label over Ȳ:

zt,u = f
join(henc

t , h
pre
u) (6)

p(yu|x1:t, y1:(u−1)) = Softmax(zt,u) (7)

The encoder can be seen as an acoustic model, and the combination

of prediction and joint network as a decoder.

3. MODELING UNITS

For the LF-MMI criterion, we used tied context-dependent grapheme

states (i.e. chenones) [18] with a stride (sub-sampling factor) of 3.

For CTC criterion, we used wordpiece units with a stride of 8. For

RNN-T criterion, we used wordpiece units with a stride of 4. For

each training criterion, the choice of modeling units, and stride were

tuned separately on validation data to achieve the best balance be-

tween WER and inference efficiency. In Section 6.3, we will specify

our analysis in the modeling unit options for CTC. Besides, the size

of the chenone set (i.e. decision tree size) or wordpiece vocabulary

were tuned to optimize WER on each language for each model, also

on validation data.

4. MODEL ARCHITECTURE

We keep the encoder architecture fixed when comparing perfor-

mance across different training criteria. In the main experiment,

we used a latency-controlled bi-directitonal LSTM (LC-BLSTM)

encoder with 5 layers of 800 hidden units. Sub-sampling along the

time dimension by a factor of 3 is applied at the output of the first

layer to achieve a stride of 3 for LF-MMI models, and sub-sampling

by a factor of 2 is applied at the output of first, second or third

layer to achieve a stride of 4 or 8 respectively for RNN-T and CTC

models. The encoder alone has around 75M parameters. All the

models presented here can run in a streaming fashion, because of

the limited right context.

5. MODEL INFERENCE

For LF-MMI and chenone-CTC models, we pre-built decoding

graphs H ◦ C ◦ L and G 2 and dynamically composed them during

decoding [19]. For wordpiece-CTC models, we use the same dy-

namic decoding approach but pre-built H ◦ L rather than H ◦ C ◦ L
[7]. For RNN-T model, we use standard beam search decoding

without any external LM fusion as in [2], since we are evaluating the

three training criteria under a “vanilla” single-pass inference setting

without any LM fusion/rescoring for all models. All acoustic models

were trained in PyTorch and applied post-training INT8 quantization

to enable efficient decoding. Decoding hyper-parameters, e.g. beam

sizes, were tuned on validation data for each model separately, to

achieve a balance between decoding efficiency and WER. To satisfy

latency constraints for live captioning use-case, we limit the chunk

size to 0.8s for English, Spanish, Hindi and Indic English, and 1.5s

for Thai, Vietnamese and Turkish across all models.

6. EXPERIMENTS

6.1. Data

We evaluate all models on our in-house Video ASR datasets, which

are sampled from public social media videos and completely de-

identified before transcription; both transcribers and researchers do

not have access to any user-identifiable information (UII). These

videos contain a diverse range of speakers, accents, topics, and

acoustic conditions making automatic recognition very challenging.

We included a wide variety of languages in this study in order to get

a broad understanding of model performance, including: (i) fusional

languages Spanish (ES), Hindi (HI) and Indic English (EN-IN), (ii)

analytic languages US English (EN-US), Vietnamese (VN) and Thai

(TH), and (iii) an agglutinative language Turkish (TR). The training

set sizes are shown in Table 1. Note that we combined Hindi and

Indic English training data and trained a single model for each crite-

rion, although we evaluate the model on Hindi and Indic English test

sets separately. The reason is that due to their similarity in pronun-

ciation and frequent code-switching, it can be hard for a language

identification (LID) model to differentiate acoustic inputs from these

languages. In addition, some special text processing was applied to

Thai: as reference transcripts were un-segmented (no word-level to-

kenization), we needed to tokenize the transcripts at wordpiece level

by training a wordpiece model first, and then construct a lexicon

mapping wordpieces to graphemes for data segmentation, model

training and decoding. Regarding data augmentation, speed pertur-

bation [20] and SpecAugment [21] (LD policy for RNN-T and SM

policy for CTC and LF-MMI) are used.

The test sets for each language are composed of clean, noisy

and extreme categories, with extreme being the most acousti-

cally challenging. The validation set for each language was com-

posed of data from the noisy category. The duration of validation

and test sets for each category in each language is around 10 to 40

hours. All validation and test data were segmented up to 45s.

Table 1. Training data sizes (in hours).

EN-US ES HI & EN-IN TH VN TR

14K 7.2K 6.7K 5.1K 4.2K 3.1K

2H transduces HMM states to context-dependent graphemes; C trans-
duces context-dependent graphemes to graphemes; L transduces graphemes
to words; G represents the language model.

6.2. Results

In this section, we first present decoding results on all 7 languages

in Table 2, with the best overall modeling strategies (modeling unit,

stride, and pre-training strategy) chosen for each training criterion.

For each language, all models were trained on the same data with

the same encoder model architecture (5×800 LC-BLSTM). Later,

we will selectively analyze the impact of modeling strategies and en-

coder model architecture for CTC/RNN-T. We use word error rate

(WER), or character error rate (CER) for Thai, to measure model-

ing performance on clean, noisy and extreme test splits for

each language and model. We use real-time factor (RTF) to measure

decoding efficiency.

6.3. WP-CTC v.s. chenone-CTC

It is well-studied that LF-MMI works well with chenone units and

RNN-T works well with wordpiece units. For CTC training, we have

observed that full sequence deep transformer encoder trained with

chenone units outperforms wordpieces consistently. However, the

trend is different for our streaming application in this work. In Table

33, we show results of WP-CTC (with a stride of 8) and chenone-

CTC (with a stride of 4) on English, Vietnamese and Turkish, which

are the best choices of stride for WP/chenone-CTC respectively, in

terms of balancing WER and RTF. We find that for LC-BLSTM

models, WP-CTC training consistently outperforms chenone-CTC

in WER4, and thus we decided to adopt WP-CTC in comparison with

other training criteria. One hypothesis is that the LC-BLSTM en-

coder being a streaming model is less expressive than a full-context

deep transformer encoder. Therefore, the LC-BLSTM encoder is

not able to fully exploit the richer target representation provided by

chenone alignments during training, in a sense that the optimal size

of a chenone is usually much larger than a wordpiece set.

6.4. Choices of the encoder model architecture

We also explored an encoder architecture based on time-depth sep-

arable (TDS) convolutions [22] as an alternative encoder choice un-

der the CTC setup. Since from recent research [23] TDS encoder

has shown its advantage of speed during inference, we want to ex-

plore if this architecture generalizes well on more datasets. The

TDS architecture in this study is designed to use as many parame-

ters as possible to improve WER given that the RTF is still lower

than LC-BLSTM: the TDS encoder consists of 14 TDS blocks, 3

sub-sampling layers, each with a stride of 2, for a total sub-sampling

factor of 8. The total right context is 570 ms. Total parameters is

122M and is larger than the LC-BLSTM model (75M parameters).

The realized RTF of TDS on English (0.26 [23]) is lower than LC-

BLSTM as in Table 2. Results on English, Vietnamese and Turk-

ish languages are presented in Table 4. We can see that TDS WER

slightly outperforms LC-BLSTM in English and lags behind in the

other two languages. One possible explanation is that the TDS ar-

chitecture is more data hungry, e.g. for English, there are more than

3 times the training data as Turkish and Vietnamese. There is also

evidence that on LibriSpeech which has 1000hrs of training data, LC-

BLSTM is outperforming TDS [22, 18]. Therefore, for the overall

7 languages comparisons, we used the LC-BLSTM encoder when

comparing different training criteria.

3WERs of CTC in Table 3 and Table 4 are different from Table 2 due
to some differences in evaluation datasets, however the same data were used
consistently within each table.

4and also in RTF [7], though we did not measure RTF here.

Table 2. Performance overview of WER (CER for Thai) and RTF. Average WERR (Word Error Rate Reduction, positive and larger is better)

is computed by first computing the WERR on the three test categories individually (using LF-MMI models as a baseline), and then taking the

unweighted average.

Language US English Spanish Hindi Indic English

Model LF-MMI CTC RNN-T LF-MMI CTC RNN-T LF-MMI CTC RNN-T LF-MMI CTC RNN-T

clean 10.4 11.3 10.2 10.4 10.2 9.1 20.1 18.9 17.9 26.9 26.7 26.2

noisy 14.4 15.0 14.2 12.7 12.6 11.1 21.7 20.6 19.4 31.6 31.1 31.3

extreme 20.3 20.9 19.8 21.0 20.7 19.2 25.7 26.3 25.0 32.2 32.7 31.3

Avg. WERR – -5.3% 1.9% – 1.4% 11.2 % – 2.9% 8.1% – 0.3% 2.1%
RTF 0.46 0.40 0.49 0.50 0.33 0.48 0.44 0.30 0.41 0.44 0.30 0.41

Language Thai Vietnamese Turkish

Model LF-MMI CTC RNN-T LF-MMI CTC RNN-T LF-MMI CTC RNN-T

clean 9.7 9.9 8.7 11.5 11.7 10.5 19.4 19.6 16.9

noisy 13.7 14.2 12.8 19.3 19.9 19.0 20.2 20.7 18.6

extreme 21.7 22.8 20.2 45.3 46.6 46.3 37.9 39.9 38.4

Avg. WERR – -3.6% 7.9% – -2.6% 2.6% – -2.9% 6.5%
RTF 0.41 0.29 0.40 0.37 0.29 0.44 0.45 0.33 0.43

Table 3. WER of WP-CTC v.s. chenone-CTC
Lang. EN VN TR

Unit WP chenone WP chenone WP chenone

clean 14.0 15.3 11.6 15.5 19.3 20.7

noisy 20.0 21.3 19.9 23.5 20.4 21.5

extreme 26.1 28.5 46.6 52.2 39.9 40.6

Table 4. WER of LC-BLSTM v.s. TDS encoder for CTC
Lang. EN VN TR

Unit LC-
BLSTM

TDS LC-
BLSTM

TDS LC-
BLSTM

TDS

clean 14.0 13.7 11.6 12.7 19.3 20.9

noisy 20.0 19.5 19.9 20.9 20.4 22.4

extreme 26.1 25.2 46.6 48.2 39.9 41.8

6.5. (Pre-)training optimization for RNN-T

One of the major challenges of training RNN-T models is the need

of enormous memory size, due to the formulation on both embed-

dings from the encoder henc
t and the predictor hpre

u as shown in Eq.

6. Specifically, in order to compute the forward-backward algorithm

[2], a joint embedding zt,u is needed for each position pair (t, u).
This translates to a minimum memory usage of Ti ∗ Ui ∗D floating

numbers for the i-th sequence in a sequence of batch size B, where

Ti and Ui are sequence lengths of encoder/predictor embeddings and

D is the number of sentence pieces as output units. This can in turn

lead to B ∗maxi(Ti) ∗maxi(Ui) ∗D floating numbers for the entire

batch if with the more traditional “broadcasting” implementation, or

the reduced
∑

i
Ti ∗ Ui ∗D with optimization [24]. For either cases,

the scale of such tensors is often measured in GBs, therefore limits

the batch size, which is observed to be highly correlated with the

stability of gradients and then the final word error rates.

With the identification of the bottleneck for training RNN-T

models, our in-house RNN-T criterion implementation provides

additional improvements on training efficiency and word error rate

reduction with highly optimized memory consumption. First, func-

tion merging [24] was adopted to fuse the softmax operation into

the RNN-T criterion, this reduces the memory usage by ≃ 50%
(translating to 2x batch size) while the numerical value of gradients

Table 5. Training optimization and CE pre-training effects for RNN-

T with varying training mini-batch size. WER results on Turkish

(without model quantization and decoding beam sweeping).

batch size 8 16

pre-training N Y N Y

clean 17.7 17.0 17.1 16.8

noisy 19.3 19.0 18.9 18.9

stay identical. Second, mixed-precision training was implemented

in which 16-bit float numbers (fp16) are used instead of 32-bit ones

(fp32), which leads to another ≃ 50% memory usage reduction

(another 2x gain on batch size), with some loss on precision but

compensated later by larger batch sizes. The combined optimiza-

tions improves the batch size by a factor of 4 compared over the

vanilla implementation, and a factor of 2 over function merging

alone, which leads to not only training speed-up but also perfor-

mance gain.

With an output wordpiece size 2048, RNN-T training can only

use a batch size 8 in each V100 GPU of 16G memory before the

above training optimization. In such case, pretraining the RNN-T

encoder with the hybrid CE model (i.e. the same model used in LF-

MMI systems) has provided consistent performance improvements,

as shown in Table 5. After the training optimization enables a batch

size 16, we observe noticeable performance improvements without

encoder pre-training, while additional pre-training with hybrid CE

model only provides minor further gains.

7. DISCUSSIONS AND CONCLUSIONS

In this work, we demonstrated in details that across the 7 languages

studied, CTC systems achieved best decoding efficiency while RNN-

T systems provided best WER overall. Compared with the LF-MMI

baseline, for CTC, the RTF improvement is around 30% with 2 - 5%
WER degradation for 4 languages and up to 3% WER improvement

for the other 3 languages; for RNN-T, the RTF is about the same

as baseline LF-MMI systems for all languages, with significant and

consistent 2 - 11% WER improvements.

Overall, CTC systems were able to achieve the best decoding

efficiency since they use wordpiece units (spanning longer temporal

space than chenone) with the largest stride 8 among all systems. This

agrees with the findings in prior works that CTC can achieve a good

trade-off between WER and decoding inference efficiency when us-

ing wordpieces [25, 26, 7] or even whole words [9] as modeling

units. RNN-T systems consistently achieved the best WERs across

all languages, presumably due to to its expressiveness in explicitly

leveraging previous output labels, as shown in Eq. 7.

In future work, we will continue to measure the performance

on named entities (i.e. entity error rate), and present studies on the

ASR inference latency, i.e., delayed token generation problem [27,

28]. We will also examine various model-specific techniques that

can improve a model type in particular [29, 30, 31], and continue to

benchmark the best systems across training criteria.

In summary, each system explored in this study - LF-MMI, CTC,

and RNN-T - has its own strengths and limits, and accordingly each

could be adopted based on different business requirements, e.g. pri-

oritizing run time over WER, or vise versa.

8. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen

Schmidhuber, “Connectionist Temporal Classification: La-

belling Unsegmented Sequence Data with Recurrent Neural

Networks,” in Proc. ICML, 2006.

[2] Alex Graves, “Sequence Transduction with Recurrent Neural

Networks,” in Proc. ICML, 2012.

[3] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,

Kyunghyun Cho, et al., “Attention-based models for speech

recognition,” in Proc. NueralIPS, 2015.

[4] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,

“Listen, attend and spell: A neural network for large vocabulary

conversational speech recognition,” in Proc. ICASSP, 2016.

[5] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-

riSpeech: an ASR corpus based on public domain audio books,”

in Proc. ICASSP, 2015.

[6] Yongqiang Wang, Abdelrahman Mohamed, Duc Le, Chunxi

Liu, et al., “Transformer-based acoustic modeling for hybrid

speech recognition,” in Proc. ICASSP, 2020.

[7] Frank Zhang, Yongqiang Wang, Xiaohui Zhang, Chunxi Liu,

et al., “Faster, simpler and more accurate hybrid ASR systems

using wordpieces,” in Proc. Interspeech, 2020.

[8] Hank Liao, Erik McDermott, and Andrew Senior, “Large scale

deep neural network acoustic modeling with semi-supervised

training data for YouTube video transcription,” in Proc. ASRU,

2013.

[9] Hagen Soltau, Hank Liao, and Hasim Sak, “Neural speech rec-

ognizer: Acoustic-to-word LSTM model for large vocabulary

speech recognition,” Proc. Interspeech, 2017.

[10] Chung-Cheng Chiu, Wei Han, Yu Zhang, Ruoming Pang, et al.,

“A comparison of end-to-end models for long-form speech

recognition,” in Proc. ASRU, 2019.

[11] Chunxi Liu, Qiaochu Zhang, Xiaohui Zhang, Kritika Singh,

Yatharth Saraf, and Geoffrey Zweig, “Multilingual graphemic

hybrid ASR with massive data augmentation,” in Proc. of

the 1st Joint Workshop on Spoken Language Technologies for

Under-resourced languages (SLTU) and Collaboration and

Computing for Under-Resourced Languages (CCURL), 2020.

[12] Da-Rong Liu, Chunxi Liu, Frank Zhang, Gabriel Synnaeve,

Yatharth Saraf, and Geoffrey Zweig, “Contextualizing ASR

lattice rescoring with hybrid pointer network language model,”

in Proc. Interspeech, 2020.

[13] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah

Ghahremani, et al., “Purely sequence-trained neural networks

for ASR based on lattice-free MMI,” in Proc. Interspeech,

2016.

[14] Eric Battenberg, Jitong Chen, Rewon Child, Adam Coates,

Yashesh Gaur Yi Li, Hairong Liu, Sanjeev Satheesh, Anuroop

Sriram, and Zhenyao Zhu, “Exploring neural transducers for

end-to-end speech recognition,” in Proc. ASRU, 2017.

[15] Jinyu Li, Yu Wu, Yashesh Gaur, Chengyi Wang, et al., “On

the comparison of popular end-to-end models for large scale

speech recognition,” in Proc. Interspeech, 2020.

[16] Mahaveer Jain, Kjell Schubert, Jay Mahadeokar, Ching-Feng

Yeh, Kaustubh Kalgaonkar, Anuroop Sriram, Christian Fuegen,

and Michael L. Seltzer, “Rnn-t for latency controlled asr with

improved beam search,” 2019.

[17] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N Sainath,

Zhijeng Chen, and Rohit Prabhavalkar, “An analysis of in-

corporating an external language model into a sequence-to-

sequence model,” in Proc. ICASSP, 2018.

[18] Duc Le, Xiaohui Zhang, Weiyi Zheng, Christian Fügen,

et al., “From Senones to Chenones: Tied Context-Dependent

Graphemes for Hybrid Speech Recognition,” Proc. ASRU,

2019.

[19] Jun Liu, Jiedan Zhu, Vishal Kathuria, and Fuchun Peng, “Ef-

ficient dynamic wfst decoding for personalized language mod-

els,” arXiv preprint arXiv:1910.10670, 2019.

[20] T. Ko, V. Peddinti, D. Povey, et al., “Audio augmentation for

speech recognition,” in Proc. Interspeech, 2015.

[21] D. S. Park, W. Chan, Y. Zhang, et al., “Specaugment: A simple

data augmentation method for automatic speech recognition,”

in Proc. Interspeech, 2019.

[22] Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Collobert,

“Sequence-to-sequence speech recognition with time-depth

separable convolutions,” in Proc. Interspeech, 2019.

[23] Vineel Pratap, Qiantong Xu, Jacob Kahn, Gilad Avidov, et al.,

“Scaling Up Online Speech Recognition Using ConvNets,”

2020.

[24] Jinyu Li, Rui Zhao, Hu Hu, and Yifan Gong, “Improving RNN

Transducer Modeling for End-to-End Speech Recognition,” in

Proc. ASRU. IEEE, 2019.

[25] M. Huang, Y. Lu, L. Wang, Y. Qian, et al., “Exploring Model

Units and Training Strategies for End-to-End Speech Recogni-

tion,” in Proc. ASRU, 2019.

[26] Amit Das, Jinyu Li, Guoli Ye, Rui Zhao, et al., “Advanc-

ing Acoustic-to-Word CTC Model with Attention and Mixed-

Units,” IEEE TASLP, 2018.

[27] Hirofumi Inaguma, Yashesh Gaur, Liang Lu, Jinyu Li, and Yi-

fan Gong, “Minimum latency training strategies for streaming

sequence-to-sequence ASR,” in Proc. ICASSP, 2020.

[28] Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang

Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, and Michael

Seltzer, “Alignment restricted streaming recurrent neural net-

work transducer,” in Proc. SLT, 2021.

[29] Andros Tjandra, Chunxi Liu, Frank Zhang, Xiaohui Zhang,

Yongqiang Wang, Gabriel Synnaeve, Satoshi Nakamura, and

Geoffrey Zweig, “Deja-vu: Double feature presentation and

iterated loss in deep transformer networks,” in Proc. ICASSP,

2020.

[30] Chunxi Liu, Frank Zhang, Duc Le, Suyoun Kim, Yatharth

Saraf, and Geoffrey Zweig, “Improving RNN transducer based

ASR with auxiliary tasks,” in Proc. SLT, 2021.

[31] Ashutosh Pandey, Chunxi Liu, Yun Wang, and Yatharth Saraf,

“Dual application of speech enhancement for automatic speech

recognition,” in Proc. SLT, 2021.

	1 Introduction
	2 Model training
	2.1 LF-MMI
	2.2 CTC
	2.3 RNN-T

	3 Modeling units
	4 Model architecture
	5 Model inference
	6 Experiments
	6.1 Data
	6.2 Results
	6.3 WP-CTC v.s. chenone-CTC
	6.4 Choices of the encoder model architecture
	6.5 (Pre-)training optimization for RNN-T

	7 Discussions and Conclusions
	8 References

