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ABSTRACT

Recently, the advance in deep learning has brought a consider-
able improvement in the end-to-end speech recognition field,
simplifying the traditional pipeline while producing promis-
ing results. Among the end-to-end models, the connection-
ist temporal classification (CTC)-based model has attracted
research interest due to its non-autoregressive nature. How-
ever, such CTC models require a heavy computational cost
to achieve outstanding performance. To mitigate the com-
putational burden, we propose a simple yet effective knowl-
edge distillation (KD) for the CTC framework, namely Inter-
KD, that additionally transfers the teacher’s knowledge to the
intermediate CTC layers of the student network. From the
experimental results on the LibriSpeech, we verify that the
Inter-KD shows better achievements compared to the conven-
tional KD methods. Without using any language model (LM)
and data augmentation, Inter-KD improves the word error rate
(WER) performance from 8.85 % to 6.30 % on the test-clean.

Index Terms— Speech recognition, connectionist tempo-
ral classification, teacher-student learning, knowledge distil-
lation

1. INTRODUCTION

In recent years, there has been remarkable progress in end-to-
end speech recognition that directly converts an input speech
into the corresponding text without any prior alignment infor-
mation. Compared with the traditional deep neural network
(DNN)-hidden Markov model (HMM) hybrid systems, the
end-to-end framework simplifies the overall pipeline while
achieving better performance.

Among the various types of end-to-end models for speech
recognition, connectionist temporal classification (CTC) [1]
has attracted increasing interest due to its non-autoregressive
(NAR) nature. The NAR model requires M (� N ) iterations
when producing an N -length target sequence. On the other
hand, the autoregressive (AR) model costs N iterations, indi-
cating that the NAR framework enables a significant inference
speedup over the AR one.

However, existing CTC-based models require high com-
putational cost and long training time to achieve promising
results. For their practical deployment in resource-limited set-

(a) Previous KD approach

(b) Proposed KD approach

Fig. 1: Conceptual diagram of Inter-KD compared to the
conventional KD. The orange line represents KD with the
teacher’s output-level knowledge. Different from the conven-
tional KD, the proposed method uses multiple intermediate
CTC layers for KD.

tings, there have been continuous efforts to apply knowledge
distillation (KD), an effective technique for model compres-
sion, to CTC models. The main idea of KD is to transfer
the knowledge from a large and powerful teacher model to a
small student model. In the speech recognition task, conven-
tional KD methods typically consider the teacher network’s
output-level knowledge (sentence prediction, softmax predic-
tion, etc.) for distillation. By minimizing the distance be-
tween the predictions of the teacher and the student, the dis-
tilled student can achieve better performance than the baseline
trained only with the target label.

In order to train the student more effectively, in this pa-
per, we propose a novel KD framework for CTC models,
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namely Inter-KD. As depicted in Fig. 1, we design the student
model’s architecture using multiple intermediate CTC layers.
Each CTC layer is trained with the output-level knowledge of
the teacher in conjunction with the CTC loss. The proposed
architecture of the student is similar to a deeply supervised net
[2] and an intermediate CTC [3], where both methods add su-
pervision to the hidden layers for performance improvement.
The main difference with previous deeply supervised schemes
is that Inter-KD trains the intermediate CTC layers with KD
instead of using only ground-truth labels. Since the auxiliary
CTC layers can be ignored during the inference, a small addi-
tional computational load is required only for training.

From the experimental results on the LibriSpeech [4]
dataset, it is confirmed that Inter-KD shows better perfor-
mance than the conventional KD methods. For test-clean
dataset, Inter-KD improves the word error rate (WER) per-
formance of the student from 8.85 % to 6.30 % without using
any language model (LM) and data augmentation, achieving
relative error rate reduction (RERR) 28.81 %. We conduct
additional analysis to further check the effect of KD with the
intermediate CTC layers.

Our main contributions can be summarized as follows:

• We introduce a new KD framework for CTC models,
namely Inter-KD. In the proposed scheme, we newly
design the architecture of the student by attaching mul-
tiple intermediate CTC layers in the middle of the net-
work. The student can be trained more effectively by
transferring the teacher’s knowledge to the intermedi-
ate CTC layers.

• According to the experimental results on the Lib-
riSpeech dataset, we verify the effectiveness of the
Inter-KD. When transferring the output-level knowl-
edge of the teacher, Inter-KD yields better performance
than other previous KD methods.

2. RELATED WORK

2.1. Connectionist temporal classification

For given source input x1:T and target label y1:N , the CTC
framework [1] can directly convert x into y by using the addi-
tional token “blank”. Unlike the traditional hybrid system, the
predefined alignment knowledge is not required. CTC consid-
ers all possible alignments compatible with y to compute the
conditional probability of y. When training the CTC model,
we minimize the following objective:

− log p(y|x) = − log
∑

a∈β−1(y)

p(a|x) (1)

where β denotes a many-to-one mapping function for CTC,
and a represents the intermediate alignments, which include
the blank token. β−1(y) returns the possible set of align-
ments.

Even though the CTC framework provides efficient de-
coding, there is a strong conditional independence assump-
tion between the output tokens, resulting in relatively poor
performance compared to the AR models. Recently, there
have been some attempts to close the gap between the CTC
and AR models. Chan et al. [5] and Higuchi et al. [6] used the
additional network to refine the initial output from the CTC.
Majumdar et al. [7] proposed an improved CTC-based archi-
tecture that combines a QuartzNet [8] with the squeeze and
excitation [9]. Lee and Watanabe [3] introduced an interme-
diate CTC loss, which uses the intermediate layer in the en-
coder network and its corresponding CTC loss to improve the
performance of the model.

2.2. Knowledge distillation

Hinton et al. [10] first proposed the concept of KD, which
transfers knowledge by minimizing Kullback-Leibler (KL)-
divergence between the predictions of the teacher and the
student. Since the large and powerful teacher model is uti-
lized to guide the training of the small student model, the
student can produce better performance compared with the
case when it is solely trained with the ground-truth labels.
With steadily increasing interest in on-device speech recogni-
tion, there have been several efforts to develop KD for speech
recognition models. For the DNN-HMM hybrid system, pre-
vious KD studies typically trained the student by minimizing
cross-entropy (CE) loss between the posterior probability of
the teacher and the student [11, 12, 13, 14, 15, 16]. How-
ever, it is challenging to train CTC-based speech recognition
models with the same CE criteria. According to the previous
studies [17, 18, 19], applying the CE-based KD technique
to the CTC-based models can worsen the performance com-
pared to the baseline model trained only with the target label.
To cover this issue, Takashima et al. [18] attempted to apply
sequence-level KD [20] to the CTC model. Kurata and Au-
dhkhasi [21, 22] suggested the KD framework that can train
the low-latency student model with the knowledge of the
high-latency teacher model and also proposed guided CTC
training that distills the spike timings from the teacher. Yoon
et al. [23] introduced softmax-level KD (SKD) that uses l2
loss instead of KL divergence when distilling frame-level
posterior of the CTC-based teacher model.

3. PROPOSED METHOD

3.1. Student model architecture

As shown in Fig. 2, we newly design the architecture of the
student. Different from the conventional student model, mul-
tiple CTC layers are added to the intermediate layers of the
student. In our experiments, additional CTC layers are at-
tached to three layers: 18th, 24th, and 30th layers of the stu-
dent, whose network is composed of 33 depthwise separable
convolutional layers. For the convenience of notation, we let



Fig. 2: An overview of Inter-KD for CTC models.

“intermediate CTC layer” denotes the auxiliary CTC layer in
the middle of the student, and “original CTC layer” denotes
the last CTC layer of the student. Each CTC layer is com-
bined with a fully-connected layer and the softmax function.
Note that the fully-connected layers in intermediate CTC are
not shared with the original CTC’s fully-connected layer. The
proposed architecture of the student is similar to some deep
supervision-based networks [2, 3] that add supervision to the
hidden layers. The main difference is that the intermediate
CTC layers are trained with KD instead of using only ground-
truth labels.

3.2. Intermediate CTC layer

Intermediate CTC layers are located in the middle of the stu-
dent network, as depicted in Fig. 2. These layers are only
used in the training procedure and can be removed during the
inference, so a small additional computational load is required
only for training. When training the student, the intermediate
CTC layers are trained via KD in conjunction with CTC loss.
The CTC loss function of ith intermediate CTC layer is given
as

LiInterCTC = CTCloss(y, gi(x)) (2)

where x, y, gi(x), and CTCloss represent the source input, the
corresponding label, the softmax output of the ith intermedi-
ate CTC layer, and the CTC loss, respectively. Regardless of
the layer position, the conventional deep supervised learning
[2, 3] added supervision to the hidden layers with the same
target. Since we followed the conventional framework, we
used the same target labels for each intermediate layer.

The second loss source is the KD loss function. As for
the KD technique, we adopt the SKD [23] due to its effective

improvement for CTC models. The SKD applies l2 loss for
transferring the knowledge. Therefore, the KD loss function
for ith intermediate CTC layer can be computed as

LiInterKD = ||ftea(x)− gi(x))||22 (3)

where ftea(x) denotes the softmax prediction of the teacher.

3.3. Original CTC layer

The original CTC layer is attached to the last layer of the stu-
dent model. We use both KD and CTC losses for training
the original CTC layer. Firstly, the CTC loss function of the
original CTC layer is as follows:

LOrigCTC = CTCloss(y, fstu(x)) (4)

where fstu(x) denotes the softmax value of the original CTC
layer. LOrigCTC loss is exactly same as the vanilla CTC train-
ing. The KD loss for the original CTC layer is formulated
as

LOrigKD = ||ftea(x)− fstu(x))||22. (5)

3.4. Training

In the Inter-KD framework, there are two kinds of training
losses to improve the performance of the student.

• Loss 1: CTC loss from target labels. The supervision
of CTC is added not only to the original CTC layer, but
also to the intermediate CTC layers.

• Loss 2: KD loss using the teacher model’s softmax pre-
diction. All CTC layers are trained with the knowledge
of the teacher.



Table 1: Comparison of WER (%) and RERR (%) on LibriSpeech using greedy decoding. “Ours” denotes Inter-KD with
K = 3. The best result is in bold.

WER (%) w/o LM RERR (%) w/o LM

Model Params. dev test dev test

clean other clean other clean other clean other

Teacher: Jasper DR 332.63 M 3.61 11.37 3.77 11.08 - - - -

Student: Jasper Mini 8.66 23.28 8.85 24.26 - - - -
+ Sequence-level KD [18] 8.96 23.73 9.10 24.81 -3.46 -1.93 -2.82 -2.27
+ Guided CTC training [22] 8.19 M 7.81 21.93 8.29 22.49 9.82 5.80 6.33 7.30
+ SKD [23] 7.63 21.36 7.81 22.41 11.89 8.25 11.75 7.63
+ Ours 6.24 18.82 6.30 19.49 27.94 19.16 28.81 19.66

When there are K intermediate CTC layers in the student
model, the CTC loss function LCTC for Inter-KD is given as

LCTC = LOrigCTC +

K∑
i=1

LiInterCTC. (6)

The KD loss between the student and the teacher is as follows:

LKD = LOrigKD +

K∑
i=1

LiInterKD. (7)

Thus, the final objective function LTotal for Inter-KD is given
as

LTotal = LCTC + λ · LKD (8)

where λ is a tunable parameter to balance LCTC and LKD.

3.5. Inference

The intermediate CTC layers are unaffected during the whole
inference procedure. Only the original CTC layer is used to
generate the final prediction of the student.

4. EXPERIMENTAL SETTINGS

4.1. Dataset

We evaluated the word error rate (WER) performance on Lib-
riSpeech [4] dataset. In the training phase, “train-clean-100”,
“train-clean-360”, and “train-other-500” were applied. We
used “dev-clean”, “dev-other”, “test-clean”, and “test-other”
for evaluation.

4.2. Performance metrics

For the performance comparison, we measured WER and
relative error rate reduction (RERR). WER is a widely-used
metric to quantify the performance of the speech recognition
model and RERR is a standard metric to measure the WER
improvement compared to the baseline.

4.3. Model configurations

In our experiments, we adopted Jasper DR [24] and Jasper
Mini as the teacher and the student models, respectively. Both
CTC models had the same label set, which included a total of
29 character labels. For model training and inference, We
utilized the OpenSeq2Seq toolkit [25]. For the Jasper DR
teacher, we used the pre-trained model checkpoint provided
by the OpenSeq2Seq. The Jasper Mini student model con-
sists of 33 depthwise separable 1D convolutional layers.

4.4. Implementation details

We trained the student with 50 epochs for CTC training with
KD, and three Titan V GPUs (each with 12GB memory) were
used for training. NovoGrad optimizer [26] was adopted for
training the student, where the initial learning rate was set to
0.02. As aforementioned in Section 3, we added intermediate
CTC layers to three layers: 18th, 24th, and 30th layers of the
Jasper Mini. The tunable parameter in the Equation 8 was set
to 0.25. When decoding with LM, we used 4-gram KenLM
[27], where the beam width was 256.

4.5. Conventional distillation methods for comparison

Since the proposed framework transferred the softmax pre-
diction of the teacher, we mainly compared the Inter-KD with
the conventional KD methods that considered the teacher net-
work’s output-level knowledge (sentence prediction, softmax
prediction, etc.). For performance comparison, we applied
three conventional KD techniques for CTC models, including
sequence-level KD [18], guided CTC training [22], and SKD
[23].

5. EXPERIMENTAL RESULTS

5.1. Performance comparison

Table 1 shows the WER and RERR results with greedy de-
coding, comparing the performance improvement of the Inter-



Table 2: Comparison of WER (%) and RERR (%) using the 4-gram LM. “Ours” denotes Inter-KD with K = 3. The best
result is in bold.

WER (%) w/ LM RERR (%) w/ LM

Model Params. dev test dev test

clean other clean other clean other clean other

Teacher: Jasper DR 332.63 M 3.04 9.52 3.69 9.38 - - - -

Student: Jasper Mini 4.83 15.53 5.24 16.40 - - - -
+ Sequence-level KD [18] 5.16 15.54 5.48 16.91 -6.83 -0.06 -4.58 -3.11
+ Guided CTC training [22] 8.19 M 5.17 15.94 5.58 16.85 -7.04 -2.64 -6.49 -2.74
+ SKD [23] 4.77 15.01 5.26 15.96 1.24 3.35 -0.38 2.68
+ Ours 4.61 14.55 4.99 15.19 4.55 6.31 4.77 7.38

KD with conventional KD techniques. From the results, it is
verified that the proposed KD method considerably improved
the WER performance of the student compared to other KD
methods. The distilled student using Inter-KD achieved WER
6.24 % and WER 6.30 % on dev-clean and test-clean, corre-
sponding to RERR 27.94 % and RERR 28.81 %. In the case
of test-other, Inter-KD gave WER 19.49 % and RERR 19.66
%. Among the conventional KD approaches, SKD yielded
better achievements than sequence-level KD and guided CTC
training. Still, the best WER performance was obtained when
applying the Inter-KD to the student model.

Also, we conducted experiments based on the LM de-
coding. As presented in Table 2, applying LM was more
challenging than greedy decoding. Sequence-level KD and
guided CTC training had a negative RERR value for all con-
figurations, and SKD had a little improvements compared to
the case when utilizing greedy decoding. Compared to the
previous results in Table 1, the conventional KD techniques
did not perform well with the LM decoding. However, it is
confirmed that Inter-KD gave significant improvements in all
configurations, even when decoding with LM. The proposed
KD achieved WER 4.99 % and WER 15.19 % on test-clean
and test-other, providing RERR 4.77 % and RERR 7.38 %,
respectively.

5.2. Analysis

5.2.1. Effect of the number of intermediate CTC layers

In addition to the performance comparison, we set different
number of intermediate CTC layers to verify the impact ofK,
which denotes the number of intermediate CTC layers. Table
3 gives the WER and RERR results on dev-clean by setting
different K from 1 to 3. When K was set to 1, we attached
one intermediate CTC layer to the 30th layer of the student
model. In the case of K = 2, the intermediate CTC layers
were added to 24th and 30th layers of the student. The inter-
mediate layers are attached to 18th, 24th, and 30th layers of
the student whenK = 3. From the results, we confirmed that,

Table 3: WER (%) and RERR (%) on LibriSpeech dev-clean
using greedy decoding. Different number of intermediate
CTC layers (=K) were set from 1 to 3. RERR measured the
WER improvement compared to the baseline, where the stu-
dent baseline provided WER 8.66 % on dev-clean.

# of intermediate
CTC layers KD WER (%) RERR (%)

K=3 O 6.24 27.94
X 6.60 23.79

K=2 O 6.29 27.37
X 7.37 14.90

K=1 O 6.42 25.87
X 8.20 5.31

regardless of applying KD, the performance progressively im-
proved as the K increased from 1 to 3.

5.2.2. Performance comparison with deep supervised learn-
ing

The conventional deep supervised learning [2], such as in-
termediate CTC [3], added supervision to the hidden layers.
Therefore, training the intermediate CTC layers without KD
was similar to the deep supervised scheme. In addition to the
previous experimental results, we continued to conduct the
performance comparison between Inter-KD and the deep su-
pervised learning. The results in Table 3 show that Inter-KD
achieved better improvements compared to the case without
KD, where multiple intermediate CTC layers were trained
only with the ground-truth. With the setting of K = 1,
there was relatively little achievement without KD, providing
RERR 5.31 %. We observed that the distilled student (K = 1)
using Inter-KD was improved considerably, yielding RERR
25.87 %. In the case of K = 2, the model provided WER
7.37 % without KD, and the performance was further im-



Table 4: WER (%) on LibriSpeech when greedy decoding
was applied. K was set to 3.

WER (%)

Intermediate CTC
layer index dev test

clean other clean other

1 11.91 28.91 12.03 29.81
2 7.36 21.00 7.39 21.76
3 6.30 18.97 6.37 19.48

proved when applying Inter-KD (WER 6.29 %). We verified
that applying KD for each intermediate CTC layer performed
well for all configurations, including K = 1, K = 2, and
K = 3. Our best improvement was obtained when applying
K = 3 with Inter-KD.

5.2.3. Performance of each intermediate CTC layer

Since we used multiple CTC intermediate layers that can pro-
duce the intermediate ASR prediction, we measured the WER
performance of each intermediate CTC layer. Table 4 summa-
rizes the results of each intermediate CTC layer when apply-
ing K = 3. Layer indexes 1, 2, and 3 indicate each interme-
diate layer attached to the 18th, 24th, and 30th layers of the
student model, respectively. From the results, the intermedi-
ate CTC with index 1 achieved WER 12.03 % and WER 29.81
% on test-clean and test-other datasets, indicating a substan-
tial WER degradation compared to other layer indexes. In the
case of index 3, we observed a minimal degradation for all
configurations, compared with the previous results of Inter-
KD in Table 1. Interestingly, for the test-other, the WER per-
formance of layer index 3 (WER 19.48 %) was slightly bet-
ter than that of the original Inter-KD (WER 19.49 %). This
implies that intermediate CTC layers can produce confident
ASR predictions via the Inter-KD. If we properly use these
intermediate outputs for the early exit framework, the ASR
result can be returned early instead of finishing the whole in-
ference procedure. In other words, the Inter-KD gave more
possibilities for accelerating the model’s inference speed.

6. CONCLUSION

In this paper, we proposed a simple yet effective KD method
for CTC models, namely Inter-KD. In the proposed KD
framework, we newly designed the architecture of the student
by adding multiple intermediate CTC layers in the middle of
the student network. These intermediate layers were trained
with the teacher’s knowledge in conjunction with the ground-
truth labels. From the experimental results on LibriSpeech, it
is confirmed that Inter-KD can effectively improve the WER
performance of the student. Also, the proposed KD achieved

better improvements for all configurations compared to the
conventional output-level KD methods. The detailed analy-
sis was performed for each intermediate CTC layer, and we
gave the possibility that the proposed KD can be applied to
the early exit framework, accelerating the model’s inference
speed.
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