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ABSTRACT

Machine learning model weights and activations are repre-
sented in full-precision during training. This leads to per-
formance degradation in runtime when deployed on neural
network accelerator (NNA) chips, which leverage highly par-
allelized fixed-point arithmetic to improve runtime memory
and latency. In this work, we replicate the NNA operators
during the training phase, accounting for the degradation due
to low-precision inference on the NNA in back-propagation.
Our proposed method efficiently emulates NNA operations,
thus foregoing the need to transfer quantization error-prone
data to the Central Processing Unit (CPU), ultimately reduc-
ing the user perceived latency (UPL). We apply our approach
to Recurrent Neural Network-Transducer (RNN-T), an attrac-
tive architecture for on-device streaming speech recognition
tasks. We train and evaluate models on 270K hours of En-
glish data and show a 5-7% improvement in engine latency
while saving up to 10% relative degradation in WER.

Index Terms— Accelerator-aware training, model com-
pression, automatic speech recognition (ASR), recurrent neu-
ral network transducer (RNN-T).

1. INTRODUCTION

The task of transcribing an audio to the corresponding text
transcriptions constitutes the Automatic Speech Recognition
(ASR) component of voice assistants such as Alexa, Google
Home or Siri. ASR solutions have evolved from traditional
hybrid Deep Neural Network (DNN) - Hidden Markov Model
(HMM) systems to modern end-to-end neural architectures
including various transducer-based systems [I-5]. While
many of these approaches have demonstrated high accuracy,
an important differentiation comes from their streaming ca-
pability, which reduces the user’s perceived latency (UPL).
A streaming ASR system is able to start transcribing the au-
dio even before the user has finished speaking an utterance,
i.e., the system does not require future context to inform the
transcription results. Among streaming architectures, the
Recurrent Neural Network-Transducer (RNN-T) model (see
Figure 6] stands out as an all-neural, end-to-end (E2E)
method with both low latency and high accuracy, and it is
widely adopted in modern speech recognition systems.
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Apart from the current trend of moving to E2E architec-
tures for machine learning (ML) applications, leading ML so-
lution providers also utilize on-device processing to improve
user experience and reduce UPL. As a result, hardware con-
sisting of NNA chips have been gradually deployed to support
on-device computer vision, natural language understanding
(NLU), and ASR tasks. However, this comes with additional
challenges when moving from floating point to fixed point op-
erations supported by NNAs. Since computers are finite state
machines, real numbers are represented and manipulated in
floating point format in computer memory. Floating point
numbers are characterized by a mantissa, an exponent and
the sign bit, which enable the representation of a wide range
of values with a floating decimal point. For example, a 32-
bit floating point (FP-32) number can represent a total of 232
unique values with a higher precision than their fixed point
counterparts. In the context of performing machine learning
on the edge, floating point computations are time consum-
ing and memory expensive, especially for deep learning mod-
els used for E2E speech recognition which involve millions
(and sometimes billions) of multiply-and-accumulate (MAC)
operations for a single inference cycle. To address the time
and memory complexity, neural accelerator chips thus em-
ploy fixed point operations, in which each value is normally
represented by a reduced number of bits.

It is worth noting that neural ML models are highly sen-
sitive to such reductions in the precision of weights and acti-
vations, and this effect is even more pronounced in recurrent
architectures since the errors accumulate across multiple time
steps. To address these problems, while also being cognizant
of the low latency, power and memory requirements for on-
device systems, the on-device chips adopt a hybrid architec-
ture which includes general-purpose central processing units
(CPUs) as well as specialized neural processing unit (NPU)
cores, integrated into a single System-On-Chip (SoC) design
(see Figure [2). In order to acheive the best performance,
certain computations are performed in highly efficient NPUs
whereas others requiring a higher precision are computed on
CPUs. This trade-off results in additional on-chip comput-
ing and data transfer latency between the NPU and CPU, cre-
ating bottlenecks during inference. For example, on-device
ASR models need to use the CPU to compute tanh and sig-
moid activations, which are not only quantization error-prone
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Fig. 1: Model diagram of Recurrent Neural Network Trans-
ducer (RNN-T).

on NPU, but also computation and memory intensive. In this
work, we aim to reduce the latency incurred due to moving
data between the NPU and CPU to perform non-linear ac-
tivations. Using an ASR task and RNN-T architecture as a
proof of concept, we show that we are able to improve model
inference speed by 20% on-device with negligible, less than
1% relative, accuracy degradation by performing accelerator-
aware training (AAT), thus making the models more robust to
the NNA and the hardware activation functions.
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Fig. 2: A representative SoC showing CPU and NPU cores
with local memory and data buffers

The rest of the paper is structured as follows. Section 2]
describes the related work for latency reduction in RNN-T
speech models, followed by an overview of quantization in
neural networks and NNAs in Section 3] as well as details
of accelerator quantization schemes in Section ] Section [3]
describes our proposed accelerator-aware training technique.
We then dive into the experimental details in Section [6] and
the performance and latency results in Section [7] Section [§]
concludes our paper with some remarks on the advantages of
the proposed approach.

2. RELATED WORK

There is a large body of work focussing on improving the
Word Error Rate (WER) and runtime latency for on-device
RNN-T models. Architectural modifications to recurrent neu-
ral networks, such as CIFG-LSTM [7]] and Simple Recurrent
Units [8]] have been used in RNN-T saving 30-40% compute
while having negligible impact on the WER. Knowledge dis-
tillation techniques specific to RNN-T have also been stud-
ied [9H11]. Employing sparsity-based pruning on the weight
matrices of LSTMs have been studied for both structured and
unstructured sparse matrices [5,/12]]. In [[13]], the authors pro-
posed an additional regularization term in the RNN-T loss to
penalize blank token prediction so that the model emits the la-
bels faster, leading to a reduction in latency while maintaining
the WER. In [[14], the authors introduced a bifocal encoder ar-
chitecture for RNN-T to improve streaming latency, where the
low entropy wakeword segment of an utterance is processed
by a small encoder allowing the larger encoder to catch up
during decoding of the rest of the utterance as the frames be-
come available. As a more general approach to switching be-
tween encoders of different compute capacity, [15] proposed
an arbitrator network that could dynamically choose the en-
coder network on a per-frame basis.

In addition to modified architectures and loss functions,
there have also been many advances in training methods that
emulate inference; quantization-aware training (QAT) and
sparse pruning methods have been proposed to improve on-
device runtime latency without hurting accuracy [16-21].
In [22]], the authors propose an accelerator-aware neural
design where the architecture search space is explored to
opimize performance on NNA. More relevant to this work
is [23]], in which the authors describe a quantization strategy
for RNN-T based speech recognition systems using 16-bit
activations. This work focuses on accelerators that uses
8-bit activations, demonstrating on-par performance with un-
quantized baselines even for models with smaller number of
parameters, which are more susceptible to quantization.

3. OVERVIEW OF QUANTIZATION

In this section, we provide a brief overview of the quanti-
zation schemes, notations and definitions used in this paper.
Quantization is the process of converting floating point values
to a smaller set of discrete fixed point values, effectively re-
ducing the number of bits used to represent the numbers. We
will use the (Q-notation to define the parameters of a signed
fixed point number. A fixed point number denoted by Q.,,.»
has the following properties:

* Total bit width is m + n, including m integer and sign
bits plus n fractional bits.

» Consider a signed representation, i.e., the most signifi-
cant bit (MSB) is 1 for negative values. The minimum



possible fractional value that can be represented, fin,
is —2™~1, while the maximum representable fractional
value, finqe,is 2™ — 277,

e The resolution is 27", yielding a maximum quantiza-
tion error of 2~ ("*+1) between a number and its quan-
tized counterpart.

For example, (3.2 has 5 bits in total, 3 integer bits with
the MSB indicating the sign bit, 2 fractional bits and can rep-
resent fractional numbers in the interval [-4, 3.75] with a res-
olution of 0.25, thus able to represent a total of 2° unique
values.

3.1. Static Quantization

In static quantization, the input value R;, is first clipped to be
within the quantizable integer range, thus accumulating clip-
ping error. Afterwards, the resulting FP-32 value is scaled
and rounded to the nearest integer, which is then scaled back
to its floating point equivalent. This ensures that the num-
bers, during inference on-device, will have the lowest quanti-
zation (rounding) errors. For a ), ,, fixed point quantization
scheme, the quantized floating point equivalent, R, of an in-
put FP-32 value R; is given by,

Ry = R(C (Ri, fmins fmaz) 2") 27" (1)

in which R denotes Round function, which rounds the val-
ues to the nearest integer or towards zero depending on the
implementation and C' denotes C'lip function which clips the
values at f,,;,, and fi,q.. In this work, we round the weights
to their nearest value and round the inputs and hidden states
towards zero as implemented on the accelerator.

3.2. Dynamic Quantization

In dynamic quantization, there is an additional degree of free-
dom, in which the input values can be scaled with a scaling
factor, so that the range fits into the quantizable range of in-
tegers. This scaling factor needs to be a power of 2 and is
calculated dynamically for every sample and time step for
the NNA inference. Simply put, the scaling factor, S, is the
smallest power of 2 that scales the incoming tensor and fits all
values within the quantizable range of the given target Qm.n
scheme. A clipping error is incurred if a larger scaling fac-
tor is required. After the quantization, the outputs are scaled
back up. The modified equation is as follows:

R,=SxR (C’ (if, fmins fmax> 2") 27" (2)

where S € {1,2,4,8,16}, such that foi < & < frge.

4. NEURAL NETWORK ACCELERATOR

In this section, we briefly discuss how neural network weights
and activations are quantized in our NNA experiments. The
number of bits for the quantization of weights and activa-
tions, the type of quantizations performed, supported layers,
the specific data paths between the various on-chip compo-
nents, etc., differ from one chip version to another. In our
experiments, we use the following schemes:

* LSTM Cells: The hidden states are statically quantized
to Q1.7 in all LSTM cells in the encoder and decoder.

* The inputs to the first LSTM layer in the encoder and
decoder are dynamically quantized to (1.7 (because it
directly follows a CPU data path, hence will not incur
additional latencies to compute dynamic scaling fac-
tors). The inputs to all other LSTM layers in the en-
coder and decoder are statically quantized to (1.7

* The sigmoid and tanh activations for calculating the
gate values i, f, g and o in the LSTM cells are non-
uniformly quantized 8-bit values as shown in Figs.
and As sigmoid and tanh are non-linear, non-
uniform quantizations are more suitable to reduce the
means-squared error (MSE) than uniform quantization.

* Dense Layers: The inputs to all dense layers in the en-
coder, decoder and joint network are dynamically quan-
tized to Q1.7.

* Weights: All weights in the embedding layer, encoder,
decoder and joint network are statically quantized to

Q1.7

4.1. Hidden States and Inputs Quantization

The NNA uses a symmetric linear quantization scheme to
map 32-bit floating point numbers to 8-bit integers, rounded
toward zero. Considering our previous example of (23.2, the
range of representable fractional values is [-4, 3.75], which
on the hardware is represented as integers in the range [-16,
+15]. Any value less than -4 or greater than 3.75 is clipped to
these limiting values, thus accumulating clipping error during
static quantization. For dynamic quantization, the allowable
dynamic scales are 1, 2, 4, and 16, which are calculated on the
CPU and used to scale the original values into the quantizable
range. The outputs are uniformly quantized with equal step
sizes and quantization intervals as illustrated in Fig.

4.2. Non-linear Activation Quantization

The hyperbolic tangent and sigmoid functions are the com-
monly used non-linear activation functions in neural networks
and are integral components in learning long range memory.
They are expensive to compute even on CPUs, and thus are



approximated on the NNA hardware through careful digital
circuit design and error analysis. An efficient hardware im-
plementation of activation functions is required to meet the
performance, area, power and cost targets of neural acceler-
ators. Multiple designs and approximation algorithms have
been proposed to balance this trade-off [24H26]]. Usually, a
combination of linear interpolators, shifting operations, look-
up tables and multiplexers are used in the digital circuit to ap-
proximate the activation values. We are interested in translat-
ing the on-device operators into the model training workflow
to train accelerator-aware models.

For the accelerator considered in this work, activation
functions are implemented as a piece-wise linear approxi-
mator, which gives non-uniformly quantized 8-bit values as
outputs. The design, modeling and analysis of these digi-
tal circuits are outside the scope of this work (please refer
to [24126]). The approximation algorithm is optimized to
balance the trade-off between accuracy and on-chip area, and
leverages the fact that mathematically, the tanh and sigmoid
functions are shifted and scaled versions of one another. It
also reduces quantization error by carefully choosing non-
uniform quantization centers to pack more quantization bins
at parts of the functions with higher gradients. Despite the
careful design, it is not possible to circumvent the infor-
mation loss due to quantization. Given that the activation
functions play a key role in learning long-term memory, as
we show later in the results, switching from high precision
to 8-bit values leads to a large performance degradation. To
alleviate this performance degradation, these values need to
be computed on the CPU, which requires constant transfer of
data on the chip to the CPU in every time step of the LSTM
cell to perform activation functions, and back to the NNA to
perform MAC operations, incurring additional processing la-
tency. A major contribution of this paper is to incorporate the
bit-exact hardware operators into the training workflow with
meaningful gradient backpropagation and further fine-tune
the model to non-uniformly quantized activations, yielding
5-7% latency reduction and negligible, less than 1% relative
WER degradation.

5. ACCELERATOR-AWARE TRAINING

We propose a two-stage method to address the errors propa-
gated by the activation and intermediate quantizations in the
model. Before diving into the implementation details, we first
discuss the motivation for choosing such an approach.

The sigmoid and tanh functions saturate approximately at
+/-7 and +/-4 respectively (Figs. [3al and [3b). However, in
the process of quantizing the activations, a large clipping and
precision error is accumulated between +/-7 and +/-4, for the
activations when compared to the FP-32 (full precision) val-
ues. This is because a significant portion of the inputs to the
activation functions in the encoder and decoder LSTMs of a
fully trained RNN-T model lie in this error-prone range. Due

to the large number of values present in the saturation range of
these functions, the vanishing gradient problem hinders learn-
ing using backpropagated gradients, which is already affected
due to the addition of quantization. To overcome this issue,
we add an activity regularization loss on the inputs to the ac-
tivation functions as described in Section 5.1}

For tuning the inputs, hidden states and activation func-
tion values into the quantization levels, we perform a bit-exact
quantization in the forward pass and approximate the gradi-
ents in the backward pass using straight-through estimation.
This is detailed for the various components in Section

5.1. Activity Regularization

In Stage I of training, we initialize the model with random
weights and train it from scratch with an activity regular-
ization loss on the outputs zg, z1, 22, and z3 of the LSTM
cell [27] to alleviate the quantization errors as discussed
above. The additional loss term aims to restrict the range of
the inputs to the activations functions by penalizing the val-
ues proportional to their distance outside the allowable range
[Zmins Zmaz). We achieve this by using a regularization loss,
Lactivity, defined by a shifted ReLU function.

Lactiwity = RELU(Z + zmz’n) + ReLU(Z - Zma;c) 3)

Liotat = Lmodet + )\Lactivity 4

where the Rectified Linear Unit, ReLU (z) = max(0, z) and
z is the concatenated array [zg, 21, 22, 23]. For values of z
outside the allowable range, the loss adds a proportional pe-
nalizing term, thus restricting their values. The loss is differ-
entiable with respect to the input except at the range extrema.
However, the derivative at these extrema is approximated to
be 0, making it a loss function compatible for backpropaga-
tion. We train the model with Lt added as an additional
term in the total loss Liotq; (see Eq. E]), where A is used to
weigh the activity regularization term.

5.2. Quantization of Inputs, Hidden States and Activa-
tions

In Stage II of training, we initialize the model with the trained
weights from stage I and apply accelerator-aware training for
the linear quantization of inputs and hidden states, and the
non-linear quantization of the tanh and sigmoid activation
functions.

5.2.1. Bit-exact Quantization Replication during Forward
FPass

* For the linear quantization of inputs and hidden states,
we use Eq. [I]in the forward pass.
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Algorithm 1 QAT for Inputs, Hidden States and Activations
For Inputs and Hidden States

Forward pass: Bit-exact linear quantization of input tensor
X

a. Y =9X)
Backward pass: Clipped Cosine Gradients
a. Frequency, f, =1
b. % = clip(cos(2m f¢ X ), min = 0, max = 1)
{Gradients are clipped to 0 at the quantization bin mid-
points}
For Non-linear Activations

Forward pass: Bit-exact non-linear quantization of input
tensor X

.Y =09,4(X)
Backward pass: tanh and sigmoid gradients

a. For tanh, % =1—tanh?(X)
b. For sigmoid, g—}? = sigmoid(X) * (1 — sigmoid(X))

¢ For the non-linear activation functions, the on-device
linear interpolator in Fig. [3]is replicated during the for-
ward pass. We denote this bit-exact quantization func-
tion implemented in the training workflow as Q. (see
Algorithm [T). Although we demonstrate it here for the
stgmotd and tanh functions for a particular hardware
implementation, this method can be generally applied
to any other similar linearly or non-linearly quantized
functions.

5.2.2. Backpropagation Using Meaningful Gradients

Since quantization is not a differentiable process, we employ
the straight-through estimation method [28]] for the forward
pass and backpropagate meaningful gradients through the var-
ious quantization nodes in the backward pass.

* For the inputs and hidden states, we use clipped cosine
gradients as illustrated in Fig. Instead of passing

a unity gradient throughout the range of the inputs at
the quantization node as proposed in [28]], we propose
to backpropagate through the quantization node a pe-
riodic clipped cosine gradient to disincentivize values
to occupy unwanted areas that lie outside the quantized
levels. The clipped cosine gradients drive the values
into surrounding quantization bins, while leaving the
values around the center of the bins unchanged.

* For the activations, we use the full precision sigmoid
and tanh gradients.

6. EXPERIMENTAL SETUP

We conduct our experiments under two setups A and B. In
setup A, we train a small RNN-T model with 5 layers of an en-
coder and 2 layers of a decoder with an additive and feedfor-
ward joint network. The number of hidden units in the LSTM
cell for setup A is 640, yielding a model with 26M parame-
ters. Setup B is a larger RNN-T variant with the same num-
ber of encoder, decoder and joint network layers, in which
the LSTMs have 1024 hidden units, yielding a model with
66M parameters. For both setups, the baseline models are
trained for a total of 600k steps, with 5k steps of warmup to a
learning rate (LR) of 5e-4 which was held constant for 150k
steps, followed by an exponential decay to a learning rate of
le-5 for the remaining steps. The Accelerator-aware train-
ing (AAT) models are trained in Stage I for 500k steps with
A = 2 (see Eq. , and the same LR schedule as the baseline.
This was followed by 5k-10k steps of training in Stage II with
a constant learning rate of le-4. The acoustic features are
64-dimensional Log Mel Filterbank Energies (LFBE) with a
window size of 25 ms and 10 ms overlap between frames.

All models are trained with absolute cosine quantiza-
tion aware regularization for 8-bit on-device quantization of
weights [16]]. To train models under both setups, we use an
in-house collection of a far-field English training dataset with
270k hours of audio. For evaluation, we use 6 test sets: 3



for Setup A, and 3 for Setup B. Since Setup A has a smaller
model, we evaluate it on a smaller number of intents. The
number of utterances in each test set is available in Table[ll

7. RESULTS AND DISCUSSION

In Table 1, we compare the relative WER reduction (WERR)
performance between the baseline and AAT models. Note
that a positive WERR number indicates a WER improvement,
whereas negative numbers signify WER degradation. Fur-
thermore, in order to evaluate the effectiveness of each pro-
posed stage, we present WER for each stage in Table 1.1.
Here, Q denotes quantized WER numbers. Model A-I and A-
2 represent the model in Setup A after Stage 1 and Stage II
trainings, respectively. All WERR numbers are computed be-
tween the quantized (Q) version of the respective model and
the un-quantized version of the baseline model. For exam-
ple, the WERR of quantized Model A-II with respect to the
un-quantized Baseline-A is +0.3%.

Table 1: Relative WER Reductions (WERR) for Setup A and
B. WERR numbers are computed between the quantized (Q)
version of the respective model and the un-quantized version
of the baseline (i.e. Baseline (UN-Q) = 0.0).

Table 1.1: Setup A

Datasets WERR (%)

(Num. Utts) | Baseline (Q) | A-1(Q) | A-II (Q)
A-D1 (42688) 9.9 -5.8 +0.3
A-D2 (26226) -6.0 -3.0 +0.4
A-D3 (46208) -8.0 -39 +0.8

Stage 1 X v v
Stage II X X v
Table 1.2: Setup B

Datasets WERR (%)

(Num. Utts) Baseline (Q) | B-1(Q)
B-D1 (155936) -5.4 -0.4
B-D2 (46530) -7.2 -0.6
B-D3 (20279) -3.0 +1.3

Stage I X v
Stage 11 X v

As shown in the Table [T} quantizing the inputs, hidden
states and activations for the baseline models without the pro-
posed AAT approach leads to 6-10% relative WER degrada-
tion for Setup A, and 3-7% for Setup B across our testing
datasets. This degradation is reduced to be within 1% rela-
tive to the baseline performance after the two-stage AAT. In
particular, as expected, we observed a larger degradation for
the model in Setup A than the model in Setup B since the
former has smaller number of parameters and is more sus-
ceptible to quantization than the latter. It is observed that by

using the two-stage approach, we can effectively reduce the
WER gap between quantized and unquantized versions for
small and large models alike.

Table 2: Normalized Latency Measurements for Setup A and
B. All values are normalized with respect to the baseline la-
tencies at p50, for the respective setups.

Setups | Statistic Baseline AAT
EL UPL | EL UPL
pS0 1.0 1.0 | 094 095
Setup A p90 1.17 149 | 1.11 135

p99 1.34  7.21 | 1.28 7.21
p50 1.0 1.0 | 094 094
Setup B p90 1.53 143 | 142 135
p99 241 190 | 2.16 236

To demonstrate the latency gains, we provide the ASR
engine latency (EL) and UPL numbers in Table 2. Here, EL
measures the time elapsed between the user completing the
utterance and the ASR recognition result being available in
the ASR engine. UPL denotes the time elapsed between the
user completing the utterance, and when the system responds
with an appropriate dialogue / action. Thus, UPL includes
EL plus the other server and device side processing required
to fulfill the user’s request. We conduct on-device tests with
500 utterances for both baseline and AAT models in setups A
and B, and report both EL and UPL numbers at the 50th, 90th
and 99th percentiles. As before, positive relative numbers sig-
nify reductions in latency whereas negative numbers signify
degradation. We see that by compiling the AAT models, we
can get approximately 4 - 9% EL and UPL reductions at p50.
AAT enables this by allowing us to shift to a more quantized,
faster NNA data path during inference with negligible degra-
dation in performance.

8. CONCLUSIONS

In this work, we introduce a two-stage AAT approach to
alleviate the performance degradation due to performing
post-training model conversion and quantized inference on
the NNA. In particular, we incorporate the NNA quantization
operators into model training and apply regularization as well
as cosine gradients at the quantization nodes to reduce the
performance gap between the in-training and post-training
models. It is observed that with our proposed approach, there
is little to no WER performance degradation between the
unquantized baseline models and the quantized AAT counter-
parts. Compared to the original quantized baseline, the pro-
posed two-stage quantized AAT models save 3-10% relative
WER degradation. Furthermore, AAT enables NPU/hardware
execution of activation functions in runtime, leading to 5-7%
relative latency reductions.
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