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ABSTRACT

Recently cross-channel attention, which better leverages
multi-channel signals from microphone array, has shown
promising results in the multi-party meeting scenario. Cross-
channel attention focuses on either learning global correla-
tions between sequences of different channels or exploiting
fine-grained channel-wise information effectively at each
time step. Considering the delay of microphone array receiv-
ing sound, we propose a multi-frame cross-channel attention,
which models cross-channel information between adjacent
frames to exploit the complementarity of both frame-wise and
channel-wise knowledge. Besides, we also propose a multi-
layer convolutional mechanism to fuse the multi-channel
output and a channel masking strategy to combat the channel
number mismatch problem between training and inference.
Experiments on the AliMeeting, a real-world corpus, reveal
that our proposed model outperforms single-channel model
by 31.7% and 37.0% CER reduction on Eval and Test sets.
Moreover, with comparable model parameters and training
data, our proposed model achieves a new SOTA performance
on the AliMeeting corpus, as compared with the top ranking
systems in the ICASSP2022 M2MeT challenge, a recently
held multi-channel multi-speaker ASR challenge.

Index Terms— Multi-speaker ASR, multi-channel, cross-
channel attention, AliMeeting, M2MeT

1. INTRODUCTION

Multi-speaker automatic speech recognition (ASR) aims to
transcribe speech that contains multiple speakers, and hope-
fully overlapped speech can be correctly transcribed. It is
an essential task of rich transcription in multi-party meet-
ings [1, 2, 3]. In recent years, with the advances of deep
learning, many end-to-end neural multi-speaker ASR ap-
proaches have been proposed [4, 5, 6] and promising results
have been achieved on synthetic multi-speaker datasets, e.g.,
LibriCSS [7]. However, transcribing real-world meetings
is far more challenging with entangled difficulties such as

* Lei Xie is the corresponding author.

overlapping speech, conversational speaking style, unknown
number of speakers, far-field speech signals with noise and
reverberation. Recently, two challenges – Multi-channel
Multi-party Meeting Transcription (M2MeT) [8, 9] and Mul-
timodal Information based Speech Processing (MISP) [10] –
have made available valuable real-world multi-talker speech
datasets to benchmark multi-speaker ASR towards real con-
ditions and applications.

In the real-world applications, microphone array is usu-
ally adopted for far-field speech recording scenarios, includ-
ing those in M2MET and MISP, where beamforming is a
common algorithm to leverage spatial information for multi-
channel speech enhancement. With the help of deep neural
networks, time-frequency mask-based beamforming [11, 12,
13, 14, 13, 15] has shown superior performance in various
multi-speaker benchmarks, such as AMI [16], CHiME [17,
18] and M2MeT [8, 9]. The mask estimation network needs
to be trained with signal-level criteria on the simulated data
where the reference speech is required. Simulated data has
a clear gap with real-world data, and optimizing the signal-
level criteria may not necessarily lead to lowered word error
rate (WER) as well. Aiming to alleviate such mismatch, joint
optimization of multi-channel front-end and ASR has been
proposed [19, 20, 21, 22, 23, 24]. Under the joint learning
framework, the whole system can be optimized with an ulti-
mate ASR loss function by adopting real-world data without
reference-cleaned signals.

The attention mechanism has been recently introduced to
neural beamforming [24, 25], which performs recursive non-
linear beamforming on the data represented in a latent space.
Specifically, cross-channel attention has been proposed to
directly leverage multi-channel signals in a neural speech
recognition system [26, 27]. Impressively, such an approach
can bypass the complicated front-end formalization and inte-
grate beamforming and acoustic modeling into an end-to-end
neural solution. This cross-channel attention approach takes
the frame-wise multi-channel signal as input and learns global
correlations between sequences of different channels, which
can be easily depicted as mapping each channel represen-
tation (query) with a set of channel-average representation
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(key-value) pairs to an output [26, 27], namely frame-level
cross-channel attention (FLCCA). Meanwhile, channel-level
cross-channel (CLCCA) attention has recently achieved re-
markable performance on speech separation [28, 29] and
speaker diarization [30, 31] tasks, even leading a system to
win the first place in the speaker diarization track in M2MeT
challenge [31]. Compared with FLCCA, CLCCA is com-
puted along the channel dimension, the representations of
each channel are combined with those of the other chan-
nels for each time step [28], which functions similarly as
beamforming.

From our point of view, FLCCA and CLCCA can be
complementary in capturing temporal and spatial informa-
tion. Frame-level is less capable of extracting fine-grained
channel-wise patterns since averaging the channel repre-
sentations directly may deteriorate the individual channel
information. Channel-level cross-channel attention, on the
other hand, only focuses on leveraging spatial diversities and
capturing inter-channel correlations on each time step, with-
out considering the context relationship between different
channels. Thus, in this paper, we exploit the complemen-
tarity between frame-level and channel-level cross-channel
attention and propose a multi-frame cross-channel attention
(MFCCA) by modeling both channel-wise and frame-wise
information simultaneously. Direction of arrival (DOA) es-
timation [32] has been widely used for speech enhancement,
which utilizes the delay of microphone array receiving the
signal to estimate the sound source direction based on the
phase difference. Inspired by the intuitive idea behind DOA,
our proposed method will pay more attention to channel con-
text between adjacent frames to model both frame-wise and
channel-wise dependencies.

We build our MFCCA based multi-channel ASR within
an attention based encoder-decoder (AED) structure [33].
Moreover, the multi-channel outputs from the encoder are
aggregated by multi-layer convolution to reduce channel di-
mensions gradually. Although the cross-channel attention is
independent of the number and geometry of microphones,
it has the well-known performance degradation issue when
number of microphones is reduced [30, 28]. In order to
combat this issue, we propose a channel masking strategy.
By randomly masking several channels from the original
multi-channel input during training, our MFCCA approach
becomes more stable and robust to the arbitrary number of
channels.

To the best of our knowledge, we are the first to leverage
cross-channel attention on a real meeting corpus – AliMeet-
ing – to examine its ability in multi-speaker ASR in meet-
ing scenarios. Experiments on the AliMeeting corpus show
that our proposed multi-channel multi-speaker ASR model
outperforms the single-channel multi-speaker ASR model by
31.7% and 37.0% relative CER reduction on Eval and Test
sets, respectively. Moreover, with comparable model param-
eters and amount of the training data, our proposed model

achieves 16.1% and 17.5% CER on Eval and Test sets, which
surpasses the best system in the M2MeT challenge, resulting
in a new SOTA performance on the AliMeeting corpus.

2. FROM SINGLE-CHANNEL TO CROSS-CHANNEL
ATTENTION

In this section, we first review the multi-headed self-attention
commonly used in signal channel cases and then intro-
duce the frame-level and channel-level cross-channel at-
tentions, respectively. A single channel feature input is
defined as X, while a C-channel input is formulated as
X̄ = [X0, · · · ,XC−1].

2.1. Single-channel attention

Single-channel attention, which is a standard self-attention
structure, adopts the multi-headed scaled dot-product to learn
the contextual information within a single channel of speech
signal, as shown in Fig. 1a. The output of a single-channel
attention for the i-th head is calculated as

Qsc
i = XWsc,q

i + (bsc,q
i )T ∈ RT×D,

Ksc
i = XWsc,k

i + (bsc,k
i )T ∈ RT×D,

Vsc
i = XWsc,v

i + (bsc,v
i )T ∈ RT×D,

Hsc
i = Softmax

(
Qsc

i (Ksc
i )T√

D

)
Vsc

i ∈ RT×D,

(1)

where Softmax(·) is the column-wise softmax function,
Wsc,∗

i and bsc,∗
i are learnable weight and bias parameters

for the i-th head respectively.

2.2. Frame-level cross-channel attention

Frame-level cross-channel attention [26, 27] learns not only
the contextual information between time frames but also spa-
tial information across channels, as shown in Fig. 1b. The i-th
head of FLCCA is calculated as

Qfl
i = X̄Wfl,q

i + (bfl,q
i )T ∈ RC×T×D,

Kfl
i = X̄′Wfl,k

i + (bfl,k
i )T ∈ RC×T×D,

Vfl
i = X̄′Wfl,v

i + (bfl,v
i )T ∈ RC×T×D,

Hfl
i = softmax

(
Qfl

i (Kfl
i )T√

D

)
Vfl

i ∈ RC×T×D,

(2)

X̄′ = [X̄′0, · · · , X̄′C−1]. X̄′c is the average of all chan-
nels except for the cth channel, which is calculated by
X̄′c = (

∑
n,n6=c X̄n)/(C − 1) ∈ RT×D. Wfl,∗ and bfl,∗ are

learnable weight and bias parameters, respectively.
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Fig. 1. Illustration of different attention blocks: (a) Single-channel attention. (b) Frame-level cross-channel attention (FLCCA).
(c) Channel-level cross-channel attention (CLCCA). (d) Multi-frame cross-channel attention (MFCCA, proposed).

2.3. Channel-level cross-channel attention

Channel-level cross-channel attention focuses on leveraging
spatial diversities and capturing inter-channel correlations on
each time step, as shown in Fig. 1c. The i-th head of CLCCA
can be formulated as

Qcl
i = X̄Wcl,q

i + (bcl,q
i )T ∈ RT×C×D,

Kcl
i = X̄Wcl,k

i + (bcl,k
i )T ∈ RT×C×D,

Vcl
i = X̄Wcl,v

i + (bcl,v
i )T ∈ RT×C×D,

Hcl
i = softmax

(
Qcl

i (Kcl
i )T√

D

)
Vcl

i ∈ RT×C×D,

(3)

Again, Wcl,∗ and bcl,∗ are learnable weight and bias param-
eters, respectively.

3. PROPOSED METHOD

3.1. Multi-frame cross-channel attention

Based on the discussion of FLCCA and CLCCA, multi-frame
cross-channel attention is proposed to exploit the complemen-
tarity between frame-level and channel-level information, as
shown in Fig. 1d. The i-th head of MFCCA is calculated as

Qmf
i = X̄Wmf,q

i + (bmf,q
i )T ∈ RT×C×D,

Kmf
i = X̄ccW

mf,k
i + (bmf,k

i )T ∈ RT×(2F+1)·C×D,

Vmf
i = X̄ccW

mf,v
i + (bmf,v

i )T ∈ RT×(2F+1)·C×D,

Hmf
i = softmax

(
Qmf

i (Kmf
i )T√

D

)
Vmf

i ∈ RT×C×D,

(4)

where Wmf,∗ and bmf,∗ are learnable weight and bias pa-
rameters, X̄cc = [X̄0

cc, · · · , X̄t
cc, · · · , X̄T

cc]. X̄t
cc is the con-

catenation of the context frames, which is calculated byX̄t
cc =

[X̄t−F , ..., X̄t, ..., X̄t+F ] ∈ R(2F+1)·C×D. F is the number
of the past and future frames to be concatenated at each time
step, which is a trade-off between performance and computa-
tion cost. Inspired by the DOA calculation which utilizes the
delay of the microphone array to estimate the source direc-
tion for speech enhancement, our proposed MFCCA focuses
on channel context of adjacent frames to improve the ability
of modeling the frame-level and channel-level contextual in-
formation together.

3.2. Conformer block
Our encoder layer also adopts the Conformer block [34, 35],
which includes a multi-headed self-attention (MHSA) mod-
ule, a convolution (CONV) module, and a pair of feed-
forward (FFN) module in the Macaron-Net style. Conformer
models both local and global dependencies of the audio se-
quence in a parameter-efficient way, which makes full use of
the long-range global modeling ability of the MHSA mod-
ule and the fine-grained local feature extraction ability of
the CONV module. Note that the CONV and FFN module
directly follow the multi-frame cross-channel attention will
determinate the model performance, which will bring about
1% absolute CER reduction according to our experiment.
Since the CONV module and FFN module both models at the
frame-level, learning of channel dependence by multi-frame
cross-channel attention will be affected. Thus, we adopt the
model structure in Fig. 2.

3.3. Convolution fusion

To integrate the multi-channel outputs, previous studies [27,
31] mostly averaged or concatenated channel features along
the time axis. In order to mitigate the corruption of channel-
specific information caused by reducing the channel dimen-
sions directly, we use a multi-layer convolution module to re-
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Fig. 2. An overview of the proposed multi-channel trans-
former network.
duce the channel dimensions gradually. As show in Fig. 3,
the multi-layer convolution module consists of five 2-D con-
volution layers, which only increases negligible parameters.
The number of input channels in the multi-layer convolution
module is fixed. Therefore, if the channel number of the input
is less than the pre-configured value, we need to expand the
channel by simple repeating.

Fig. 3. The architecture of multi-layer convolution module.
3.4. Channel masking
Cross-channel attention is independent of the number of mi-
crophones and microphone geometry in its nature. But in
practice, the performance of channel-level cross-channel at-
tention is easily affected by the number of the channels [30,
28], especially when the channel numbers involved in the de-
coding and training period are different. Channel dropout [30]
was proposed to prevent the models from being overly de-
pendent on spatial information, in which multi-channel in-
puts are randomly dropped to be a single channel. How-
ever, channel dropout mainly improves the speech recognition
performance of multi-channel model on a single-channel test
set, which does not completely solve the problem of channel
number mismatch. In order to improve the robustness of the
model for different channel numbers, we introduce a chan-
nel masking strategy, which masks channels randomly for
the multi-channel input. Specifically, a uniform probability
p ∈ (0, 1) is used to decide whether the multi-channel input
will be masked. When choosing to mask, we randomly select
m ∈ (1, C) channels to be masked where C is the total num-
ber of channels and m is determined with equal probability
1
C . Based on the channel masking strategy, our multi-channel
ASR model can easily generalize to variant channel numbers
as well as different microphone array geometries, leading to
a more practical solution.

3.5. Training strategy
Considering the problem of overlapping speech and unknown
number of speakers in real-world meeting scenarios, we adopt

the Serialized Output Training (SOT) [6] to enable the multi-
speaker recognition ability. The SOT scheme gets rid of the
limitation on the number of speakers and models the depen-
dencies among outputs of different speakers in an effective
and simple way. In the training period, transcriptions of dif-
ferent speakers are serialized into a single word sequence with
a special token 〈sc〉 inserted. The order of the transcriptions is
determined by their start time. The experiments have shown
that the SOT scheme achieves a better CER than the permuta-
tion invariant training (PIT) scheme, which needs to calculate
all the permutations [6].

4. EXPERIMENTS
4.1. Dataset

We use AliMeeting1 corpus [8, 9], a challenging Mandarin
meeting dataset with multi-talker conversations, to evaluate
our multi-channel multi-speaker ASR model. The AliMeet-
ing corpus contains 104.75 hours data for training (Train),
4 hours for evaluation (Eval), and 10 hours for test (Test).
Each set contains several meeting sessions and each session
consists of a 15 to 30 minutes discussion by 2 to 4 partici-
pants. The AliMeeting corpus contains the 8-channel audios
recorded from an annular microphone array (Ali-far), as well
as the near-field audio (Ali-near) from the participant’s head-
set microphone. Ali-far-bf is produced by applying CDDMA
Beamformer [36, 37]. Meanwhile, similar to the M2MeT
challenge submissions [38], we also use the training set of the
Aishell42 [39] and 600 hours simulated training data named
Ali-simu from Ali-near, which covers 2-4 speakers in one ut-
terance with 15-40% overlapping ratio.

4.2. Baselines
We compare our MFCCA based multi-channel multi-speaker
ASR model with four baselines: (1) Single channel model:
as the single channel baseline. Specifically, we use the
first channel of Train-Ali-far for training and testing. (2)
Beamformer: the CDDMA Beamformer [36, 37] has shown
promising results in speech enhancement and it uses all the
channels for beamforming, which generates enhanced single
channel data (Ali-far-bf ) for the ASR model. (3) Random
selection: a dynamic strategy is adopted to randomly select
a channel of Train-Ali-far as the input to the ASR model
during training. Note that the first channel is selected as the
input for testing. (4) Complex convolution: the multi-channel
real and imaginary parts of Short-Time Fourier Transform
(STFT) results are extracted for complex convolution [40].
The convolution structure is similar to that in Fig. 3.

4.3. Experimental setup
In all experiments, we use the 80-dimensional Mel-filterbank
feature extracted with a 25 ms frame length and a 10 ms win-
dow shift. The ESPnet [41] toolkit is used to build all our

1http://www.openslr.org/119/
2http://www.openslr.org/62/



Table 1. Results for various multi-channel approaches on Eval and Test sets (%).

Model Eval Test
1-ch 2-ch 4-ch 6-ch 8-ch 1-ch 2-ch 4-ch 6-ch 8-ch

Single channel [8, 9] 32.3 32.3 32.3 32.3 32.3 33.8 33.8 33.8 33.8 33.8
Beamformer [8, 9] - - - - 30.7 - - - - 31.8
Random select 30.2 30.2 30.2 30.2 30.2 31.2 31.2 31.2 31.2 31.2
Complex convolution 56.3 35.8 33.0 32.4 30.1 55.6 38.4 34.7 32.4 31.0
Frame-level cross-channel [26, 27]† 60.5 50.4 25.9 22.6 22.5 63.8 51.8 27.5 24.6 24.6
Channel-level cross-channel [30, 31]† 38.4 27.7 21.5 20.8 20.6 39.3 29.3 23.2 22.7 22.4
Frame-level co-attention [30]† 38.1 26.3 23.2 22.7 22.5 39.1 27.9 24.4 24.2 24.0
Multi-frame cross-channel 38.0 27.3 21.2 20.6 20.2 39.0 28.8 22.9 22.3 22.0

+ Convolution fusion 37.8 26.9 20.8 20.1 19.9 38.8 28.5 22.6 22.1 21.8
+ Mask channel (p=10%) 36.1 25.8 20.3 19.7 19.6 37.2 27.6 22.2 21.8 21.5
+ Mask channel (p=15%) 35.5 25.5 20.0 19.5 19.4 36.8 27.3 22.2 21.6 21.4
+ Mask channel (p=20%) 35.1 25.4 20.0 19.5 19.4 36.3 26.9 22.0 21.5 21.3
+ Mask channel (p=25%) 35.2 25.3 20.2 19.6 19.5 36.6 27.7 22.1 21.6 21.4

†: This models is re-implemented by ourselves with the same parameter structure as our model for fair comparison.

ASR systems. We follow the standard configuration of ES-
Pnet to train the baseline models, which contain a 12-layer
encoder and 6-layer decoder. The dimension of MHSA and
FFN layers are set to 256 and 2048, respectively. For the
cross-channel based models, we use an 11-layer encoder and
a 6-layer decoder with the 4-head MHSA instead, in order to
achieve a similar parameter size to the baseline models. All
the ASR models are trained for 100 epochs and a warmup of
the learning rate is used for the first 25,000 iterations. We
use 4950 commonly used Mandarin characters as the mod-
eling units. Results of all the experiments are measured by
Character Error Rate (CER).

4.4. Comparison of different multi-channel models

As shown in Table 1, our proposed MFCCA model out-
performs the four baselines, especially for the single chan-
nel model, leading to 31.7% (32.3%→19.4%) and 37.0%
(33.8%→21.3%) relative CER reduction on 8-ch Eval and
Test sets, respectively. Compared with other multi-channel
attention models, our MFCCA model shows superior perfor-
mance, achieving the lowest CER of 20.2% and 22.0% on
8-ch Eval and Test sets. When incorporating with the multi-
layer convolution fusion to integrate multiple channels, we
can obtain further improvement, decreasing the CER from
20.2%/22.0% to 19.9%/21.8% on 8-ch Eval and Test sets,
respectively.

Cross-channel attention models perform well when the
channel number of test set is large, but degrade significantly
when the number of channels is reduced, e.g., single channel
and 2-ch Test sets. Channel masking can improve the robust-
ness of the model with different channel setups. According
to the results, our model obtains the best results on most test
sets when channel masking probability is set to 20%, achiev-
ing 7.1% (37.8%→35.1%) and 6.4% (38.8%→36.3%) rela-
tive CER reduction on 1-ch Eval and Test sets. Meanwhile,

channel masking also improves the multi-channel test sets and
achieves CERs of 19.4% and 21.3% on 8-ch Eval and Test
sets, which even has surpassed most of the submissions in the
M2MeT challenge [8, 9].

4.5. Impact of the context frame number
As shown in Table 2, F is the number of frames that looks
back to the past and looks ahead to the future at each time
step. When increasing F from 0 to 2, we observe that the
CER is improved from 20.6% to 20.0% on Eval set and 22.4%
to 22.0% on Test set. When further increasing the F from 2
to 4, the gain is marginal on Eval and Test sets, which only
brings 0.1% absolute CER reduction on Eval set. The reason
might be that the channel information of adjacent frames is
more important in cross-channel attention, which denotes the
importance of the delay time between microphones. Based on
this conclusion, the frame number for looking back and ahead
is set to 2 in the remaining experiments.

Table 2. Results of MFCCA model with different context
frame number on Eval and Test sets (%).

F 0 1 2 3 4
Eval 20.6 20.4 20.2 20.2 20.1
Test 22.4 22.1 22.0 22.0 22.0

4.6. Visualization of MFCCA scores
To analyze the behavior of our proposed model, Fig. 4 visu-
alizes the attention scores of our MFCCA module and the de-
tailed recording process of the microphone array. As shown in
Fig. 4(e), the different microphone-speaker distances may re-
sult in time delays during the recording. For example, the 7-th
channel of speaker-1 shows a slight time delay compared with
the 4-th channel, since the 4-th microphone is much closer to
the speaker. Fig. 4 (a-d) are heatmaps of the averaged atten-
tion scores computed by our MFCCA module for different



speakers. As described in 3.1, for a specific time t, its input
feature will be appended with two past and future contexts,
and the MFCCA module tries to exploit cross-channel depen-
dencies between adjacent frames. Combining Fig. 4(a) and
Fig. 4(e), we can find that our model indeed captures the mi-
crophone delay information like beamforming, as the model
attends more on the 4-th/5-th channels at time t − 2 and 7-th
channel at time t. Note that the attention scores are from the
first encoder layer, in which each channel has not yet inte-
grated the other channel information.
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(e) An example of the topology of microphone array and speaker recording with waveform latency
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Fig. 4. Illustration of: (a-d) the attention scores of differ-
ent speakers. (e) An example of the topology of microphone
array and the recorded 8-ch waveforms.

4.7. Impact of the different training data scale

As shown in Table 3, we compare the results of our proposed
model trained with different data scales on Eval and Test
sets. In order to strengthen the acoustic modeling ability of
the model, we include the Train-Ali-near and Aishell4 sets
into our training, which yields 10.8% (19.4%→17.3%) and
13.6% (21.3%→18.4%) relative CER reductions on Eval and
Test sets, respectively. We also simulate 600 hours 8-channel
meeting data based on the Train-Ali-near to have a fair com-
parison with the M2MeT challenge submissions. By using
the same simulated data augmentation strategy, our model
obtains further improvement, achieving 16.5% and 18.0%
CERs on Eval and Test sets. Meanwhile, we also integrate a
neural network language model (NNLM) into our proposed
model to improve the language generalization ability, which
brings 2.4% (16.5%→16.1%) and 2.7% (18.0%→17.5%) rel-
ative CER reductions on Eval and Test sets. The NNLM is
trained on the transcriptions of training data, using extra text
data is prohibited according to the M2MeT challenge rule.

Compared with the submission system of the 2nd ranking
team in M2MeT, which adopted the front-end and back-end
joint modeling scheme [9, 38], our proposed MFCCA model
brings 16.1% (19.2%→16.1%) and 15.9% (20.8%→17.5%)
relative CER reductions on Eval and Test sets, while the
parameters and training data are at a comparable scale. Fur-
thermore, our model even outperforms the large model of the
1st ranking team’s submission system [9, 42] trained on a
large data scale by data augmentation and simulation, leading
to 8.0% (17.5%→16.1%) and 6.9% (18.8%→17.5%) relative
CER reductions on Eval and Test sets, respectively.

Table 3. Results of MFCCA model with the different training
data scales on Eval and Test sets (%).

Model Para(M) Data(hrs) Eval Test
1stranking w/ model fusion[42] 114 14,000 17.5 18.8
1stranking [42] 114 10,000 19.1 20.1
2ndranking [38] 48 917 19.2 20.8
MFCCA (Train-Ali-far) 45 105 19.4 21.3

+ Train-Ali-near, Aishell4 45 317 17.3 18.4
+ Ali-simu 45 917 16.5 18.0

+ NNLM 45 917 16.1 17.5

5. CONCLUSIONS

In this work, we propose a multi-frame cross-channel at-
tention (MFCCA) module based on the multi-speaker SOT
framework to capture both temporal and spatial information,
which exploits the complementarity between frame-level and
channel-level cross-channel attention. Considering the delay
of microphone array receiving sound, our MFCCA approach
models cross-channel information between adjacent frames.
Besides, we also propose a multi-layer convolutional mecha-
nism to fuse the multi-channel output efficiently. Finally, in
order to combat the channel number mismatch problem be-
tween training and inference, we propose a channel masking
strategy to improve the robustness of the model with differ-
ent channel setups. Evaluated on the real meeting corpus
AliMeeting, our proposed model outperforms single channel
ASR model by 31.7% and 37.0% relative CER reductions
on Eval and Test sets, respectively. Moreover, with the com-
parable model parameters and training data, our proposed
model achieves a SOTA error rate compared with top ranking
systems in the ICASSP2022 M2MeT challenge, the recently
held multi-channel multi-speaker ASR challenge. In the fu-
ture, we would like to integrate our proposed multi-channel
multi-speaker model into speaker-attributed automatic speech
recognition for real-world applications.
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