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ABSTRACT

This paper proposes weight regularization for a faster neural
vocoder. Pruning time-consuming DNN modules is a promis-
ing way to realize a real-time vocoder on a CPU (e.g. Wa-
veRNN, LPCNet). Regularization that encourages sparsity
is also effective in avoiding the quality degradation created
by pruning. However, the orders of weight matrices must be
contiguous in SIMD size for fast vocoding. To ensure this
order, we propose explicit SIMD size aware regularization.
Our proposed method reshapes a weight matrix into a tensor
so that the weights are aligned by group size in advance, and
then computes the group Lasso-like regularization loss. Ex-
periments on 70% sparse subband WaveRNN show that prun-
ing in conventional Lasso and column-wise group Lasso de-
grades the synthetic speech’s naturalness. The vocoder with
proposed regularization 1) achieves comparable naturalness
to that without pruning and 2) performs meaningfully faster
than other conventional vocoders using regularization.

Index Terms— speech synthesis, neural vocoder, regu-
larization, SIMD, group pruning

1. INTRODUCTION

The neural vocoder represented by WaveNet [1] has dramat-
ically improved the quality of text-to-speech (TTS) synthe-
sis. While WaveNet can generate high-quality speech wave-
forms directly from conditioning features via a large causal
convolution-based autoregressive model, its huge computa-
tional cost and autoregressive (AR) architecture prevent fast
vocoding. To allow easier parallel computation, many neu-
ral vocoders based on non-autoregressive structures have been
proposed [2, 3, 4, 5, 6, 7]. These schemes offer high process-
ing speeds if the device is specialized for parallel comput-
ing, such as GPUs. On the other hand, to achieve fast neural
vocoding on CPUs, the computational complexity must be re-
duced drastically. WaveRNN achieves real-time vocoding by
replacing huge causal convolutions of WaveNet with a simple
GRU, and pruning its weights [8]. LPCNet also introduces
signal processing insights into the speech generation process
and reduces the number of DNN parameters from that of Wa-
veRNN [9]. Other approaches to reduce the number of DNN
inferencing iterations, with multi-sample generation in a sin-

gle forward propagation step [10, 11] and prediction of short-
ened subband signals instead of waveforms [12, 13].

Quantization and low-rank approximation are promising
alternatives to pruning for paring the DNN module’s compu-
tational complexity. [13] roughly quadrupled speeds by quan-
tizing neural vocoder weights to 8-bit integers, but it requires
quantization error-aware training and an appropriate intrinsic
implementation for integers, resulting in high implementation
cost and hardware dependency. Although the low-rank ap-
proximation shrinks the model size, its speed-up contribution
is limited due to the increased number of matrices that must
be computed, which requires more matrix-vector product in-
structions (e.g. “gemv”) to be called [14]. Pruning [15, 16]
used in WaveRNN and LPCNet substitutes the elements of
the weight matrix with zeros in the training process. During
inference, the calculation of zero weights can be skipped, and
hardware dependency is also small because the weights can
be treated as floating-point without modification. While ex-
cessive pruning leads to quality degradation, regularization is
an effective solution. Lasso regularization promotes a sparse
model, thus allowing for a smaller gap in the model with and
without pruning [17]. However, the order of non-zero weight
elements becomes non-contiguous when using Lasso for reg-
ularization. To exploit fully the fast single instruction multi-
ple data (SIMD) operations intrinsic to CPUs, the non-zero el-
ements must be contiguous, so Lasso is not optimal for SIMD.
The use of group Lasso (gLasso) [18] allows for a sequence
of non-zero elements, but the model’s expressiveness is sacri-
ficed due to row- or column-wise weight sparsity.

To ensure both speed and quality, we propose a gLasso-
like regularization approach that explicitly sparsifies weights
with the group pruning size. The proposed method aligns the
weights in both the non-zero and zero regions with enough
size to fully occupy the SIMD registers at once. Thus, group
pruning across the boundary between regions can be avoided,
and computational efficiency can be improved while main-
taining model expressiveness. In our experiments, we used
multi-sample subband WaveRNN [19] with 70% sparsity.
While pruning degraded the naturalness of the synthetic
speech of the vocoder without regularization and the one with
the use of Lasso and gLasso regularization, regularization
with the proposed method and pruning maintained the same
naturalness as that achieved before pruning. We also found
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Fig. 1. Overview of multi-sample subband WaveRNN via
multivariate Gaussian [19]. This vocoder predicts M sub-
band signals simultaneously in single forward propagation
step (M=2 is used in this figure).

that our vocoder was faster than the conventional alternatives.

2. MULTI-SAMPLE SUBBAND WAVERNN

2.1. Model architecture and its training

Subband WaveRNN [13] reduces sequence length from T
to T/B by predicting B-band subband signals instead of a
speech waveform. [19] extended it to multi-sample gener-
ation for even faster vocoding; Fig. 1 shows an overview.
The model consists of an encoder and a decoder, which
are responsible for frame rate and sample rate, respectively.
Encoders upsample frame-level acoustic features to corre-
sponding samples. The decoder generates predictions of the
next time t + τ∀m ∈ [1,M − 1] from the output of the en-
coder and the previous M subband signals, where m is the
index of the number of subband signals to be generated si-
multaneously. To generate multiple samples in single forward
propagation, linear layer FC3s are provided for subband sig-
nals of t+τ∀m ∈ [1,M−1]. This module jointly predicts the
associations among subband signals because PQMF has band
overlaps. Assuming a multivariate Gaussian as FC3’s target,
this vocoder minimizes the negative log-likelihood given by:

LNLL (θ) = −
T/B∑
t=1

M∑
m=1

lnN (xt+m;µ (zt+τ∀m , θ) ,Σ (zt+τ∀m , θ)),

(1)

where θ, zt, xt ∈ RB , µ ∈ RB and Σ ∈ RB×B are
the DNN model parameters, FC2’s output, subband signals,
the mean vector and covariance matrix of the multivariate
Gaussian, respectively. To guarantee spectral reproducibility,

STFT loss LSTFT (θ) [20] is calculated by generating sub-
band signals from the multivariate Gaussian via a reparame-
terization trick. This is added to Eq. (1) without scaling to
optimize the vocoder.

2.2. Weight pruning

For fast vocoding, pruning is performed during training. We
performed pruning by gradually increasing sparsity [16] in
the same manner as WaveRNN using:

ds = d
[
1− {1− (s− s0) /S}3

]
, (2)

where s, s0, and S are the current-, start-, and total- pruning
step, respectively. d is the target density, thus the sparsity is
defined as 1−d. To fully utilize vector algebra with SIMD, we
apply group pruning [15]. The group size of FC1, GRU, and
FC2 for pruning was set to 16. Taking Intel’s AVX2 intrinsic
instruction set as SIMD, the dot product can be calculated for
16 elements in two SIMD operations. This is done by putting
eight 32-bit float elements on a register and calculating the
dot product, which is then applied to and added to the other
eight neighboring elements.

2.3. Weight regularization

In order to avoid a degradation in model expressiveness due to
pruning, regularization is an efficient approach to sparsify the
model in advance. A well-known Lasso regularization term is
computed as follows:

LLASSO
Reg (θ) =

∑
r

Ir∑
i=1

Jr∑
j=1

|Wr (i, j)|, (3)

where r,Wr ∈ RIr×Jr are the DNN module’s index and the
weight matrix to be regularized, respectively. i and j denote
the row and column indices.

The regularization term of column-wise group Lasso is
given by:

LGLASSO
Reg (θ) =

∑
r

Jr∑
j=1

∥∥∥wi
r,
∥∥∥ (4)

wherewi
r and ‖·‖ are theWr’s i-th column vector and the L2

norm operator, respectively. The final objective function with
regularization is reformulated as:

L (θ) = LNLL (θ) + LSTFT (θ) + λLReg (θ) , (5)

where λ is the scale for the regularization term LReg (θ).

3. PROPOSED SIMD-SIZE AWARE WEIGHT
REGURALIZATON

The Lasso and gLasso regularizations described in Section
2.3 could suffer from group pruning of sparse weights across
the zero/non-zero boundary, resulting in quality degradation.
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Fig. 2. Comparison between Lasso, gLasso, and our regular-
ization proposal applied to a single weight matrix. The white
and gray regions denote non-zero and zero components, re-
spectively.

To overcome this problem, we propose a regularization that
assumes group pruning at the SIMD size. The weight matrix
Wr is reshaped in advance into a third-order tensor Wr ∈
RIr×Jr/G×G to make the sparse weight’s block size equal to
group pruning sizeG. Then, the proposed regularization term
for this tensor is formulated as follows:

LPROPOSED
Reg (θ) =

∑
r

Ir∑
i=1

Jr∑
j=1

√√√√ G∑
g=1

Wr (i, j, g)
2. (6)

Figure 2 compares regularized weights when Lasso,
gLasso, and our proposed method (PROPOSED) are applied.
The white and gray regions of the matrices in this figure
are the non-zero and zero components, respectively. This
prior matrix-to-tensor conversion and computing Eq. (6) con-
tribute to SIMD size group-wise sparsification. Therefore,
group-wise sparsified weights can be preferentially pruned,
reducing the probability of pruning portions contain non-
zero elements. Since weights are continuous in SIMD size,
weights can always be assigned to aligned memory, which is
advantageous in terms of computing efficiency.

4. EXPERIMENTS

4.1. Setup

We used speech data uttered by a Japanese professional fe-
male speaker. The sampling frequency was 22.05 kHz. 200

utterances were extracted as evaluation data (18.3 minutes),
and the remainder were used for training and validation (30.6
hours).

Eighty-dimensional logarithmic mel-spectrograms were
used as the conditioning feature of the neural vocoder. The
analysis frame shift was 5 ms1. The ResNet of the encoder has
ten residual blocks, each consisting of 1D-convolution with
128 units, batch normalization, and activation. ReLU was
used for all activations, and the simultaneous generation sam-
ple was set to two likewise [19]. This multi-sample vocoder
occasionally failed to predict accurate variance parameters
which yielded clicking sounds. To avoid this problem, we 1)
eliminated variance outliers and 2) clipped sampled results
in a similar way to [10]. The number of training steps was
5000k, and parameters for pruning steps in Eq. (2) were set
to S0 = 2000k and S = 2500k. We used d = 0.3 and λ in
Eq. (5) to 1.0 × 10−4 for all regularization methods. This
guarantees that the model sparsity is at least 70%. If the
number of zero elements increases due to regularization, the
sparsity could be higher than this. The vocoder’s optimiza-
tion was performed using RAdam [21], with α = 1.0×10−4,
β = (0.9, 0.999), and ε = 1.0× 10−8.

4.2. Weight heatmap comparison

Figure 3 shows FC1 (described in Fig. 1) weight heatmaps
before and after pruning for each method. The horizontal
and vertical axes are the input and output dimensions, respec-
tively. Comparing W/O REG (W/O PRUNE) and W/O REG
(W/ PRUNE), we can see that the elements have been replaced
with zero leaving large components. As described in Fig. 1,
the recurrent multiple subband signals are fed to FC1, so these
weights are particularly large on the left-side of the heatmap
as if to focus on their signals (e.g. “Detail 1” in Fig. 3). Other
right-side weight components are responsible for receiving
encoder’s ouputs (e.g. “Detail 2”). These results revealed that
W/O REG (W/ PRUNE) disregarded or neglected the encoder’s
conditioned outputs. Although LASSO (W/O PRUNE) was
not overly dependent on the most recent sample, its weights
had discontinuous order. The GLASSO (W/O PRUNE) yield
poor sparsification, because under the constraint of sparsify-
ing entire columns, it was difficult to find compact represen-
tations. These regularizations, like W/O REG (W/O PRUNE),
are prone to degrade the synthesized speech’s quality because
group pruning is applied across the boundaries between zero
and non-zero. On the other hand, the proposed method PRO-
POSED (W/O PRUNE) was sparse and its weights were contin-
uously aligned in group pruning size G = 16 in the column
direction before pruning. Since there is no drastic difference
in the heatmaps between with and without pruning, we found

1Although we also investigated the commonly used frame shift of 12.5
ms in our preliminary experiments, we chose to set it to 5 ms because it
better reproduced the pitch of synthetic speech. If a faster inference speed is
preferred, the frame shift can be set to 12.5 ms like other studies for lower
encoder computational complexity.
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Fig. 3. FC1’s weight heatmap comparison. From top to bot-
tom: W/O REG, LASSO, GLASSO, and PROPOSED. The right
and left heatmaps show without and with pruning, respec-
tively. The left-side of the heatmaps receive the recurrent
multiple subband signals (e.g. “Detail 1”). Other right-side
of ones accept the encoder’s conditioned output (e.g. “Detail
2”). The comparison of “Detail 1” and “2” between W/O and
W/ PRUNE, demonstrated that PROPOSED kept the minimum
difference among them.

that pruning can be done without sacrificing the model’s ex-
pressiveness.

4.3. Subjective evaluations

We subjectively evaluated the naturalness of synthetic speech
by using mean opinion score (MOS) on a five-point scale
ranging from 5: very natural to 1: very unnatural. Sixty lis-
teners participated in the test via crowdsourcing. They eval-
uated ten sentences for each method, randomly selected from
all 200 evaluation data, for a total of sixty sentences. These
participants were different evaluators for analytic resynthesis
and TTS.

95% confidence interval
not significant (p>0.05)*
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Fig. 4. Mean opinion scores of naturalness. Acoustic features
for vocoding were extracted from natural speech.
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Fig. 5. Mean opinion scores in terms of naturalness. Acoustic
features for vocoding were predicted by the TTS model.

4.3.1. Vocoding for extracted acoustic features from natural
speech

Figure 4 shows the subjective evaluation results of vocod-
ing with acoustic features extracted from natural speech.
W/O REG (W/O PRUNE) yielded lower performance than
Ground truth, but still obtained high naturalness. W/O REG
(W/ PRUNE) degraded significantly more than W/O REG
(W/O PRUNE). This is due to 1) neglecting the conditioning
spectral information in pruning, and 2) excessive reliance
on recurrent samples led to quality degradation due to mis-
matches with the training time; as described in Section 4.2.
The performance of GLASSO (W/ PRUNE) also falls for the
same reason, just not as much as W/O REG (W/ PRUNE). On
the other hand, LASSO (W/ PRUNE) showed no more signif-
icant degradation from W/O REG, even with pruning. This is
due to the fact that model does not rely excessively on recent
samples, but focuses more on the conditioning spectral infor-
mation. PROPOSED (W/ PRUNE) outperforms these pruned
models and achieves naturalness comparable to that of W/O
REG (W/O PRUNE).

4.3.2. Vocoding for acoustic features predicted by TTS

To investigate robustness against degraded acoustic features,
FastSpeech2 [22] as the TTS model was also trained with the
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Fig. 6. Average RTFs obtained from all evaluation data.

same data as the neural vocoders. We fed 380 kinds of sym-
bols including phoneme and prosodic information to Fast-
Speech2. It was optimized via a minimum mean absolute
error criterion with 2000k steps by Adam [23] with β =
(0.9, 0.98), and ε = 1.0×10−9. We followed the same learn-
ing rate schedule in [24].

Figure 5 shows the subjective evaluation results. The
overall difference in scores between ground truth and syn-
thetic speech was greater when using features extracted from
natural speech since acoustic features predicted by TTS were
degraded from the original one. The PROPOSED (W/ PRUNE)
matched the naturalness of W/O REG (W/O PRUNE). This
result confirms that the regularization proposal is robust to
acoustic features degraded by TTS.

4.4. Vocoding speed comparison

The real-time factors (RTFs) were calculated to measure the
inference speeds for all methods. RTF is defined by:

RTF := Tinference/Tdata, (7)

where Tdata and Tinference are speech length and single-thread
inference time measured on an Intel Core i7-8750H CPU 2.20
GHz, respectively.

Figure 6 shows averaged RTFs from all evaluation data.
W/O REG (W/ PRUNE) yielded a significant speed improve-
ment over W/O REG (W/O PRUNE) owing to pruning. LASSO
(W/ PRUNE) showed no speed improvement from W/O REG
(W/ PRUNE). As discussed in Section 4.2, this was attributed
to Lasso regularization promoting non-contiguous sparse ma-
trices, which fails to yield a SIMD-friendly contiguous sparse
matrix. On the other hand, GLASSO (W/ PRUNE) slightly im-
proved the RTF. The reason is the 70% sparsity by pruning,
further increased column-wise contiguous zeroed regions via
regularization. The proposed method achieved better RTFs
than GLASSO (W/ PRUNE), since it achieved a group-wise
sparser matrix than GLASSO, as mentioned in Section 4.2.
Our RTF=0.080 is nearly comparable to the one of the re-
cent non-AR HiFi-GAN (v3) [7], which works fast on CPUs

(RTF=0.075). Since they used a higher clock CPU (Intel Core
i7 CPU 2.6 GHz) than ours, our proposed method might out-
perform their speed if on the same CPU. Furthermore, the
combination of the other faster approach for WaveRNN (e.g.
[25]) and the proposed regularization would be able to pro-
vide a significant speed-up compared to HiFi-GAN.

5. CONCLUSION

In this work, we proposed SIMD-size aware group-wise reg-
ularization to avoid the quality degradation associated with
neural vocoder pruning. We incorporated the regulariza-
tion proposal into a subband WaveRNN-based vocoder and
showed that the regularized weights have group-wise con-
tinuous orders suitable for SIMD computation. No major
differences in our vocoder’s weight layout were observed via
heatmaps of before and after pruning. Subjective evaluations
regarding naturalness demonstrated that the proposed pruned
vocoder outperformed that with no regularization, Lasso, and
group Lasso. In particular, our vocoder achieved comparable
naturalness to that achieved without pruning. A speed evalu-
ation also revealed that our vocoder performed significantly
faster than the existing alternatives.

Our method can also increase contiguous zeroed region
more efficiently than LASSO and GLASSO even if regularized
to fit processors with smaller SIMD sizes, e.g. Intel SSE4
and Arm NEON. So we expect to run significantly faster than
them without any loss of quality. Our first future work will
apply the proposed method for Arm NEON and confirm its
efficiency on embedded processors. Our second second fu-
ture work will compare and combine our regularization with
AlignReg [26], which has similar concepts proposed for nat-
ural language processing. Since the proposed regularization
is not limited to neural vocoders, we will also plan to apply it
to other computationally expensive models (e.g. RNN-T [27]
and BERT [28]).
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