
JOIST: A JOINT SPEECH AND TEXT STREAMING MODEL FOR ASR

Tara N. Sainath, Rohit Prabhavalkar, Ankur Bapna, Yu Zhang,
Zhouyuan Huo, Zhehuai Chen, Bo Li, Weiran Wang, Trevor Strohman

Google, Inc.
{tsainath, prabhavalkar}@google.com

ABSTRACT

We present JOIST, an algorithm to train a streaming, cascaded,
encoder end-to-end (E2E) model with both speech-text paired in-
puts, and text-only unpaired inputs. Unlike previous works, we ex-
plore joint training with both modalities, rather than pre-training and
fine-tuning. In addition, we explore JOIST using a streaming E2E
model with an order of magnitude more data, which are also novel-
ties compared to previous works. Through a series of ablation stud-
ies, we explore different types of text modeling, including how to
model the length of the text sequence and the appropriate text sub-
word unit representation. We find that best text representation for
JOIST improves WER across a variety of search and rare-word test
sets by 4–14% relative, compared to a model not trained with text.
In addition, we quantitatively show that JOIST maintains streaming
capabilities, which is important for good user-level experience.

Index Terms— end-to-end ASR, long-tail

1. INTRODUCTION

Research on E2E automatic speech recognition (ASR) systems
has become increasingly prominent in recent years, with multi-
ple research groups demonstrating the strong performance of these
models [1, 2, 3, 4, 5, 6]. However, training such E2E models
comes with its own set of challenges – most notably, E2E models
are trained using large amounts of audio-text pairs; obtaining such
hand-transcribed data is expensive and insufficient to fully cover the
space of all possible words that might need to be recognized. Thus,
E2E models tend to perform poorly on utterances containing words
that appear infrequently in the training data (e.g., named entities) [7].

A common solution to this issue is to leverage an external neural
language model (LM), trained on a much larger amount of unpaired
text data, which can be incorporated into an E2E model during de-
coding: e.g., shallow fusion [8, 9], or rescoring [7]. While such
techniques can improve rare word recognition, they have limitations:
for resource-constrained tasks such as on-device speech recognition,
the additional memory required to store the LM might be prohibitive
(e.g. 128M parameters for the LM, relative to ∼150M parameters
for the base E2E model in [7]); the high cost of running an LM at
each step of the beam search may necessitate second-pass rescoring
instead of shallow fusion, thus limiting the scope for improvement
since with rescoring the model can only correctly recognize words
which are present in the first-pass decoded lattice.

An alternative approach to address the rare-word issue is to di-
rectly train the E2E model with unpaired text-only data. Some of the
earliest works in this direction have examined using text-to-speech
systems to convert the text into paired audio-text pairs [10], or by in-
corporating cycle consistency losses (i.e., combining text-to-speech

and speech-to-text losses) [11, 12]. In addition, there has been work
on injecting text into attention-based encoder-decoder models [13,
14]. An alternative approach focuses instead on creating a shared
embedding space for the two modalities – speech and text [15, 16,
17, 18, 19, 20, 21] – thus improving ASR performance without in-
creasing model parameters or decoding complexity. The use of a
shared space allows training the E2E model with losses derived from
paired or unpaired data, as discussed in Section 2. In the present
work, we build upon these modality matching techniques in order
to make them suitable for large-scale streaming state-of-the-art cas-
caded recurrent neural transducer (RNN-T) models [22, 23]. The
contributions of this work include the following: (1) Unlike many
previous works which have been applied to full-context models (i.e.,
full-utterance processing), we focus on streaming models [2] where
words must be emitted as quickly as possible after the user speaks.
We explore text injection as part of the streaming cascaded encoder
model [22], which only has an acoustic look-ahead of 900ms, thus
allowing for efficient low-latency streaming decoding. (2) Given the
large scale of data available for our task, we explore joint training
with a combination of losses computed on the supervised audio-text
pairs along with the unpaired text data. We are guided by the in-
tuition that pre-training followed by fine-tuning could be prone to
forgetting the pre-trained task given the large amounts of supervised
data [24]. For example, past-research has shown that pre-training
has a larger impact for tasks when supervised training data is limited
(less then 1,000 hours) [25, 26, 27] compared to large data sets with
tens of thousands of hours and medium-sized models [28]. In addi-
tion, joint-training allows for a simpler training procedure, which is
important with large-scale datasets. (3) We develop a simple solution
to inject text that avoids the need for a sophisticated but more com-
plex duration model to accurately model expected token durations.
(4) Finally, we additionally optimize the model for ASR specific per-
formance using the minimum word error rate criterion (MWER) [29]
on unpaired text data by modifying the standard formulation that is
only applied to audio-text pairs.

We perform a series of ablation studies on a large vocabulary
voice search task to understand the performance of different text-
injection schemes, both with respect to how to model duration and
what type of subword unit (i.e., word-pieces or phonemes), should
be used to represent the unpaired text. We find that proposed stream-
ing JOIST configuration offers between a 4–14% relative improve-
ment in WER across a variety of voice search and rare-word sets,
compared to a baseline system that does not use any unpaired text.

2. RELATED WORK

The basic paradigm for training E2E models requires transcribed
audio-text pairs; model performance is thus limited by the amount

ar
X

iv
:2

21
0.

07
35

3v
1

 [
cs

.C
L

]
 1

3
O

ct
 2

02
2

of training data [30, 31, 32]. Many recent works have focused on
improving E2E models by leveraging unpaired text, speech, or both.

Previous works which have investigated the use of unpaired
speech data have focused on contrastive (e.g., [33, 34]) or recon-
struction (e.g., [35, 36]) losses. Self-supervised learning approaches
in natural language processsing (NLP), e.g., BERT [37], use masked
language modeling (MLM) losses to pre-train encoders for NLP
tasks – this leverages the fact that NLP uses discrete input represen-
tations unlike speech. Researchers have adapted these techniques
for speech by deriving discrete labels for speech frames: e.g., us-
ing nearest neighbors (HuBERT [38]); vector-quantization through
Gumbel softmax or online K-means (vq-wav2vec [39]) or a random
(but deterministic) quantizer [40]. The wav2vec 2.0 system [41]
proposed to combine the two steps – quantization and contrastive
losses – which were subsequently combined with MLM losses in
w2v-BERT [42]. All of these works have adopted the procedure of
pre-training models with unpaired speech followed by fine-tuning
the models on the paired audio-text data; notable exceptions in-
clude [24, 43], which jointly train on both losses in a multi-task
framework. Such techniques tend to achieve large gains when the
amount of paired speech is limited [41, 42], for example on Lib-
rispeech [44]. However, in previous work it has been observed that
the gains from these techniques are limited when training with large-
scale datasets [14]. Therefore, in this work, we focus on techniques
which incorporate unpaired text data into the E2E model.

There have also been recent works investigating the use of un-
paired text data into the E2E model. [10] converts the unpaired text
data into audio utterances using a text-to-speech (TTS) system, thus
making the data amenable to supervised training. A related approach
consists of using cycle consistency losses – using TTS in combina-
tion with ASR to train with unpaired data [11, 12]. One of the main
disadvantages of these techniques is the high computational cost in-
volved in converting text into audio through TTS. Another approach
is to distill knowledge from an LM into the E2E model [45].

An alternative approach, most closely related to our work, fo-
cuses on mapping the two modalities, audio and text, into a shared
space. For example, Bapna et al. propose SLAM which uses MLM
losses for the text and w2v-BERT losses for the unpaired speech to
learn audio/text representations, with additional losses to align the
two modalities [15]; the work is further generalized in the mSLAM
approach to use multiple languages. A similar approach – dubbed
STPT by Tang et al. [17] – uses BART [46] and wav2vec 2.0 [41] to
train on unpaired text and speech, respectively, along with phoneme
prediction and standard ASR losses on the paired data to align repre-
sentations; SPLAT, proposed by Chung et al. [20], uses masked re-
construction losses for unpaired speech, a pre-trained BERT model
for the unpaired text and a set of alignment losses (token-level or
sequence-level) to align representations. The SpeechT5 system of
Ao et al. [21] utilizes an encoder-decoder model which operates in
a shared latent space; the system is combined with a set of pre-nets
(to map speech/text into the shared encoder/decoder input represen-
tation) and post-nets which map the decoder output into speech/text.
All of the above mentioned works focus on encoder-decoder archi-
tectures which are non-streaming; in this work, we focus on recog-
nition using streaming RNN-T models [47, 48].

Our work is most closely related to two recent works that have
investigated techniques to incorporate text-only data into RNN-T
based models [18, 19]. Thomas et al. [18] propose a textogram –
an input representation created by repeating one-hot embeddings of
each input text tokens a fixed number of times (graphemes, in [18]).
The textograms are stacked together with standard log-mel features
along the time dimension. When training on text-only data, the input

log-mel features are set to zero; when training on audio-text paired
data, the textogram features are set to zero; in either case, the model
is trained with the standard RNN-T loss on the output text tokens. In
order to ensure that the task of mapping from the textogram to out-
put text tokens is not trivial, a subset of the input textogram features
are masked. The model, once pre-trained, is fine-tuned for a down-
stream spoken language understanding task. In MAESTRO, Chen
et al. [19] propose to up-sample the input text tokens using a dura-
tion prediction model similar to that used in TTS, which is jointly
trained with the rest of the model. In order to ensure that the repre-
sentations learned from speech and text are aligned, the MAESTRO
approach adds consistency losses to align the output representations
from the two modalities using the paired data. Although both of the
aforementioned works [18, 19] are applied to RNN-T models, these
works use full-context encoders (i.e., full utterance processing) and
have not been explored in the context of streaming ASR.

3. JOIST: IMPROVING E2E ASR WITH UNPAIRED TEXT

In the present work, we simplify and expand on the techniques pre-
sented in [18, 19] to build a solution for streaming RNN-T mod-
els [22, 23]. We assume that we have examples of transcribed audio-
text pairs: S = {(xs, ys)} (in this work, xs corresponds to stacked
log-mel feature frames; ys corresponds to word-pieces [49]). In
addition, we assume that we have (a much larger) set of unpaired
text data, T . Since the text data can be tokenized in multiple ways
(e.g., as a sequence of phonemes, or word-pieces), for notational
convenience we also represent the unpaired text data as a pair: T =
{(xt, yt)} (in this work, xt corresponds to either phonemes or word-
pieces; yt always corresponds to word-pieces), similar to [17, 19].
Note that xt and yt are both derived from the same unpaired text.

Fig. 1. JOIST architecture for training with speech and text inputs in
the cascaded encoder framework [22].

Our proposed model, which we call JOIST, is depicted in Fig-
ure 1. The model is based on the cascaded encoder framework [22],
which contains two Hybrid Autoregressive Transducer (HAT) [48]
decoders: the first (blue) operates on the output of the causal speech
encoder (i.e., zero right context frames); the second (pink) oper-
ates on the shared non-causal cascaded encoder which has access to
900ms of right context frames. We refer to these two decoders as the

first-pass and the second-pass decoders, respectively. The cascaded
encoder framework is motivated by the goal of having a low output
latency decoder (the causal decoder) which can be used to quickly
display first-pass results to the screen; the outputs of the non-causal
decoder (delayed by 900ms, because of the right context) can be
computed in parallel and used to update the results displayed to the
screen later following [7]. We denote the output probabilities from
the first-pass decoder on the paired audio-text as PC(ys|xs), and the
probabilities from the second-pass decoder on the paired audio-text
as PNC(ys|xs).

To be able to train with unpaired text-data, we up-sample the in-
put text representation, xt, following [18, 19]. However, unlike [19],
we use a simpler, parameter-free duration model, as described in
Section 3.2. The up-sampled text representation is masked (to en-
sure that the task is sufficiently challenging for the model) and fed to
a text encoder. The output of the text encoder can be fed to the first-
pass decoder to generate PC(yt|xt), or to the second-pass decoder
after passing through the shared encoder to generate PNC(yt|xt).

3.1. Loss Computation

The model is trained by jointly optimizing both decoders using
audio-text pairs in addition to the unpaired text. If we denote
LC(y, x) = − logPC(y|x) and LNC(y, x) = − logPNC(y|x) as the
negative log likelihood of the causal and the non-causal decoders,
respectively, we define the overall loss as:

LCE = λ1[LC(ys, xs) + LNC(ys, xs)]

+ λ2[LC(yt, xt) + LNC(yt, xt)]
(1)

where, λ1 is the weight corresponding to the paired audio-text data
and λ2 is the weight on the unpaired text-only data. As can be seen
in (1), we weight the casual and non-causal decoders equally in the
loss function. In practice, the losses are computed over a mini-batch
of examples; in training, we use 50% paired audio-text and unpaired
50% text examples in each mini-batch. Unlike previous work, we
do not add additional MLM or consistency losses from the text en-
coder [15, 17, 19] which simplifies the overall training procedure.
Evaluations of the impact of these and other losses in the JOIST
framework are left as future work.

3.2. Duration Modeling to Up-Sample Text Representations

Previous works [18, 19] have demonstrated the importance of up-
sampling the text representations in order to create representations
that can be easily aligned with the speech modality. In this work, we
consider a number of schemes for this purpose.

Fixed Repetition: In this scheme, each text sub-word unit (word-
piece or phoneme) is replicated a fixed number of times, exactly
following the approach proposed in [18]. The drawback of this
approach is that this does not match the actual expected durations
of various sub-word units in practice (e.g., vowels tend to be longer
than consonants; word-pieces with more characters tend to have
longer durations). Thus, repetition by a fixed amount is a simple
but crude approximation. We consider a fixed repetition length of 3,
which corresponds to 180ms per unit of xt, in this work.

Random Repetition: To address the shortcomings of fixed repeti-
tion, we also consider random repetition. In this approach, the text
representation is varied by randomly repeating each unit by sampling
from a uniform distribution between 1 and 3 (i.e., 60ms, 120ms, or
180ms per unit of xt). The potential benefit of random repetition is
that it simulates some of the variation that we might expect to see in

the distribution of sub-word units. It must be noted however, that as
with the fixed repetition scheme, this is still a crude approximation.

Sub-Word Distribution : In this approach, we model the distribu-
tion of each sub-word unit using a Gaussian distribution. Given the
paired audio-text data, we generate forced-alignments using a base-
line system [50] to estimate phoneme and word alignments for each
word in the transcript; these are used to compute statistics of the
number of frames corresponding to each phoneme or word in the su-
pervised training data. We decompose each word into its constituent
word-pieces and evenly distribute the words total frames amongst
its constituent word-pieces. Thus, by accumulating statistics over
the entire training set we can compute the sufficient statistics of the
Gaussian distribution – the mean and standard deviation – for each
unit. We can repeat each unit by sampling from it’s corresponding
Gaussian distribution. This is more exact then fixed or random repe-
tition, but is still an approximation since it ignores contextual effects
as each unit is sampled independently.

Align+Sub-Word Distribution: We can always use all of the text in
the paired audio-text set, S, to augment the unpaired text data, T – in
effect treating the text in the paired data as unpaired text. In this spe-
cific case we up-sample text examples in T based on the true number
of frames for each unit, obtained using a forced-alignment [51]; as
before,we divide up the total number of frames in the word amongst
its constituent word-pieces. For text data in T , for which audio (and
thus, forced-alignments) are not available, we use subword distribu-
tion to up-sample the text.

3.3. MWER

Instead of optimizing model log-likelihoods as in (1), the Minimum
Word Error Rate (MWER) [29] strategy minimizes the expected
number of word errors. Specifically, in the standard MWER crite-
rion, given a speech utterance, x, corresponding ground-truth text,
y∗, and a set of N-best hypotheses, yi, (1 ≤ i ≤ N), we minimize
the MWER loss proposed in [29]:

LMWER(y∗, x) =
∑
yi

[
P (yi|x)∑
i P (yi|x)

] [
W(yi, y

∗)−
∑

iW(yi, y
∗)

N

]
(2)

where,W(y, y∗) corresponds to the number of word errors between
the hypothesis, y, and the ground-truth, y∗. To stabilize training,
the MWER loss is interpolated with the standard cross-entropy loss,
after initializing from a model that has converged under the maxi-
mum likelihood criterion in (1). MWER training has been shown to
improve WER by 5–20% in previous works [29, 52, 53].

In the present work, we adapt MWER training by noting that we
can compute the MWER loss using the paired audio-text data (i.e.,
the standard MWER loss paths using (xs, ys)), but also using the
unpaired text representations (i.e., (xt, yt)). This leads to a novel
MWER loss formulation which allows us to train the model using
both paired audio-text as well as the unpaired text:

L = λ1

[
LMWER

C (ys, xs) + LMWER
NC (ys, xs)

]
+ λ2

[
LMWER

C (yt, xt) + LMWER
NC (yt, xt)

]
+ αLCE

(3)

where, LMWER
C and LMWER

NC represent the MWER losses in (2) com-
puted using the first-pass and second-pass decoders, respectively,
and α represents the interpolation weight for the CE loss. As with
CE training in (1), we weight causal and non-causal losses equally.

3.4. Streaming Metrics

An important focus of our work is to ensure that the model can be
used to produce streaming first-pass recognition results with low la-
tency (i.e., the time between when the user speaks, and the system
outputs a sub-word unit). Since we are now injecting an additional
source of text-data, where naturally RNN-T would prefer to delay
and see more text, it is important to ensure that latency metrics are
not degraded with JOIST. We therefore quantify the streaming qual-
ity of the system in terms of the following latency metrics.

In streaming ASR systems, it is important to detect when the
user has finished speaking, so that next fulfillment step can be trig-
gered as quickly as possible. Endpointer latency measures the time
difference between when the user finishes speaking and when the
system predicts an end of sentence (EOS) token [54, 55]; a lower
endpointer latency allows for faster fulfillment and system response
and is thus desirable. We report both the median (i.e. 50th percentile,
EP50) and the 90th percentile (EP90) endpointer latency.

An additional desirable feature is to ensure that the system also
has low latency while outputting all intervening words – i.e., low la-
tency for the partial hypotheses generated by the first-pass decoder,
which will be displayed to the screen. We measure this by com-
puting partial latency – the time difference between when the first
correct partial hypothesis is generated by the model and when the
user finishes speaking [54]. In this work, we report 50th (PR50) and
90th percentile (PR90) partial latency.

Finally, in order to create the best user experience, we would
like to ensure that the hypotheses generated by the first- and second-
pass decoders are as similar as possible. If not, the outputs presented
on the screen will change constantly, which causes too much screen
flickering. The Prefetch Hit Rate (PFHR) calculates the percent-
age of utterances where the hypotheses flip between the first- and
second-pass decoders, at the utterance level.

3.5. Novelty of Proposed Method

Now that we have described JOIST, in this section we further high-
light its novelty. First, most previous works which have investigated
techniques to directly incorporate unpaired text data into the model
have focused on non-streaming encoder-decoder architectures [13,
14, 15, 16, 17, 20, 21]. Although two recent works [18, 19] ap-
ply these approachces to an RNN-T model, they only consider full-
context (i.e., bi-directional) encoders, and are thus unsuitable for
streaming speech recognition. To the best of our knowledge, our
work, JOIST, is the first to investigate whether it is possible to im-
prove streaming end-to-end transducer models using unpaired text
without synthesis [56]. An additional benefit of the proposed ap-
proach is its simplicity: unlike previous works, we focus on joint
multi-task training of supervised and unsupervised objectives using
a parameter-free duration model, thus greatly simplifying the overall
process. The proposed techniques also demonstrate that it is possi-
ble to optimize the model for ASR criteria such as minimum word
error rate (MWER) [29] using unpaired text data, which opens up
new research directions. To the best of our knowledge, our work is
the first to demonstrates that it is possible to obtain gains using text
even when using large-scale supervised training sets.

4. EXPERIMENTS

4.1. Training Sets

The proposed techniques are evaluated on a large-scale voice search
task. Our first set of experiments are conducted using a super-

vised training set, referred to as Train Set A, that consists of ∼300
million United States English multidomain audio-text pairs, which
include domains such as Search, Dictation, YouTube and Tele-
phony [32]. All domains are anonymized and hand-transcribed,
except for YouTube where the transcription is done in a semi-
supervised fashion [57]. Since the effectiveness of various tech-
niques often reduces as the size of the training data increases, in
order to test robustness we also consider an even larger dataset,
Train Set B, which consists of ∼650 million United States English
multidomain audio-text pairs, spanning similar domains as above;
the ‘supervised’ text corresponding to these utterances is obtained
using a 600M-parameter teacher system trained on Train Set A [58].

In addition to the diverse multi-condition training sets, we in-
crease robustness by using multi-condition training data to simulate
noisy conditions [59]; generating data at both 8KHz and 16KHz,
with equal probability, to reduce acoustic mismatch due to sampling
rates [60, 61]; and using SpecAug [62]. Noisy data is generated
at signal-noise-ratio (SNR) from 0 to 30 dB, with an average SNR
of 12 dB, and with T60 times ranging from 0 to 900ms, averaging
500ms. Noise segments are sampled from YouTube and daily life
noisy environmental recordings.

Our unpaired text data consists of more than 100B utterances
and spans the domains of Maps, News, Google Play, Web and
YouTube, and is thus more than two-orders of magnitude larger
than our supervised sets. In addition, we incorporate all text data
from the supervised sets, Train Sets A and B, which we add to the
unpaired text data. In order to ensure that the text data does not
degrade quality on the base voice search task, we sample text data
from the unsupervised and supervised sets with the same probability
so that each unpaired-text minibatch contains 50% data from Train
Set A/B and 50% unpaired text data, following the standard practice
for training N-gram [63] and maximum-entropy [64] LMs.

4.2. Evaluation Sets

Results are reported on multiple test sets which measure the sys-
tems ability to recognize the head (i.e., relatively common words)
as well as the long tail of rare words. The Search test set includes
around 12K Voice Search utterances with an average length of 5.5
seconds. They are anonymized and hand-transcribed, and are repre-
sentative of Google’s Voice Search traffic. In addition, to measure
accuracy while recognizing the long-tail of rare words, we create
synthetic rare word test sets, as described in [65]. Specifically, we
look for words in the LM training data that occur rarely (i.e., less
than 5 times) in the supervised training sets A and B. We construct
test sets for each of the 5 domains (i.e., Maps, News, Play, Query,
YouTube) by selecting utterances containing rare words and synthe-
sizing them using a TTS system [66].

4.3. Modeling Architecture

Our proposed JOIST architecture is modeled as follows. All speech-
text pairs use a 128-dimensional log-mel feature frontend computed
on 32 msec windows with a 10ms hop. Features from four consecu-
tive frames are stacked together, and sub-sampled by a factor of 3 to
generate 512-dimensional features at a 30ms frame rate. These are
appended with 16-dimensional one-hot domain-id vectors [32], to
obtain xs. The input speech features, xs, are fed to the causal speech
encoder, which consists of 5 conformer layers [67] with causal con-
volution and left-context attention to ensure that the causal speech
encoder does not have access to any right context frames. The self
attention layers in the conformer use multi-headed attention with 8

heads, and a convolution kernel size of 15. We use a stacking layer
after the second conformer block, which down-samples the input by
a factor of 2, so that the effective frame rate at the output of the
causal speech encoder is 60ms.

The text input, xt, is constructed by generating one-hot embed-
dings of either 4,096 word-pieces [49] or 46 phonemes depending
on the experiment. These are then up-sampled using the duration
model, and masked before feeding them to the text encoder. Follow-
ing [15, 68], we mask 15% of the up-sampled text IDs with spans of
length 5. The text encoder is a simple embedding table which takes
sub-word IDs as inputs and generates corresponding embeddings.
We set λ1 = 0.1, and λ2 = 0.2, in (1) and (3), respectively.

The bulk of the processing of JOIST is performed by the shared
cascaded encoder, and we devote most of the model’s capacity to
this block. The shared cascaded encoder consists of 12 conformer
layers; the first 5 have access to three frames of right context each,
for a total of 3× 5× 60ms = 900ms of acoustic right context. This
specific model structure follows [23], where it was shown to provide
a good trade-off between accuracy and latency.

Both RNN-T decoders (first- and second-pass) consist of a joint
network (a single feed-forward layer with 640 units) and an embed-
ding prediction network [69] which uses an embedding dimension
of 640, and conditions on only the last two labels. In total, each de-
coder contains 15.2M parameters. All models use the Hybrid Au-
toregressive Transducer (HAT) factorization [48] to predict 4,096
word pieces [49]. Furthermore, all models are trained with FastEmit
[70] to encourage the model to not delay predictions. Overall, the
total model size is ∼169M parameters.

For all models, we discard the text-encoder during inference,
and evaluate the RNN-T decoders using input speech utterances. Un-
less otherwise indicated, all WERs are computed using the second-
pass decoder. Models are decoded with a beam size of 8.

We also compare JOIST to rescoring a lattice generated from
the second-pass decoder using a LM. We train a conformer LM, fol-
lowing [7], which has a look-back attention context of 31. The LM
contains 12 conformer layers [67] each of which has a model dimen-
sion of 768 and a feed-forward layer dimension of 2048.

5. RESULTS

5.1. Full-Context Models

Since all text injection methods have been explored in the context of
full-context encoder layers, in our first set of experiments, we com-
pare previous approaches explored in the literature to our proposed
method. For this set of experiments, we represent the text input rep-
resentation, xt, using word-pieces, and we use Train Set A as our
paired audio-text data, S. Full-context means that the left and right
context for self-attention in all conformer layers (both the causal and
shared cascaced encoders), is set to allow the model to access all
frames in the utterance. Results of our full context experiments are
presented in Table 1, where “S” corresponds to the Search test set;
the rare word test sets are denoted as “M” (Maps), “N” (News), “P”
(Google Play), “Q” (Search Queries) and “Y” (YouTube).

The baseline model, B0, is a model that is trained without any
text data. E0 corresponds to a JOIST model that uses unpaired text,
but does not up-sample the text tokens (i.e., no duration model), sim-
ilar to [17], except that we do not use a MLM loss and inject word-
pieces. As can be seen in Table 1, without replication,E0 is no better
then baseline B0, and is much worse on the News set. Fixed repeti-
tion of the word-piece tokens, which is very similar to [18], but in a
joint training setup (E1), however, can achieve a WER improvement

of 2–5% relative over B0 on the rare-word test sets. The alternative
duration modeling schemes random distribution (E2), and sub-word
distribution (E3) improve performance over the baseline,B0, but do
not outperform fixed repetition (E1).

Finally, as a comparison to other methods B1 shows joint-
training of speech-text and text with SLAM [15], where we con-
catenate the outputs from speech encoder and text encoder before
passing to the shared encoder. SLAM works in tasks where the
encoder is pre-trained using SLAM, and then fine-tuned using a
supervised loss. However, in joint-training the conformer layers
learn to compute attention over speech and text jointly in training,
which is missing in inference, leading to the high WER. We compare
against MAESTRO [19] in the next section.

Our goal in these initial set of experiments confirm the impor-
tance of duration modeling and also that joint training is an effective
yet simple method to optimize mixed input systems. We use these
initial findings to help guide our experiments with streaming models
in the next section, where we also investigate the impact of using
phonemes vs. word-pieces as our text representation.

Exp Model S M N P Q Y
B0 no text 4.8 11.9 8.2 36.1 19.3 22.6
B1 SLAM 75.9 87.0 99.4 87.1 84.7 91.2
E0 no rep 4.8 11.9 8.5 35.8 19.5 22.6
E1 fixed rep 4.6 11.4 7.9 35.7 18.9 22.1
E2 random rep 4.7 11.8 8.2 35.9 19.0 22.2
E3 sub-wrd dist 4.9 11.8 8.0 36.2 19.5 22.2

Table 1. WER for WPM Text Injection; Full-Context Model

5.2. Streaming Models

First, we repeat the experiment of representing unpaired data xt in
terms of word-pieces, but using a streaming architecture described
in Section 4.3. Once again, we use Train Set A as our supervised
training set, S. Our results are presented in Table 2. Our baseline
model (B2) corresponds to an E2E model that is trained solely on the
paired audio-text data. We leave out SLAM from the comparison, as
Table 1 showed a degradation due to the speech-text concatenation.
We observe similar trends to the non-streaming model: as long as
we up-sample the text representations (E5–E7), we can obtain a 2–
4% relative improvement in WER over the baseline (B2) on the rare
word sets; however, JOIST with no repetition E4 does not improve
over the baseline. Finally, we also compare to B3, a jointly-trained
word-piece based MAESTRO model, which uses a TTS-based dura-
tion model and consistency losses, with the same cascaded encoder
architecture as all other models in the table. This model is on-par
with the parameter-free duration-modeling results fromE5–E7. Im-
provements with alternative architectures have been seen with MAE-
STRO, though we leave that for future work.

Exp Model S M N P Q Y
B2 no text 5.2 12.5 9.0 37.4 20.0 23.2
B3 MAESTRO 5.6 12.2 9.1 36.2 20.3 23.0
E4 no rep 5.3 12.3 15.1 36.9 20.0 23.4
E5 fixed rep 5.3 12.1 8.8 37.0 19.6 23.1
E6 random rep 5.2 12.0 9.0 36.7 19.8 23.3
E7 sub-wrd dst 5.2 12.1 9.0 36.9 19.7 23.3

Table 2. WER for WPM Text Injection; Streaming Model
Next, we contrast the benefits of different duration modeling

schemes using phonemes versus word-pieces in representing un-

paired text, xt. These experiments are conducted using the much
larger Train Set B, which uses a teacher model to generate the paired
audio-text data, S. Our results are presented in Table 3. We have
omitted results on the Search test set for clarity since it typically
does not change between techniques, but will present them in the
final section. Since the various word-piece based duration modeling
techniques perform similarly, we only list the random repetition
baseline E8 for brevity. As can be seen in the table, systems which
use phoneme representations (E9–E12) outperform word-pieces;
There is not a huge difference in performance between the differ-
ent duration modeling strategies, similar to what we found with
word-pieces. Since E11 provides a very slight edge, we will choose
that for subsequent exepriments. Overall, E11 provides between
a 4–14% relative improvement in WER over B4. The number of
phonemes is roughly 3-times that of wordpieces, and it is possible
that this finer-granularity is inherently a better model for duration
and thus helps with quality. In the future, we will also compare to a
grapheme text representation, to understand if the finer granularity
helps, or if gains come because phonemes are typically better for
long-tail words compared to graphemes/wordpieces [71].

Exp Model M N P Q Y
B4 Baseline, no Text 13.9 9.4 37.9 21.6 24.4
E8 random rep, WPM 13.7 9.3 37.6 20.9 24.2
E9 fixed rep, phn 13.0 9.1 32.7 18.7 21.5

E10 random rep, phn 13.1 9.2 31.2 18.9 21.3
E11 sub-wrd dst, phn 13.1 9.6 32.6 18.7 21.2
E12 align+dist, phn 13.1 8.5 33.2 19.5 22.2

Table 3. WER for phonemes vs. word-piece based text injection

5.3. Comparison to Neural LM

As stated in the introduction, neural LM is a very common approach
used to improve the quality of rare word recognition [9]. In this sec-
tion, we look at a standard cascaded encoder trained only on audio-
text pairs (B4), that is then rescored by a neural LM (B5). The
oracle WER of the lattice is also shown in Table 4. We compare this
to the best phn-JOIST system (E11), and also rescore this with a LM
(E13). Table 4 shows that a LM with the base system (B5), still does
better then JOIST alone (E11) on half of the long-tail sets, though
requires an additional 128M parameter LM. However, if we apply
the LM to JOIST (E13), this outperforms B5 on all sets. Moreover,
the oracle WER as well as the relative WER improvement of E13
is much larger then B5, which confirms our hypothesis that JOIST
helps to bring rare word hypotheses into the beam, which leads to
even better quality with the LM.

Exp Model M N P Q Y
B4 no text 13.9 9.4 37.9 21.6 24.4
B5 B4 + neural LM 10.3 9.8 33.8 14.9 20.2

oracle 7.0 8.2 21.7 9.5 14.0
E11 JOIST 13.1 9.6 32.6 18.7 21.2
E13 JOIST + neural LM 9.7 9.4 28.5 12.9 17.1

oracle 6.4 7.9 15.7 7.5 10.8

Table 4. WER for Neural LM

5.4. Final Best System: Phoneme JOIST

We take the best system – the phoneme-based JOIST from E11 –
and investigate quality and latency compared to a cascaded encoder
model trained only on paired data.

5.4.1. Quality: MWER Training

Table 5 shows B4, the baseline cascaded encoder, and B6, the base-
line after MWER training using paired-only data. In contrast, E11
is the JOIST model and E14 the model after MWER training, us-
ing the method from Section 3 to train on paired and unpaired data.
Further gains are seen with E14, particularly on rare-word sets. In
addition, we also evaluate the 1st-pass WER for both systems af-
ter MWER training, which appears to be around 9.3%. In the next
section, we will discuss metrics around flickering.

Exp Model S M N P Q Y
B4 CascEnc 6.2 13.9 9.4 37.9 21.6 24.4
B6 B4 + MWER 5.8 13.5 9.1 37.5 20.8 24.0
E11 JOIST 6.1 13.1 9.6 32.6 18.7 21.2
E14 E11 + MWER 5.8 12.7 9.4 32.0 18.3 20.7

Table 5. WER for MWER Experiments

5.4.2. Streaming Metrics

An important focus of our work is to ensure that JOIST has good
streaming recognition performance compared to a cascaded encoder,
which we quantify in Table 6. First, we see that both the endpointer
(EP50, EP90) and partial (PR50, PR90) latencies between JOIST
(E14) and Cascaded Encoder (B6) are on par. Second, the flickering
between the 1st and 2nd pass, as measured by PFHR, is also on-par.

Exp EP50 EP90 PR50 PR90 PFHR
B6 410 710 20 430 0.79
E14 410 700 40 430 0.79

Table 6. WER and Latency on Search Test Set

5.4.3. Comparison on Logs Data

Finally, we compare the no-text cascaded encoder with phoneme
JOIST, by running a “side-by-side” (SxS) on unseen, real-audio
search data. In the SxS, we collect 114 utterances which generate
different hypotheses when decoded with the two systems, and send
these utterances to two human raters. Based on these ratings, we
report five statistics based on the SxS: Changed – % of utterances
in which the two models produced different hypotheses; Wins – the
of utts the JOIST is correct and Cascaded Encoder is incorrect;
Losses – the # of utts JOIST is incorrect and Cascaded Encoder
is correct; Neutral – the # of utts both models are both correct or
incorrect;

The table shows that more than 10% of the traffic is changed
with JOIST, and it has more wins then the Cascaded Encoder. A
closer look at the errors shows wins in many rare words, due to the
text injection.

Changed (%) Win Loss Neutral
10.6% 23 16 75

Table 7. SxS: Cascaded Encoder vs. JOIST

6. ACKNOWLEDGEMENTS

The authors would like the thank Ruoming Pang, Arun Narayanan,
Yanzhang He, Ding Zhao, Shaojin Ding and Françoise Beaufays, for
helpful discussions regarding this work.

7. REFERENCES

[1] J. Li, Y. Wu, Y. Gaur, et al., “On the Comparison of Popular
End-to-End Models for Large Scale Speech Recognition,” in
Proc. Interspeech, 2020.

[2] Y. He, T. N. Sainath, R. Prabhavalkar, et al., “Streaming End-
to-end Speech Recognition For Mobile Devices,” in Proc.
ICASSP, 2019.

[3] C.-C. Chiu, T. N. Sainath, Y. Wu, et al., “State-of-the-art
Speech Recognition With Sequence-to-Sequence Models,” in
Proc. ICASSP, 2018.

[4] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in
Proc. ICASSP, 2017.

[5] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN trans-
ducer modeling for end-to-end speech recognition,” in Proc.
ASRU, 2019.

[6] A. Zeyer, A. Merboldt, R. Schlüter, and H. Ney, “A new train-
ing pipeline for an improved neural transducer,” in Proc. Inter-
speech, 2020.

[7] T. N. Sainath, Y. He, Narayanan, et al., “An Efficient Stream-
ing Non-Recurrent On-Device End-to-End Model with Im-
provements to Rare-Word Modeling,” in Proc. Interspeech,
2021.

[8] J. Chorowski and N. Jaitly, “Towards Better Decoding and
Language Model Integration in Sequence to Sequence Mod-
els,” in Proc. Interspeech, 2017.

[9] A. Kannan, Y. Wu, P. Nguyen, et al., “An analysis of incorpo-
rating an external language model into a sequence-to-sequence
model,” in Proc. ICASSP, 2018.

[10] Z. Chen, Y. Zhang, A. Rosenberg, et al., “Injecting Text in
Self-Supervised Speech Pretraining,” in Proc. ASRU, 2021.

[11] T. Hori, R. Astudillo, T. Hayashi, et al., “Cycle-Consistency
Training for End-to-End Speech Recognition,” in Proc.
ICASSP, 2019.

[12] A. Tjandra, S. Sakti, and S. Nakamura, “Listening While
Speaking: Speech Chain by Deep Learning,” in Proc. ASRU,
2017.

[13] B. Yusuf, A. Gandhe, and A. Sokolov, “USTED: Improving
ASR with a Unified Speech and Text Encoder-Decoder,” in
Proc. ICASSP, 2022.

[14] T. N. Sainath, R. Pang, R. J. Weiss, et al., “An Attention-Based
Joint Acoustic and Text on-Device End-To-End Model,” in
Proc. ICASSP, 2020.

[15] A. Bapna, Y.-A. Chung, N. Wu, et al., “SLAM: A Unified
Encoder for Speech and Language Modeling via Speech-Text
Joint Pre-Training,” arXiv preprint arXiv:2110.10329, 2021.

[16] A. Bapna, C. Cherry, Y. Zhang, et al., “mSLAM: Massively
Multilingual Joint Pre-Training for Speech and Text,” CoRR,
vol. abs/2202.01374, 2022.

[17] Y. Tang, H. Gong, N. Dong, et al., “Unified Speech-Text Pre-
training for Speech Translation and Recognition,” in Proc.
ACL, 2022.

[18] S. Thomas, H. J. Kuo, B. Kingsbury, and G. Saon, “Towards
Reducing the Need for Speech Training Data to Build Spoken
Language Understanding Systems,” in Proc. ICASSP, 2022.

[19] Z. Chen, Y. Zhang, A. Rosenberg, et al., “MAESTRO:
Matched Speech Text Representations through Modality
Matching,” in Proc. ICASSP, 2022.

[20] Y.-A. Chung, C. Zhu, and M. Zeng, “SPLAT: Speech-
Language Joint Pre-Training for Spoken Language Under-
standing,” in Proc. of NAACL-HLT, 2021.

[21] J. Ao, R. Wang, L. Zhou, et al., “SpeechT5: Unified-Modal
Encoder-Decoder Pre-Training for Spoken Language Process-
ing,” in Proc. ACL, 2022.

[22] A. Narayanan, T. N. Sainath, R. Pang, et al., “Cascaded en-
coders for unifying streaming and non-streaming ASR,” in
Proc. ICASSP, 2021.

[23] T. N. Sainath, Y. He, A. Narayanan, et al., “Improving the
Latency and Quality of Cascaded Encoder,” in Proc. ICASSP,
2022.

[24] J. Bai, B. Li, Y. Zhang, et al., “Joint Unsupervised and Super-
vised Training for Multilingual ASR,” in Proc. ICASSP, 2022.

[25] A. Mohamed and G. Hinton, “Phone Recognition using Re-
stricted Boltzmann Machines,” in Proc. ICASSP, 2010.

[26] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek,
P. Novak, and A. Mohamed, “Making Deep Belief Networks
effective for large vocabulary continuous speech recognition,”
in Proc. ASRU, 2011.

[27] F. Seide, G. Li, and D. Yu, “Conversational speech transcrip-
tion using context-dependent deep neural networks,” in Proc.
Interspeech, 2011.

[28] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” in Proc. Interspeech, 2014.

[29] R. Prabhavalkar, T. N. Sainath, Y. Wu, et al., “Minimum Word
Error Rate Training for Attention-based Sequence-to-sequence
Models,” in Proc. ICASSP, 2018.

[30] R. Prabhavalkar, K. Rao, T. N. Sainath, et al., “A Comparison
of Sequence-to-sequence Models for Speech Recognition,” in
Proc. Interspeech, 2017.

[31] K. Irie, R. Prabhavalkar, A. Kannan, et al., “On the Choice
of Modeling Unit for Sequence-to-Sequence Speech Recogni-
tion,” Proc. Interspeech, 2019.

[32] A. Narayanan, R. Prabhavalkar, C.-C. Chiu, et al., “Recogniz-
ing Long-Form Speech Using Streaming End-to-End Models,”
in Proc. ASRU, 2019.

[33] A. Van Den Oord, Y. Li, and O. Vinyals, “Representation
Learning with Contrastive Predictive Coding,” arXiv preprint
arXiv:1807.03748, 2018.

[34] S. Schneider, A. Baevski, R. Collobert, and M. Auli,
“wav2vec: Unsupervised Pre-training for Speech Recogni-
tion,” in Proc. Interspeech, 2019.

[35] Y.-A. Chung and J. Glass, “Generative Pre-Training for Speech
with Autoregressive Predictive Coding,” in Proc. ICASSP,
2020.

[36] A. T. Liu, S.-W. Yang, P.-H. Chi, et al., “Mockingjay: Unsuper-
vised Speech Representation Learning with Deep Bidirectional
Transformer Encoders,” in Proc. ICASSP, 2020.

[37] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Un-
derstanding,” in Proc. NAACL-HLT, 2018.

[38] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, et al., “HuBERT: Self-
Supervised Speech Representation Learning by Masked Pre-
diction of Hidden Units,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 3451–3460,
2021.

[39] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-
Supervised Learning of Discrete Speech Representations,” in
Proc. ICLR, 2020.

[40] C.-C. Chiu, J. Qin, Y. Zhang, et al., “Self-Supervised Learning
with Random-Projection Quantizer for Speech Recognition,”
in Proc. ICML, 2022.

[41] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A Framework for Self-Supervised Learning of Speech
Representations,” Proc. Neurips, 2020.

[42] Y.-A. Chung, Y. Zhang, W. Han, et al., “w2v-bert: Combin-
ing Contrastive Learning and Masked Language Modeling for
Self-Supervised Speech Pre-Training,” in Proc. ASRU, 2021.

[43] C. Talnikar, T. Likhomanenko, R. Collobert, and G. Synnaeve,
“Joint Masked CPC And CTC Training For ASR,” in Proc.
ICASSP, 2021.

[44] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR Corpus based on Public Domain Audio
Books,” in Proc. ICASSP, 2015.

[45] Y. Kubo, S. Karita, and M. Bacchiani, “Knowledge Transfer
from Large-scale Pretrained Language Models to End-to-end
Speech Recognizers,” in Proc. ICASSP, 2022.

[46] M. Lewis, Y. Liu, N. Goyal, et al., “BART: Denois-
ing Sequence-to-Sequence Pre-Training for Natural Language
Generation, Translation, and Comprehension,” arXiv preprint
arXiv:1910.13461, 2019.

[47] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech Recogni-
tion with Deep Neural Networks,” in Proc. ICASSP, 2012.

[48] E. Variani, D. Rybach, C. Allauzen, and M. Riley, “Hybrid
Autoregressive Transducer (HAT),” in Proc. ICASSP, 2020.

[49] M. Schuster and K. Nakajima, “Japanese and Korean voice
search,” in Proc. ICASSP, 2012.

[50] G. Pundak and T. N. Sainath, “Lower frame rate neural net-
work acoustic models,” in Proc. Interspeech, 2016.

[51] P. J. Moreno, C. F. Joerg, J.-M. Van Thong, and O. Glickman,
“A Recursive Algorithm for The Forced Alignment of Very
Long Audio Segments,” in Proc. ICSLP, 1998.

[52] J. Guo, G. Tiwari, J. Droppo, et al., “Efficient Minimum
Word Error Rate Training of RNN-Transducer for End-to-End
Speech Recognition,” in Proc. Interspeech, 2020.

[53] C. Weng, C. Yu, J. Cui, et al., “Minimum Bayes Risk Training
of RNN-Transducer for End-to-End Speech Recognition,” in
Proc. Interspeech, 2020.

[54] B. Li, A. Gulati, J. Yu, et al., “A Better and Faster End-to-End
Model for Streaming ASR,” in Proc. ICASSP, 2021.

[55] S. Chang, R. Prabhavalkar, Y. He, et al., “Joint Endpointing
and Decoding with End-to-End Models,” in Proc. ICASSP,
2019.

[56] Z. Chen, Y. Zhang, A. Rosenberg, B. Ramabhadran, P. Moreno,
and G. Wang, “Tts4pretrain 2.0: Advancing the use of Text and
Speech in ASR Pretraining with Consistency and Contrastive
Losses,” in Proc. ICASSP, 2022.

[57] H. Liao, E. McDermott, and A. Senior, “Large Scale Deep
Neural Network Acoustic Modeling with Semi-supervised
Training Data for YouTube Video Transcription,” in Proc.
ASRU, 2013.

[58] D. Hwang, K. Sim, Z. Huo, and T. Strohman, “Pseudo Label
Is Better Than Human Label,” in Proc. ICASSP, 2022.

[59] C. Kim, A. Misra, K. Chin, et al., “Generation of Large-Scale
Simulated Utterances in Virtual Rooms to Train Deep-Neural
Networks for Far-Field Speech Recognition in Google Home,”
in Proc. Interspeech, 2017.

[60] D. Yu, M. L. Seltzer, J. Li, et al., “Feature learning in deep
neural networks-studies on speech recognition tasks,” in Proc.
ICLR, 2013.

[61] J. Li, D. Yu, J. Huang, and Y. Gong, “Improving Wideband
Speech Rcognition using Mixed-bandwidth Training Data in
CD-DNN-HMM,” in Proc. SLT, 2012.

[62] D. S. Park, W. Chan, Y. Zhang, et al., “SpecAugment: A Sim-
ple Data Augmentation Method for Automatic Speech Recog-
nition,” in Proc. Interspeech, 2019.

[63] C. Allauzen and M. Riley, “Bayesian Language Model Inter-
polation for Mobile Speech Input,” in Proc. Interspeech, 2011.

[64] F. Biadsy, K. Hall, P. J. Moreno, and B. Roark, “Backoff In-
spired Features for Maximum Entropy Language Models,” in
Proc. Interspeech, 2014.

[65] C. Peyser, S. Mavandadi, T. N. Sainath, et al., “Improving Tail
Performance of a Deliberation E2E ASR Model Using a Large
Text Corpus,” in Proc. Interspeech, 2020.

[66] X. Gonzalvo, S. Tazari, C. Chan, et al., “Recent Advances in
Google Real-time HMM-driven Unit Selection Synthesizer,”
in Proc. Interspeech, 2016.

[67] A. Gulati, J. Qin, C.-C. Chiu, et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in Proc. In-
terspeech, 2020.

[68] M. Joshi, D. Chen, Y. Liu, et al., “SpanBERT: Improving Pre-
training by Representing and Predicting Spans,” Transactions
of the Association for Computational Linguistics, vol. 8, 2020.

[69] R. Botros and T. N. Sainath, “Tied & Reduced RNN-T De-
coder,” in Proc. Interspeech, 2021.

[70] J. Yu, C.-C. Chiu, B. Li, et al., “FastEmit: Low-latency Stream-
ing ASR with Sequence-level Emission Regularization,” in
Proc. ICASSP, 2021.

[71] A. Bruguier, R. Prabhavalkar, G. Pundak, and T. N. Sainath,
“Phoebe: Pronunciation-aware Contextualization for End-to-
end Speech Recognition,” in Proc. ICASSP, 2019.

	1 Introduction
	2 Related Work
	3 JOIST: Improving E2E ASR with Unpaired Text
	3.1 Loss Computation
	3.2 Duration Modeling to Up-Sample Text Representations
	3.3 MWER
	3.4 Streaming Metrics
	3.5 Novelty of Proposed Method

	4 Experiments
	4.1 Training Sets
	4.2 Evaluation Sets
	4.3 Modeling Architecture

	5 Results
	5.1 Full-Context Models
	5.2 Streaming Models
	5.3 Comparison to Neural LM
	5.4 Final Best System: Phoneme JOIST
	5.4.1 Quality: MWER Training
	5.4.2 Streaming Metrics
	5.4.3 Comparison on Logs Data

	6 Acknowledgements
	7 References

