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ABSTRACT

We apply transfer learning to the task of phoneme segmenta-
tion and demonstrate the utility of representations learned in
self-supervised pre-training for the task. Our model extends
transformer-style encoders with strategically placed convolu-
tions that manipulate features learned in pre-training. Using
the TIMIT and Buckeye corpora we train and test the model
in the supervised and unsupervised settings. The latter case is
accomplished by furnishing a noisy label-set with the predic-
tions of a separate model, it having been trained in an unsu-
pervised fashion. Results indicate our model eclipses previ-
ous state-of-the-art performance in both settings and on both
datasets. Finally, following observations during published
code review and attempts to reproduce past segmentation re-
sults, we find a need to disambiguate the definition and im-
plementation of widely-used evaluation metrics. We resolve
this ambiguity by delineating two distinct evaluation schemes
and describing their nuances. We provide a publicly available
implementation of our work on Github 1.

Index Terms— phonetic boundary detection, speech seg-
mentation, self-supervised pre-training, transfer learning

1. INTRODUCTION

Phoneme boundary detection involves labeling the temporal
boundaries between discrete phonemic units in a speech sig-
nal. Previously, phoneme segmentation has been studied and
benchmarked in the supervised [1, 2, 3, 4] and unsupervised
settings [5, 6]. In the former case, models are allowed to
leverage a ground truth reference segmentation - a vector of
phoneme onset, offset times - during training. In the latter
case, the model only sees the input speech signal and is thus
tasked with producing a segmentation by relying on the statis-
tics of the underlying data alone. A third setting, known as
forced-alignment or text-dependent phoneme segmentation,
extends the supervised case by adding a temporally ordered
list of phonetic identities to the model input. Conditioning on
categorical phonetic identity means that model performance
in the forced alignment setting typically supersedes text-
independent supervised phoneme segmentation, which super-

1https://github.com/lstrgar/self-supervised-phone-segmentation
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Fig. 1. Example spectrogram with ground truth and su-
pervised model predicted boundaries.

sedes unsupervised predictions. In this paper, we focus on
and report results for the unsupervised and text-independent
supervised cases.

Self-supervised learning is a subclass of unsupervised
learning in which training targets are derived from the input
data itself. Recently, the speech processing field has bene-
fited from the discovery and refinement of self-supervised
strategies. Such heuristic strategies are often employed in
a so-called model pre-training phase, and latter pre-trained
models are fine-tuned or transfer learning is applied on spe-
cific downstream tasks. Numerous speech processing tasks
have achieved new state-of-the-art (SotA) performances via
application of fine-tuning and transfer learning to the infor-
mation rich representations learned using self-supervised ob-
jectives. These include automatic speech recognition (ASR)
[7, 8, 9], emotion recognition [10, 11], and speaker verifica-
tion [11, 12], among others.

Inspired by the broad successes of self-supervised pre-
training in speech processing, in this paper we explore its util-
ity for phoneme segmentation. Specifically, we utilize pre-
trained model checkpoints for two well-known and widely
used self-supervised speech models, wav2vec2.0 [7] and Hu-
BERT [8], and apply different strategies to refine these mod-
els’ frame-wise representations for phoneme segmentation. In
one case, we freeze the model’s weights and extend its ar-
chitecture with strategically placed, trainable, convolutional
probe layers to manipulate and synthesize hierarchical fea-
tures to output a binary predictor for each frame correspond-
ing to the presence of a boundary. In a separate case, we
append a simple projection layer to the pre-trained model’s
encoder and train the projection layer as well as all model
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Fig. 2. Readout model architecture schematic. A pre-trained model extracts hierarchical features from the raw waveform.
Features are processed by a series of convolutional networks and probability scores are computed. Finally, binary cross entropy
loss is evaluated using model predictions and either ground truth labels or noisy labels estimated in an unsupervised manner.

weights end-to-end.
We evaluate and report results using the TIMIT [13] and

Buckeye [14] speech corpora and find our model eclipses pre-
vious state-of-the-art performance on both datasets in the su-
pervised and unsupervised settings. Unsupervised training is
accomplished by furnishing a noisy label-set with the predic-
tions of a separate model [5] that was trained in an unsuper-
vised fashion using contrastive predictive coding [15] on a
next frame prediction task. In supervised training, we also
explore the label efficiency of our approach by sweeping over
the amount of labeled training data used find that the model
surpasses previous SotA performance with as little as 10% of
the training set. With this work we demonstrate a success-
ful application of self-supervised pre-training to the phoneme
boundary detection task and offer a new SotA benchmark in
the unsupervised and text-independent supervised settings. In
addition, in later sections we describe ambiguity and incon-
sistencies in the commonly used evaluation protocol and offer
a resolution in the form of two distinct evaluation schemes.

2. RELATED WORK

2.1. Phoneme Boundary Detection

Phoneme boundary detection has been explored using a vari-
ety of different model types and under various levels of su-
pervision. In the text-independent, supervised setting, recent
work revolves around the usage of recurrent neural network
models. RNNs have been used as binary predictors [2] and

feature learners for a subsequent structured prediction task
[1]. In text-dependent phoneme segmentation, probabilistic
models such as HMMs have been applied [3], and recently
a multi-task learning framework using pre-trained model fea-
tures was proposed [4]. In the unsupervised setting, signal
processing based approaches were initially dominant [16, 17],
but recent research has focused on learning-based methods.
[18] proposed a nonparametric Bayesian approach to unsu-
pervised phonetic segmentation and clustering, and more re-
cently the noise contrastive estimation principle has been ap-
plied to optimize the similarity of adjacent frames while mak-
ing distant frames dissimilar [5]. Other work has applied con-
trastive learning at multiple levels by jointly optimizing both
phoneme and word segmentation models [6].

2.2. Self-Supervised Pre-Training

Self-supervised pre-training has seen great success in numer-
ous speech processing tasks. Borrowing ideas from research
in natural language processing and computer vision, self-
supervised models such as wav2vec2.0 [7] and HuBERT [8]
are trained to reconstruct masked input from unmasked rep-
resentations. The resulting internal representations obtained
by these and other training objectives have been successfully
applied to downstream tasks including ASR [7, 8, 9], emotion
recognition [10, 11], and speaker verification [11, 12], among
others.



Table 1. Results obtained in the fully supervised setting. * Indicates application of the strict evaluation framework and ºº
denotes author reported scores. The NA placeholder is used where results are not available. Bolded values indicate highest
score for the specific metric and dataset.

Data Model Precision Precision* Recall Recall* F1 F1* R-Value R-Value*

Buckeye

Lin et al. [4] ºº 88.49 NA 90.33 NA 89.40 NA 90.90 NA
Kreuk et al. [1] ºº 85.40 NA 89.12 NA 87.23 NA 88.76 NA
W2V2 finetune 94.01 90.56 93.08 90.28 93.54 90.42 94.41 91.81

HuBERT finetune 93.83 89.81 93.11 90.28 93.47 90.05 94.37 91.51
W2V2 readout 93.38 89.14 92.74 89.66 93.00 89.40 93.99 90.96

HuBERT readout 93.37 89.30 92.95 89.94 93.16 89.62 94.13 91.15

TIMIT

Lin et al. [4] ºº 93.42 NA 95.96 NA 94.67 NA 95.18 NA
Kreuk et al. [1] ºº 94.03 NA 90.46 NA 92.22 NA 92.79 NA
Kreuk et al. [1] 92.94 92.14 92.31 89.26 92.63 90.68 93.66 91.71
W2V2 finetune 96.90 94.35 96.30 93.91 96.60 94.13 97.04 94.96

HuBERT finetune 96.93 94.31 96.09 93.68 96.51 94.00 96.92 94.83
W2V2 readout 96.67 93.75 95.56 92.65 96.11 93.20 96.55 94.10

HuBERT readout 96.50 93.23 95.93 93.47 96.21 93.35 96.71 94.33

3. PROBLEM STATEMENT

In phoneme segmentation the input is a raw speech wave-
form x ∈ X represented as x = (x0, x1, ..., xN ) where each
xi is a single floating point value representing relative pres-
sure in the transmission medium. Typically, x will be pre-
processed and temporally down-sampled by some transfor-
mation fx : X → Z to produce fx(x) = z = (z1, z2, ..., zT )
where T << N and zi ∈ Rd. Here, z ∈ RTxd can be thought
of as representing a series of acoustic feature frames and T
now encodes the temporal resolution we desire to make pre-
dictions with.

Each input speech sample is paired with a label sequence
of time stamps y = (y1, y2, ..., yK) where each yi indicates
the presence of one boundary and is represented as a single
floating point value encoding the time units relative to the be-
ginning of the utterance. Similar to the down-sampling of x,
one might choose to bin y such that each element is converted
to units of acoustic feature frames. We call this representation
ȳ = (ȳ1, ..., ȳK) and note that K, N , and T may vary across
input / label pairs.

Automatic phoneme segmentation thus asks for a predic-
tion, ŷ = (ŷ1, ŷ2, ..., ŷK̂) that closely matches the ground
truth label ȳ. Classically, the closeness of a reference and
predicted segmentation is evaluated with the precision, recall,
F1, and R-Value metrics [19]. Section 5 describes these quan-
tities as well as their nuances in detail.

4. MODEL DESCRIPTION

Inspired by the success of self-supervised learning in numer-
ous speech processing tasks we adopt pre-trained wav2vec2.0
and HuBERT model checkpoints to compose the backbone of
a frame-wise binary classifier. Both pre-trained models share
a similar architecture. For our purposes we consider only the
encoder, which we denote by the function composition g ◦ f .
Elaborating on the component functions of this composition,
f : X → Z is commonly referred to as the convolutional
feature extractor, which processes raw waveform input and
outputs a time series of latent speech representations. Thus, f
acts like the previously defined fx; however, f is not strictly a
pre-processing step since it is learned during end-to-end train-
ing of wav2vec2.0 and HuBERT. Meanwhile, g : Z → C is
known as the context network, which applies learned attention
masks to synthesize a context-aware representation ci ∈ C
from each zi ∈ Z . g is itself a compositional function built
from a cascade of n transformer self-attention blocks. Thus,
we can also write g = gn ◦ gn−1 ◦ ...◦ g1. Note that functions
f and g may be initialized by either wav2vec2.0 or HuBERT.

We develop two separate classification model formula-
tions built on-top of the pre-trained network backbone. The
first case, which we call fine-tune mode, appends a single
linear projection layer, hft, to the output of the pre-trained
model. As the name suggests, in this setting, the entire pre-
trained model and added projection receive gradient updates,
and the model can be formalized as the function composition
f ◦ g ◦ hft.

The second case, called readout mode, is depicted in
Figure 2. Here, we freeze the pre-trained model and apply
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Fig. 3. Supervised model with wav2vec2.0 backbone in read-
out mode trained from scratch on incrementally larger frac-
tions of labeled data. Vertical axis shows testing set R-Value
performance.

learned, layer-specific convolutions, hc,1, hc,2, ..., hc,n, to
feature representations extracted from each gi. The outputs
are then summed and passed through a final series of convo-
lutions and perceptron layers, denoted hro. Empirically, we
discovered that applying a learned weight parameter to each
layer’s processed features before computing the summation
improved performance; however, we omit these terms in the
following expression for simplicity. Denoting the outputs
of each gi as ci, the readout model can be formalized as
hro(

∑
i h

c,i(ci)). .

Both models output a series of frame-wise binary labels,
ŷb, where a 1 is interpreted as the occurrence of a boundary.
Given a training set of input utterances S = {xi, yib}mi=1, loss
is computed and models are updated according to the binary
cross entropy (BCE) objective function in Equation 1. Here,
the term w∗ is a strictly positive weight value assigned to the
loss associated with frames where the reference ground truth
indicates the presence of a boundary.

LBCE =

m∑
i=0

∑
j∈yi

b

w∗yib,j log(ŷb,j) + (1− yib,j) log(1− ŷb,j)

(1)

Optimization of the above objective is explored in the su-
pervised and unsupervised settings. In the former case, we
rely on the time-aligned transcriptions that come as part of
the TIMIT and Buckeye corpora to construct supervised tar-
gets. In the latter case, we perform inference over the TIMIT
and Buckeye training sets using the unsupervised model pro-
vided by Kreuk et al. [5]. These predicted labels then serve
as the supervisory signal used during training with BCE loss.

5. EVALUATION

Previous work has articulated the challenges of conducting
representative evaluations of phoneme segmentation results
[19]. These issues are further confounded by the wide range
of (prediction to label) temporal tolerance levels found in the
literature for true positives identification. Here, we consider
a 20 millisecond tolerance window on either side of a ground
truth label for true positive calling, which is consistent with
recent work [1, 5, 6, 4].

We report our results in terms of precision, recall, F1, and
R-Value according to their definition in [19]. These metrics
and their interpretation are widely cited in the phoneme seg-
mentation task literature; however, based on a combination
of published code review and attempts to reproduce results
we believe there remains meaningful ambiguity in the calcu-
lation of precision, recall and their derivative quantities (e.g.,
F1 and R-Value). By elaborating on these definitions and their
implications below, we hope to align the community around
shared standards for reporting phoneme boundary detection
results.

When computing precision the primary source of ambi-
guity revolves around interpreting multiple positive boundary
predictions falling within the tolerance window of a ground
truth boundary. For recall, the parallel situation arises where
a single predicted positive boundary falls within the tolerance
window of more than one ground truth boundary. See Fig-
ure 4 for a visual illustration of the ambiguous situations aris-
ing during evaluation.

Ground Truth Annotation

Model Predictions

Fig. 4. Illustration of ambiguities during phoneme segmen-
tation evaluation. Vertical black stripes indicate ground truth
(top) and predicted (bottom) boundaries. The light gray re-
gions correspond to ground truth boundary tolerance win-
dows and the dark gray region shows where two tolerance
windows overlap. Predicted and ground truth boundaries 1
match. Ground truth boundaries 2, 3 both match predicted
boundary 2 while predicted boundaries 3 and 4 both match
and ground truth 4.

Without loss of generality, consider a boundary predic-
tor operating at 50Hz (i.e. predictions correspond to the oc-
currence of a boundary in a 20 millisecond window). While
computing the precision of this model’s predictions with a 20
millisecond tolerance window, one could encounter an iso-
lated ground truth boundary at frame p and model boundary



Table 2. Results obtained in the unsupervised setting. A noisy label-set was furnished using publicly available checkpoints
from an unsupervised segmentation model [5].

Data Model Precision Precision* Recall Recall* F1 F1* R-Value R-Value*

Buckeye

Bhati et al. [6] ºº 76.53 NA 78.72 NA 77.61 NA 80.72 NA
Kreuk et al. [5] ºº 75.78 NA 76.86 NA 76.31 NA 79.69 NA
Kreuk et al. [5] 77.17 72.21 79.71 75.55 78.42 73.85 81.39 77.28
W2V2 finetune 82.15 75.56 85.13 79.47 83.61 77.47 85.81 80.33

HuBERT finetune 83.09 76.62 84.47 78.75 83.77 77.67 86.11 80.79
W2V2 readout 84.24 77.92 82.88 77.41 83.55 77.67 85.92 80.95

HuBERT readout 83.35 75.29 84.68 79.37 84.01 77.28 86.31 80.13

TIMIT

Bhati et al. [6] ºº 84.63 NA 86.04 NA 85.33 NA 87.44 NA
Kreuk et al. [5] ºº 83.89 NA 83.55 NA 83.71 NA 86.02 NA
Kreuk et al. [5] 85.27 81.42 83.48 76.53 84.36 78.90 86.57 81.71
W2V2 finetune 88.93 82.16 88.60 80.83 88.76 81.49 90.40 84.18

HuBERT finetune 89.05 82.07 88.44 80.70 88.75 81.38 90.37 84.08
W2V2 readout 90.69 84.92 86.78 78.52 88.69 81.59 89.90 83.69

HuBERT readout 90.98 82.44 88.48 81.18 89.71 81.81 90.98 84.45

predictions at p − 1, p, p + 1. Different approaches to this
calculation could result in a three-fold difference in perfor-
mance, and the situation would be exacerbated by an increase
in the predictor’s frame rate. In practice, the statistics of En-
glish language phoneme duration and presentation render a
three-fold performance difference highly unlikely; however,
others have reported differences of up to 5% [20], and our re-
sults consistently show deviations of 3-4% in the supervised
setting and 5-7% in the unsupervised setting.

We then wish to delineate a strict and lenient evaluation
scheme for phoneme boundary detection where the strict
scheme prohibits double counting and the lenient scheme
allows it. Specifically, while computing the hit rate [19] of
an automated phoneme segmenter, in the strict scheme once
a ground truth boundary is matched by a predicted boundary
the ground truth is removed from consideration for match-
ing additional model predictions. On the other hand, in the
lenient scheme the same ground truth boundary may match
multiple predicted boundaries so long as they fall within the
tolerance window. Further, in the lenient scheme, the hit rate
used for computing precision and that for recall may differ
since more than one predicted boundary is allowed to match
a the same ground truth and visa versa.

We denote results following the strict scheme with a * and
then define F1* and R-Value* as those metrics computed with
their strict counterparts P* (precision*) and R* (recall*). Our
code reviews and efforts to reproduce past results indicate that
previous SotA methods use the lenient scheme. For parity,
our results tables below include both strict and lenient scores
for our models. In some cases where we were able to re-
produce previous published results we also add strict scores.

In other cases, it was not possible to verify the exact evalua-
tion framework used by some authors. However, all these pa-
pers explicitly describe sharing evaluation methodology with
the aforementioned previous SotA, against which they bench-
mark their model performance. Accordingly, we assume they
also evaluate performance using the lenient framework.

6. EXPERIMENTS

6.1. Datasets

We used the TIMIT [13] and Buckeye [14] speech corpora
to train and evaluate the fine-tune and readout models. For
TIMIT, we used the standard train/test split and sampled 10%
of the training data for model validation. For Buckeye, we
followed previous work [1, 5, 2] in our training, validation,
and testing set construction. First, we split the corpus at the
speaker level, reserving 80%, 10%, 10% for training, vali-
dation, and testing, respectively. In addition, long recordings
were split during non-vocal noise and silence into shorter con-
tinuous speech segments such that each segment starts and
ends with no more than 20 milliseconds of non-speech.

6.2. Experimental Setup

Experiments conducted with HuBERT used the base architec-
ture and those with wav2vec2.0 used the small architecture.
Both model checkpoints were pre-trained on Librispeech [21]
and collected from Fairseq [22]. We explored the effective-
ness of larger model architectures (e.g. wav2vec2.0 large,
HuBERT large/x-large) but found they offered no boost on fi-



nal performance metrics. For our unsupervised experiments,
we used model checkpoints made available with the code ac-
companying [5] to bootstrap labels for TIMIT and Buckeye.

All models were trained on an NVIDIA Quadro RTX
8000 with a batch size of 16 for 50 epochs. The Adam op-
timizer was used with a learning rate of 1e-3 and 1e-4 while
training in readout and fine-tune mode, respectively. Models
were regularly evaluated during training using the validation
set’s R-Value* and the best performing model was saved for
testing.

In readout mode the layer specific convolutions, hc,i were
defined with a kernel size of 9, stride of 1, and 768 input and
channels. The output architecture hro is a depth five con-
volution stack with a shared kernel size of 3 and stride of 1
followed by a linear projection. As we mentioned previously,
in this setting we also added a parameter to learn a weighted
sum of the layer specific features before application of hro.

Throughout our experiments we explored various values
of w∗ - the loss weight applied to frames labeled as boundary
positive. In all supervised experiments, w∗ was ultimately
set to 1 for the entire duration of model training. We made
anecdotal observations that setting 1 < w∗ < 2.5 tended to
speed up model convergence; however, w∗ had to be subse-
quently turned down and training continued to obtain the best
performance metrics. In the unsupervised setting, we found
that, relative to ground truth labels, the noisy labels scored
substantially lower in recall than precision. Acknowledging
the need then to incentive positive predictions, we swept val-
ues of w∗ and obtained optimal validation performance using
w∗ = 1.4.

6.3. Results

In Table 1 we report results for our models in the fully su-
pervised setting. We also include reported scores from Lin
et al. [4], Kreuk et al. [1], which stand as previous bench-
mark results in text-dependent and text-independent phoneme
segmentation, respectively. Another result we include is our
attempt at reproducing Kreuk et al.’s [1] results for TIMIT -
here we are able to share both the harsh and lenient evalu-
ations. We were unable to reproduce comparable scores for
Buckeye using the model from [1]. Altogether, results indi-
cate that the best of our four models - composed through a
selection of a backbone pre-trained network and fine-tune or
readout mode - eclipse previous SotA in every metric cate-
gory for both TIMIT and Buckeye. With few exceptions, all
four of our models outpace previous SotA, and we empha-
size that our top performing model, which was trained in the
text-independent setting, surpasses the performance of SotA
text-dependent [4].

Figure 3 highlights the small amount of labeled training
data required to surpass previous SotA performance. Results
reported in this figure come from experiments with a readout
mode model trained with a wav2vec2.0 back-bone. For both

TIMIT and Buckeye we obtain R-Value SotA using only 10%
of the labeled data from the respective training sets.

Table 2 reports results for models in the unsupervised set-
ting along with other previous SotA results. As in the super-
vised case, our best performing model achieves a new SotA
result for both TIMIT and Buckeye in every metric category.
Notably, wherein the supervised setting a typical deviation be-
tween the lenient and harsh schemes is in the 2-3% range, in
the unsupervised setting we observe deviations of, in some
cases, more than 8%. As the Kreuk et al. [5] and Bhati
et al. [6] unsupervised models reported here perform infer-
ence through a peak-picking algorithm over a learned repre-
sentation, it is possible that over prediction near boundaries
stems from the difficulty of enforcing temporally precise tran-
sitions in the learned representation. Similarly, as our models
are trained using a noisy label-set boostrapped from [5], our
model is liable to the same failure modes.

During experiments with noisy (unsupervised) label-sets,
we explored the impact of multiple self-training loops to re-
fine the labels and improve final model test performance. Ul-
timately, we observed marginal gains that did not inspire a
deep exploration of how bootstrapped labels could be refined
in an unsupervised fashion. In fact, in fine-tune mode, per-
formance declined after multiple self-training loops. Inciden-
tally, throughout our experiments in the unsupervised setting,
readout models tended to perform better than their fully fine-
tuned counterparts. Relevant metrics observed during train-
ing indicated that the more expressive fine-tuned models were
much more liable to over-fit label noise than their readout
mode counterparts.

7. DISCUSSION

Here we introduced a new model formulation based on
self-supervised pre-training and transfer learning to per-
form phoneme boundary detection in the supervised and
unsupervised settings. We empirically demonstrate that our
formulation sets a new SotA benchmark for both settings on
standard datasets used for the task - the TIMIT and Buckeye
speech corpora. Additionally, we bring to the community’s
attention a need for shared implementation strategies for key
evaluation metrics and define two evaluation frameworks that
can be used to alleviate future ambiguity.

We believe there are several promising directions for fu-
ture work. First, an exploration of regularization and self-
training strategies to improve noisy label-sets will likely push
unsupervised results further than we have been able to. Sec-
ond, in the supervised setting we obtained excellent perfor-
mance even with small amounts of training data. We are
optimistic then that low resource languages can benefit from
self-supervised pre-training for phoneme boundary detection.
Finally, our model formulation may be, with minimal modifi-
cations, well-suited to alternate speech segmentation tasks.
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