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ABSTRACT
In this work, we compare from-scratch sequence-level cross-
entropy (full-sum) training of Hidden Markov Model (HMM)
and Connectionist Temporal Classification (CTC) topologies
for automatic speech recognition (ASR). Besides accuracy,
we further analyze their capability for generating high-quality
time alignment between the speech signal and the transcrip-
tion, which can be crucial for many subsequent applications.
Moreover, we propose several methods to improve conver-
gence of from-scratch full-sum training by addressing the
alignment modeling issue. Systematic comparison is con-
ducted on both Switchboard and LibriSpeech corpora across
CTC, posterior HMM with and w/o transition probabili-
ties, and standard hybrid HMM. We also provide a detailed
analysis of both Viterbi forced-alignment and Baum-Welch
full-sum occupation probabilities.

Index Terms— ASR, HMM, CTC, sequence-level cross-
entropy, from-scratch full-sum

1. INTRODUCTION
The recent sequence-to-sequence (seq2seq) acoustic models
allow for from-scratch training within a unified optimiza-
tion framework for automatic speech recognition (ASR). The
common sequence-level cross-entropy training for both trans-
ducer based models with different label topologies [1, 2, 3],
and attention based encoder-decoder model [4] do not neces-
sarily require an initial alignment between the speech signal
features and the output labels. The simplest case among the
mentioned approaches is Connectionist Temporal Classifica-
tion (CTC). The presence of the blank in the CTC topology
gives more freedom to the alignment model which has less
convergence problems during full-sum training, demanding
at the same time less computation due to the independence
assumption at each time step. However, the peaky behav-
ior caused by the limited label emissions can also affect the
quality of the alignment, which can shift with respect to the
evidence in the input.

The typical training pipelines deployed for standard hy-
brid hidden Markov model deep neural network (HMM-
DNN) [5] on the other hand requires the bootstrapping of a

? Denotes equal contribution

separate context-dependent Gaussian Mixture Model (GMM).
The alignment taken from the GMM system is generally
known to be a good starting point for subsequent ASR tasks
or data segmentation, despite its low ASR accuracy. The
hybrid model is generally trained with frame-wise cross-
entropy (Fw-CE) using GMM alignment with a multi-stage
complex pipeline consisting of various training criteria.

Previous work on single stage from-scratch systems con-
sidered Lattice-Free Maximum Mutual Information crite-
rion (LF-MMI) [6, 7] and its further extension [8], using
both CTC and HMM. However, the training can require high
computations with still not fully competitive ASR results.
Another possible from-scratch training solution is to use the
maximum likelihood (ML) criterion, which is shown to have
convergence problems that require complex training sched-
ules and even the inclusion of additional losses [9]. More-
over, the quality of the Viterbi alignment taken from such
from-scratch ML trained HMM based model even with an
extended multi-task loss is still shown to lead to an inferior
performance compared to a GMM based alignment, when
used for further Fw-CE training in hybrid approach [10].

In this work, we compare the CTC and HMM topologies
in the context of from-scratch full-sum training. In addition
to the standard hybrid HMM, we propose a discriminative
HMM modeling as a more direct contrast to CTC models.
We then address the convergence issue from point of view
of difficulty of alignment modeling, and propose several ap-
proaches in that regard. Together with the common subsam-
pling, we propose both minimum label duration and prior-
knowledge-based probability approximation. Experiments on
both Switchboard and LibriSpeech copora show that these ap-
proaches not only benefit HMM models, but also improve
CTC models. Besides ASR accuracy, we also analyze their
capability of generating good alignment. With all these, we
hope to initiate the path towards a simple from-scratch train-
able system producing both good word error rate and align-
ment.

2. MODELS
Let X and W denote the acoustic feature sequence and corre-
sponding word sequence of a speech utterance, respectively.
Let hT1 = E(X) denote the common encoder output which
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iy w ah zsh
ɛ sh ɛ iy ɛ w ɛ ah ɛ zɛ

ɛ ɛ ɛ ɛ ɛ
ah z ɛ

ɛ
iysh w

(a)

iy w ah zsh
<sil> w<sil>

<sil>

ah z <sil>

<sil>

iysh w

(b)

Fig. 1: FSA example of (a) CTC and (b) HMM topologies for
the phoneme sequence of the utterance “she was”

transforms X into high-level representations with optional
subsampling. In the following, we consider the two most com-
mon label topologies for time-synchronous 0-order models,
namely CTC and HMM, in the context of from-scratch full-
sum training. With a major focus on phonetic-based acoustic
modeling (AM), we provide detailed formulations in terms of
models, training and decoding. We denote aS1 (usually T >
S) as the phonetic output label sequence of W and omit pro-
nunciation variants for simplicity.

2.1. CTC
The standard CTC topology [1] introduces blank ε-augmented
alignment sequences yT1 to align aS1 to the T frames. An ex-
ample of possible alignments in the form of finite state au-
tomaton (FSA) is shown in Fig. 1. Each as has to occur at
least once in yT1 and optional ε can occur at any label segment
boundaries. For label repetitions in aS1 , at least one ε has to
occur between the two labels in yT1 . This allows a unique
mapping of yT1 to aS1 by removing all label loops and ε. Thus,
the posterior of the output label sequence can be written as:

P (aS1 |X) =
∑
yT1 :aS1

P (yT1 |hT1 ) =
∑
yT1 :aS1

T∏
t=1

P (yt|ht) (1)

Based on Eq. (1), the full-sum training for CTC models can
be carried out from-scratch with the following loss:

L = − log P (aS1 |X) (2)

The final best word sequence Ŵ can be obtained via Viterbi
decoding as:

X → Ŵ = argmax
W

[
PλLM(W ) max

yT1 :aS1 :W

T∏
t=1

P (yt|ht)
Pαprior(yt)

]
(3)

Here an optional Pprior with scale α can be included, which
can be obtained by marginalizing the framewise posterior on
the training data. For α = 0, this corresponds to a simple
log-linear combination of the AM and language model (LM)
with scale λ.

2.2. HMM
In this work, we mainly consider the HMM-0-1 topology,
where only forward and loop transitions are allowed. As
shown by the FSA in Fig. 1, the alignment sequence in this
case contains only as with optional loops, while optional si-
lence is also introduced at word boundaries. To be consistent

sh iy iysh
ɛ iyɛ

ɛ
iysh

(a)

sh iy iysh

<sil> iysh

(b)

Fig. 2: Modified FSA of (a) CTC and (b) HMM topologies
with MinDur (k=2) for the first word “she” in Fig. 1

with standard HMM notations, here we use the state sequence
sT1 to represent alignments for aS1 as yt = ast , which is also
necessary to distinguish label repetitions in aS1 . Note that the-
oretically there is no deterministic bijective mapping between
the HMM and CTC topologies for any alignments.

We study the HMM topology with both discriminative and
generative modeling approaches. We adopt the Markov as-
sumption for state dependency and further simplify that with
a pooled transition T (st, st−1), which only has 4 values for
loop/forward of speech/silence.
2.2.1. Posterior HMM
We call the discriminative approach as posterior HMM (P-
HMM), where the output sequence posterior is defined as:

P (aS1 |X) =
∑
sT1

P (aS1 , s
T
1 |hT1 )

=
∑
sT1 :aS1

T∏
t=1

P (ast , st|st−1, ht)

=
∑
sT1 :aS1

T∏
t=1

P (ast |stt−1, ht)P (st|st−1, ht)

=
∑
sT1 :aS1

T∏
t=1

P (ast |ht)T (st, st−1) (4)

The full-sum training of P-HMM can then be carried out from
scratch based on Eq. (2) and Eq. (4), where we can further ap-
ply exponential scales on the two probability terms in Eq. (4).

Similar as Eq. (3), the final best word sequence Ŵ can be
obtained via Viterbi decoding as:

X → Ŵ = (5)

argmax
W

[
PλLM(W ) max

sT1 :aS1 :W

T∏
t=1

P (ast |ht)
Pαprior(ast)

T β(st, st−1)
]

where the optional Pprior can still be applied.
To explore the strong similarity with CTC models, we fur-

ther simplify the P-HMM with a fixed T (st, st−1) = 0.5 for
all types of transitions. This allows to directly drop the term
T (st, st−1) in both training and decoding, which yields the
correlation between Eq. (1) vs. Eq. (4) and Eq. (3) vs. Eq. (5).
We call this simplified version as P-HMM-S.



2.2.2. Hybrid HMM
The generative modeling approach is the classical hybrid
HMM (H-HMM), which defines

P (X|aS1 ) = P (hT1 |aS1 ) =
∑
sT1

P (hT1 , s
T
1 |aS1 )

=
∑
sT1 :aS1

T∏
t=1

P (ht|ast)P (st|st−1)

=
∑
sT1 :aS1

T∏
t=1

P (ast |ht)
Pprior(ast)

T (st, st−1) (6)

The from-scratch full-sum training of H-HMM can then be
carried out by minimizing the loss

L = − log P (X|aS1 ) (7)

where we can further apply exponential scales on the three
probability terms in Eq. (6). Despite the tuning effort, we find
that an optimal scaling is essential for both convergence and
final best performance.

The decoding of the best word sequence using H-HMM is
the same as Eq. (5). Note that the major difference to P-HMM
is the inclusion of Pprior in training, which effectively results
from the discriminative and generative modeling nature.

2.3. Label Units
Following [11], we apply end-of-word (EOW) augmentation
to the phoneme sets by default. For the granularity of aS1 , we
consider both single-state and three-states structure for each
phoneme. The latter is commonly applied in the classical hy-
brid HMM approach to account for the start, middle, and end
of a phoneme.

3. CONVERGENCE AND ALIGNMENT MODELING
The full-sum training with either CTC or HMM topology is
effectively an Expectation Maximization (EM)-style align-
ment modeling problem. The general procedure relies on
the calculation of the occupation probability qt, known as
soft-alignment, at each EM iteration. The computation of the
soft-alignment can be done via the Baum-Welch forward-
backward algorithm. For a given input hT1 , and a label se-
quence aS1 , the quantity qt(as|hT1 , aS1 , θ) represents the prob-
ability mass of all alignment paths going through the state
s at time frame t, according to the parameters θ. In prac-
tice, the quantity qt is a normalized probability distribution
over the set of all labels at time frame t. With the maxi-
mum approximation, the label of aligned state in the best
path has probability one. The latter alignment is known as
hard-alignment or Viterbi forced alignment.

Ideally, the model in training should converge to more
prominent alignment paths and assign higher probabilities to
them. The difficulty of such alignment modeling can be af-
fected by the number of possible alignment paths, which is
correlated with the relation between T and S (usually T �

S). This is then directly related to the convergence issue
of neural network (NN) training (generally non-convex op-
timization), especially from scratch.

With blank allowed almost anywhere, the CTC topology
reveals an easy optimum for NN training to assign most prob-
ability masses to alignments with most blank frames. This al-
lows an easy convergence for CTC models, but also leads to
the common peaky behavior [12]. Thus, CTC models usu-
ally is not able to produce Viterbi alignment with high cor-
respondence to the actual speech signal, where the ambiguity
of blank even enlarges the difficulty [8]. To solve this, one
might need to force certain label loops and force blank to
cover silence only, which eventually forces the CTC topology
towards the HMM topology. On the other hand, the HMM
topology appears to be more restricted and thus, may result in
more difficulty in convergence [9]. Here we propose to solve
the convergence issue by reducing the difficulty of alignment
modeling:

• subsampling (SS) is widely applied in modern ASR sys-
tems to reduce computation and memory cost. By reduc-
ing T, subsampling effectively also reduce the number of
possible alignment paths and therefore, can largely sim-
plify alignment modeling for an easier convergence (ex-
treme case: T ≈ S).

• minimum duration (MinDur) of speech label forces each
as to occur at least k times in the alignment. This shares the
same spirit as subsampling to reduce the number of possi-
ble alignment paths and thus, can also ease the convergence
issue. In addition, it also forces the model to be less peaky,
which might lead to more reasonable alignment paths. The
minimum duration, as shown in Fig. 2, can be simply ap-
plied by modifying the FSA structure for full-sum training.

• probability approximation (P -approx) uses prior knowl-
edge to estimate those transition and prior probabilities in
P-HMM or H-HMM. These values are then kept fixed dur-
ing training to guide the model towards more reasonable
alignment paths. For our phonetic-based AM, we make use
of the fact that a phoneme is commonly of 80ms long on
average, which reveals the speech forward/loop probabili-
ties as T (st = st−1) = 7/8 under a 10ms-frame scenario.
Together with the transcription of acoustic training data, we
can also derive the prior probability of each phoneme. Then
by regarding the remaining audio length of each utterance
all to be silence, we can also obtain the silence prior prob-
ability. Finally, by regarding these silence length of each
utterance as equally from sentence begin/end, we obtain the
silence transition probability for T .

These methods can also be combined with minor adjustment.
We also apply subsampling and minimum duration to CTC
models for fair comparison.



Table 1: Performance of our models in terms of word er-
ror rates (WER) on Hub5’0{0,1} using a 4-gram language
model. We show the effect of using SS, MinDur and P -approx
(for T and/or Pprior). We consider single-state or three-states
phoneme with EOW. We denote × as not converged model.

Model States SS MinDur P-approx WER [%]
Hub5’00 Hub5’01

CTC

1

17.6 16.0
X 13.7 13.1

X 14.6 14.0

P-HMM-S
×

X 14.5 13.9
X 15.0 -

P-HMM
X 17.5

X X 14.3 13.9
3 X 16.2 -

H-HMM 1 X 24.0
3 X 13.9 13.5

Table 2: Similar experiments for the most promising models
presented in Table 1, trained with LibriSpeech 960 hours, and
evaluated on all four test and dev datasets.

WER [%]

Model States SS MinDur P-approx
dev test

clean other clean other

CTC

1

4.6 11.3 5.0 12.3
X 3.2 8.0 3.6 8.5

X 3.7 8.9 4.1 9.6

P-HMM-S
×

X 3.4 8.5 3.8 9.4
X 3.7 9.1 -P-HMM X X 3.5 8.9

H-HMM 3 X 3.6 9.1 3.9 9.5

4. EXPERIMENTS
4.1. Setting
We conduct our experiments on two separate corpora, 960
hours LibriSpeech (LBS) [13], and 300 hours Switchboard
(SWB) (LDC97S62) [14]. The evaluations are done on all
four dev and test sets for LBS, as well as on SWB and Call-
Home (CH) subsets of Hub5’00 (LDC2002S09) and the three
SWB subsets of Hub5’01 (LDC2002S13). We use the offi-
cial lexicon of LBS and SWB, where we unify the stressed
phonemes for the former [15]. EOW phonemes are applied in
all cases.

All acoustic models use a 6×512 BLSTM encoder and the
optional subsampling of factor 4 is done via 2 max-pooling
layers, in the middle. The input features to the encoder are
(LBS: 50 and SWB: 40) dimensional Gammatone Filterbank
features [21], extracted from 25 milliseconds (ms) window
with 10ms shift. We train our models for (LBS: 25 and SWB:
30) epochs, combining two learning rate (LR) scheduling.
An initial one-cycle learning rate (OCLR) policy [22] cov-
ers 90% of the total steps with linear increase up to peak
LR of around 3e−3 and consequent linear decrease, follow-
ing [15]. We continue the remaining steps with a constant
minimum LR of 1e−5. The Adam optimizer with Nesterov
momentum [23] is used. As regularization techniques we use
10% dropout [24] and L2 weight decay with a scale of 1e−4.
Training of P-HMM and H-HMM includes also the choice of

Table 3: Evaluation of our best model for SWB together
with some results from the literature. WE denote monophone
and diphone as {mono,di}P, and specify the number of states
({1,3}-S), with optional EOW augmentation.

Work Model Label From- Criterion LM WER [%]
Scratch SWB CH

∑
[16] H-HMM monoP-3S no Fw-CE 4-gram 9.8 18.4 14.1

[17] HMM diP-2S
yes

LF-MMI RNN 9.8 19.3 -[18] CTC 1P-1S
ML 4-gram

13.9 24.7
This EOW-1P-1S 8.8 18.5 13.7
Work H-HMM EOW-1P-3S 9.3 18.5 13.9

Table 4: Comparison of our models with other approaches in
the literature for LBS 960h, with evaluation on all dev and
test sets. We considered also triphone CART label (triP) and
wordpieces (WP).

Work Model Label From- Criterion LM WER [%]

Scratch dev test
clean other clean other

[19] H-HMM triP-3S no Fw-CE 4-gram 4.0 9.6 4.4 10.0

[8] HMM WP

yes

bLF-MMI 4-gram 3.9 9.7 -
[20] Wav2L 1P-1S

ML
KenLM - 7.2 -

This CTC EOW- 4-gram 3.2 8.0 3.6 8.5
Work P-HMM-S 1P-1S 3.4 8.5 3.8 9.4

the scales α, β, and γ for the state prior, transition and label
posterior, respectively. The optimal setting for minimum du-
ration is (LBS: 3, SWB: 4) and (LBS: 4, SWB: 5) for CTC
and HMM, respectively.

Training of our models rely on the combination of RASR
and RETURNN toolkits [25, 26], where the weighted FSA
for each utterance is constructed within the former, and the
NN training and the CUDA based BW computations are done
by the latter. The decoding makes use of time synchronous
lexical prefix trees search within RASR [27, 28]. By default
we use word-level 4-gram LM in all cases.

4.2. ASR Accuracy
We present our results for different modeling approaches in
Tables 1 and 2, and compare our best model with the literature
in Tables 3 and 4. For fair comparison, we consider only from-
scratch 0-order models from the literature, when possible.

We show that the application of either subsampling or
minimum duration to CTC improves the accuracy on both
corpora, with the former performing the best among all pro-
posed models. Similarly, we can see that P-HMM-S with
subsampling performs better than with minimum duration,
on both corpora. The HMM topology without any additional
method does not converge for any of the two copora. On
SWB task we observe that by adding the transition probabil-
ity the model converges to 17.5% WER on Hub5’00. This can
be improved by either switching to a three-states model or
by application of subsampling, reaching 16.2% and 14.3%,
respectively. The combination of subsampling and fixed tran-
sition helped the P-HMM also on LBS task, obtaining 3.5%
and 8.9% on dev-clean and dev-other, respectively. The H-
HMM with its 13.9% and 13.5% on the two Hub5 datasets,
show only relative 1% and 2% degradation compared to the



Table 5: The calculation of TSE on SWB train and Hub5’00
dev-sub with respect to a GMM monophone alignment for
our proposed models and a standard BLSTM hybrid HMM
trained with Fw-CE using a tandem based alignment.

Plot Model States SS MinDur P-approx TSE [ms]
train dev-sub

- H-HMM-CE 3 41 39
a.1

CTC
1

86 67
a.2 X 67 56
a.3 X 52 49
a.4

P-HMM-S
X 68 56

a.5 X 72 68
a.6 P-HMM 3 X 63 57
a.7 H-HMM X 106 89

Table 6: The effect on convergence during training of the
state prior, label posterior, and transition scales, α, γ, and β,
respectively. All experiments are for SWB300h and evaluated
on Hub5’00 with 4-gram LM.

Model Approach α γ β WER [%]

P-HMM
P -approx

N/A

1.0 1.0 ×
0.3 0.1 17.5

P -approx+SS 1.0 0.1 15.0
0.01 14.4

H-HMM P -approx

1.0 1.0 1.0 ×
0.5

0.3 0.1
20.3

0.3 17.5

0.1 15.1
0.3 14.7

CTC with subsampling. However, this gap becomes larger on
LBS task.

Our best from-scratch models with CTC and HMM
topologies on both SWB and LBS obtained competitive
results compared to other approaches in the literature. Our
H-HMM, as reported in Table 3, obtains slightly better per-
formance than the hybrid monophone trained with a tandem
alignment [29]. On LBS task included in Table 4, our P-
HMM-S outperforms a triphone hybrid trained with triphone
GMM alignment. CTC with subsampling again outperforms
all models.

4.3. Analysis
4.3.1. Alignment Plots
Whether a high performance ASR model is also able to pro-
vide a reasonable alignment with accurate time stamp for sub-
sequent ASR or segmentation tasks is still an open question.
Therefore, in addition to the evaluation of the ASR accuracy
of our models reported in Tables 1 and 2, we carried out fur-
ther investigations on the quality of the alignment taken from
our most promising models. For this purpose, we used SWB
300h train and a subset of Hub5’00, which we denote as dev-
sub, where all segments containing out-of-vocabulary words
with respect to the official SWB lexicon are excluded.

Since the occupation probability is computed using the
model parameters at each iteration, we can assume that a
soft-alignment with concentrated probability mass around the
most prominent path can indicate good model convergence.
This path eventually is very near or almost the same as what

we obtain by doing forced alignment. This supposition is
confirmed by the plots (a.n) and (b.n) with n ∈ {1, · · · , 7},
for Viterbi and BW alignments, respectively, as shown in
Fig. 3. Generally speaking, we believe that the evaluation
of the quality of an alignment is yet an undecidable issue.
There is no ground-truth and therefore no defined evalua-
tion metric for measuring the quality of an alignment. This
becomes even a more important problem when we compare
the alignment across different topologies. We chose as ref-
erence a GMM monophone alignment, and evaluated our
Viterbi alignments by considering the mean absolute distance
(in milliseconds) of word start and end-positions against the
reference alignment. Averaging such distance over all words
gives us the time-stamp-error (TSE) metric, as used in [8].
Note that silence is not counted for TSE, which also makes
the evaluation straightforward for CTC models. An overview
of different TSE values is shown in Table 5. Since the align-
ment learned by a BLSTM base AM can have further shifting
due to the NN encoder, we also considered the TSE of a
standard H-HMM trained on a tandem system alignment with
Fw-CE.

In Section 4.2, we showed that subsampling helps to
counteract the convergence problem. The effectiveness of this
method is confirmed also for the alignment quality, where
CTC with subsampling has a better TSE. This is the same
number of 10 ms frames on both train and dev-sub of our
P-HMM-S trained with subsampling. Even though the ASR
accuracy of CTC with minimum duration is worse than CTC
with subsampling, we can see that the former produces a
better alignment. An aspect that is valid also for the case of
P-HMM and H-HMM. When we switch to the HMM topol-
ogy, both minimum duration and the choice of the three-states
model introduce larger constraint on the phoneme duration,
due to the presence of the additional states in the FSA. This
causes a reduction in the silence duration in the alignment
which leads to a larger shift and therefore higher TSE. This
can be seen when one compares the plots a.4 and a.5 of
P-HMM-S with subsampling and minimum duration, respec-
tively. The duration of the silence is further reduced in the
alignment when we subtract the state prior during training,
as a result of a higher penalty on silence. This can be seen
by comparing the plot a.6 of P-HMM with the plot a.7 of
H-HMM. Similarly to the CTC case, we have a three-states
H-HMM that produces an alignment with higher TSE but has
a better ASR accuracy compared to a three-states P-HMM.
The high silence probability in the latter may force the time
synchronous beam search process to wrongly prune away
correct speech states. However, the absence of the silence in
the alignment taken from the H-HMM has the opposite effect
of causing a large shift with respect to the evidence in the
signal.
4.3.2. Effect of the Scales for HMM
The modeling approaches described in Section 2.2 make use
of optional scales during both training and decoding. This
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Fig. 3: The comparison against a reference GMM monophone alignment of (a) Viterbi and (b) BW paths for different HMM
and CTC topologies using our proposed methods for full-sum training from-scratch. The horizontal lines indicates the phoneme
boundaries.

means one can control the contribution of each factor via the
scales with consequent variations of ASR accuracy. We ob-
served that for a given set of fixed scales used during full-sum
training, the effect of tuning of the decoding scales on the
WER fluctuations are small, similarly to our common expe-
rience with Viterbi trained models. However, the choice of
scales for the full-sum from-scratch training of HMM topol-
ogy, as shown in Table 6, turns out to be of a significant im-
portance.

5. CONCLUSION
In this work, we performed an in-depth study on from-scratch
full-sum training for both CTC and HMM topologies, where
we proposed the posterior HMM as a middle ground between
standard CTC and hybrid HMM. We discussed different
methods to counteract the convergence issue during from-
scratch full-sum training. We showed that by addressing the
problem from point of view of difficulty of the alignment
modeling, we can improve not only the ASR accuracy, but
also the time-stamp-error of our models with respect to a

reference GMM alignment. Our proposed methods, along
with commonly used subsampling, include also novel use
of minimum duration and prior-knowledge-based probability
approximations. Our single-stage trained models show com-
petitive word error rates on Switchboard and LibriSpeech
tasks compared to other approaches in the literature. For both
topologies, we also showed that higher ASR accuracy does
not always lead to a better alignment quality. We foresee
the investigation of a modeling approach that fulfills both
requirements as the main future direction of our work.
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does CTC result in Peaky Behavior?,” May 2021,
arXiv:2105.14849.

[13] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “LibriSpeech: An asr corpus based
on public domain audio books,” in Proc. of IEEE In-
tern. Conf. on Acoustics, Speech and Signal Process.
(ICASSP), 2015.

[14] John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel, “SWITCHBOARD: Telephone Speech Corpus
for Research and Development,” in Proc. of IEEE In-
tern. Conf. on Acoustics, Speech and Signal Process.
(ICASSP), 1992.

[15] Wei Zhou, Wilfried Michel, Ralf Schlüter, and Her-
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