
SVLDL: IMPROVED SPEAKER AGE ESTIMATION USING SELECTIVE VARIANCE LABEL
DISTRIBUTION LEARNING

Zuheng Kang, Jianzong Wang*, Junqing Peng, Jing Xiao

Ping An Technology (Shenzhen) Co., Ltd.

ABSTRACT
Estimating age from a single speech is a classic and chal-
lenging topic. Although Label Distribution Learning (LDL)
can represent adjacent indistinguishable ages well, the uncer-
tainty of the age estimate for each utterance varies from person
to person, i.e., the variance of the age distribution is differ-
ent. To address this issue, we propose selective variance label
distribution learning (SVLDL) method to adapt the variance
of different age distributions. Furthermore, the model uses
WavLM as the speech feature extractor and adds the auxiliary
task of gender recognition to further improve the performance.
Two tricks are applied on the loss function to enhance the
robustness of the age estimation and improve the quality of the
fitted age distribution. Extensive experiments show that the
model achieves state-of-the-art performance on all aspects of
the NIST SRE08-10 and a real-world datasets.

Index Terms— speaker age estimation, label distribution
learning, multi-task learning, gender recognition

1. INTRODUCTION

Speech is the sound produced by the accurate coordinated
movement of multiple organs in the human body. Hence, the
acoustic characteristics of speech can transmit information
about the physical characteristics of the speaker. The rapid
development of new speech applications requires techniques
capable of estimating information on various biological at-
tributes of such speakers. Recently, deep-learning-based ap-
proaches show great performance in extracting hidden speech
information, including facial expression [1] and emotion [2],
and age [3], etc. If such speech features can be used to auto-
matically estimate a speaker’s age, it could be widely used for
human-computer interaction, forensics, and other purposes.

Many researchers have studied the performance of hu-
man and artificial intelligence systems in estimating age from
speech. The results show that the average error of humans judg-
ing the age of adults is about 10 years old, and the judgment of
the age of children is about 1-year old [4]. The performance of
age estimates may also have implications for human develop-
ment. [5] collected the speech of children. It can be seen that,
as children gradually enter puberty, changes in the vocal cords
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can affect age estimates and increase uncertainty. In adulthood,
the vocal cords are fully developed and the change tends to be
slow. However, as we age, various organs experience regular
aging: the voice changes from bright to hoarse, and articula-
tion from clear to vague [6, 7]. Judgments at different ages
also have different uncertainties, and these uncertainties may
vary from age to age, from utterance to utterance.

Traditional methods for speaker age estimation can be gen-
erally classified into classification-based and regression-based
methods. Most researchers mainly focus on the exploration
of backbone model structures, such as deep neural network
(DNN) [8], i-vector [9], x-vector [10, 11] or adding atten-
tion mechanism [12]. Some researchers have tried different
machine learning features, such as the OpenSmile toolbox
[13] to study this problem [14, 15]. As manipulated acous-
tic features, such as mel-filter banks, encounter performance
bottlenecks, some researchers use other speech features for
modeling, which can capture acoustic features that are im-
perceptible to the human ear, such as SincNet [16] take full
advantage of acoustic information, resulting in improved per-
formance. However, these features are only direct translations
of speech signals, not language models for understanding hu-
man speech. Self-supervised learning (SSL) generates high-
quality speech features with language model (such as wav2vec
[17] and WavLM [18]) by learning from a large amount of data
[19]. By injecting this prior knowledge, speech age estimation
achieves better performance [20]. Although these methods
have achieved great results, they ignored the fact that it rarely
considers the relationship between labels, such as order and
adjacent correlations, which are important clues for speaker
age estimation. Since speaker age labels form an ordered set
of numbers, significant ordinal relationships and adjacencies
between labels should be fully exploited to achieve higher
performance.

Label distribution learning (LDL) [21] addresses the above
problems by transforming the classification problem into a
distribution learning task that minimizes the difference be-
tween the predicted and constructed Gaussian distributions of
labels. In the field of computer vision, impressive progress
has been made in facial age estimation, where LDL shows
great potential [22]. Framework [3] applied this method to
the speaker age recognition task and achieved good perfor-
mance. Since the uncertainty of each person is different, i.e.,
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Fig. 1. Network topology of the SVLDL framework. “FC” denotes a fully connected layer. ⊕ denotes element-wise addition.

the variance of the Gaussian distribution varies from person
to person, adaptive-based LDL methods have been proposed
successively [23, 24, 25]. However, loss functions that mea-
sure regression error often use simple metrics, such as L1
distance, which are not dynamically adjusted for a specific
distribution at training time. This method does not achieve
optimal regression performance. Meanwhile, these algorithms
do not get the correct shape of the learned distribution, which
may lead to multimodal problems (multiple peaks in the fitted
distribution).

Additionally, Multi-task learning (MTL) uses a shared
backbone model to simultaneously optimize objectives for dif-
ferent tasks. The advantage comes from adding more useful
information while optimizing the original model. In speaker
age estimation, adding the task of gender recognition has been
shown to improve performance [20, 26]. Meanwhile, in re-
gression problems, Lin’s consistent correlation coefficient loss
[27] also achieves a lot of performance gains by replacing L1
or L2 distance-based losses.

Considering the above advantages and disadvantages, we
have made the following improvements and contributions:

• We improve the original label distribution learning
(LDL) method and propose a new selective variance
label distribution learning (SVLDL) method that adap-
tively selects the optimal distribution that matches the
variance.

• The quality of fitted distributions is improved by fitting
additional first-order difference distribution, and a brief
theoretical proof is given.

• The age estimation performance is enhanced by using
Lin’s concordance correlation coefficient [27] loss.

• The performance was improved by adding an auxiliary
task for gender recognition and using WavLM as the
speech feature extractor.

• Experimental results on the publicly available NIST
SRE08-10 dataset and a real-world dataset show that the
improved SVLDL framework achieves state-of-the-art
performance compared to the framework [3].

2. METHODOLOGY

2.1. Network Architecture

Figure 1 outlines the pipeline of the proposed method. Since
the structure of ECAPA-TDNN [28] has an efficient design
structure, such as Res2Net [29] and squeeze excitation blocks
(SE) [30], it is used as the backbone model. All the information
on the time dimension is collected through attentive statistics
pooling (SP). After the SP, there are two fully connected layers,
and finally a softmax layer is connected to obtain the output
distribution of the labels, denoted as y; the output of the middle
layer is denoted as z, which is also used as input for the
auxiliary task of gender recognition.

2.2. Self-supervised Representation

Motivated by the successful application of self-supervised
learning (SSL) in various speech domains, we explore the use
of WavLM [18] on the task of speaker age estimation. The
WavLM model learns speech representations by solving con-
trastive tasks in a latent space in a self-supervised manner. It
tries to recover the randomly masked part of the encoded audio
features. By learning from large amounts of real multilingual,
multi-channel unlabeled data, SSL models can deeply under-
stand contextual information and produce high-quality speech
representations in the latent space.

In our framework, seen from Figure 1, we utilize all latent
output of WavLM transformer layers Φ = (φ1, ..., φL) and
assign a trainable weight W = (w1, ..., wL) to each of them.
The weighted sum is then used to generate speech features
x =

∑L
i=1 (φi · wi), where Φ ∈ RL×T×Cf , x ∈ RT×Cf , T is

number of time frames, Cf is the feature size, L is the number
of layers of WavLM. In this way, the model can make full use
of speech information from shallow to deep, from concrete to
abstract.

2.3. Label Distribution Learning

Before introducing SVLDL, we need to know how LDL works
and understand some parameters, µ̂n and σ̂n are the mean
and standard deviation of the predicted distribution, and µn



and σn are for the ground-truth of sample n. Where µ̂n =∑K
k=1 k · ŷkn, and σ̂n = 1

N

∑K
k=1

(
ŷkn − µ̂n

)2
. To take advan-

tage of the intrinsic relationship in model outputs, we treat
these outputs as a distribution representing the predicted age
distribution. The label distribution ŷkn is a predicted probabil-
ity distribution, which satisfy ŷkn ∈ [0, 1] and

∑K
k=1 ŷ

k
n = 1,

n is the data sample, k is the age label, k ∈ [1,K] and K
denotes the maximum age. In age estimation, age is usually
represented using a Gaussian distribution centered around the
ground-truth age µn. This ground truth probability distribution
ykn is represented by a Gaussian distribution function.

ykn = Cn · e−(k−µn)2/(2σ2) (1)

where σ is a fixed value that is reasonably chosen in LDL,
Cn is a constant to make

∑
k y

k
n = 1. The difference between

the ground truth label distribution ŷ and the predicted distribu-
tion y is measured using the Kullback-Leibler divergence (KL
divergence). Therefore, the loss function LKL can be defined
as,

LKL (y, ŷ) =
1

N

N∑
n=1

DKL (yn|ŷn) =
1

N

N∑
n=1

K∑
k=1

ykn log

(
ykn
ŷkn

)
(2)

where N denotes number of data samples, and yn =(
y1n, ..., y

k
n

)
and ŷn =

(
ŷ1n, ..., ŷ

k
n

)
. However, not all predicted

distributions need to follow the same variance σ, that is, the
value of σ needs to be chosen adaptively for each utterance.

2.4. Selective Variance Label Distribution Learning

According to the principles discussed earlier, the age distribu-
tion of learning should vary by the utterance. To achieve this
goal, we propose a novel selective variance label distribution
learning method that fully adapts to the variance of each ut-
terance. That is, the process of selecting the best matching
distribution from a series of red candidate distributions, shown
in Figure 1. These candidate Gaussian distributions can be
defined as,

ykn (s) = Cn · e−(k−µn)2/s (3)

Where s ∈ S, and S is a set of predefined candidate vari-
ance values. Among the candidate distributions obtained using
these values, there should be one that matches the ground-truth
age distribution as closely as possible. Therefore, the problem
turns into choosing the smallest difference between a set of
candidate label distributions [ŷ] and the predicted distribution
y. Denote that s∗ is the variance of the best matching case,
which is related to the ground-truth value of standard deviation
with s∗ = σ2

n. Then the loss function LKL as follows,

LKL (y, ŷ) =
1

N

N∑
n=1

(
arg min
s∈S

(DKL (yn (s) |ŷn))

)

=
1

N

N∑
n=1

DKL (yn (s∗) |ŷn)

(4)

In this way, the algorithm can adaptively select the best
matching variance of the Gaussian distribution for training.

2.5. Unimodal Distribution Constraints

In experiments, we observe that the baseline based on mean-
variance learned distributions is multimodal for some instances,
in Figure 2. Namely, there will be multiple peaks in the dis-
tribution. We propose an approach to overcome this issue
by simultaneously learning the first-order differences of the
distributions. Suppose ∆ (·) is the first-order difference func-
tion of a discrete distribution, in Equation 4 with variance s∗.
This method is denoted as Diff. The loss function LDiff used
to optimize the first-order difference of the distribution is as
follows,

LDiff (y, ŷ) =
1

N

N∑
n=1

(∆ (yn (s∗))−∆ (ŷn))
2

=
1

N

N∑
n=1

K−1∑
k=1

(
∆
(
ykn (s∗)

)
−
(
ŷk+1
n − ŷkn

))2 (5)

Proof: To demonstrate that Equation 5 constrains the dis-
tribution to be unimodal, assuming that the first difference of
distribution ∆

(
ykn
)

is proportional to the first derivative of the
distribution y′n = dykn/dk. Since y is a Gaussian distribution,
when k < µn, y′n > 0, and when k > µn, y′n < 0. In order to
show how our loss to be unimodal, we take a case of k < µn
for illustration, where ŷk+1

n − ŷkn > 0. If it is not a unimodal
case at ŷk+1

n − ŷkn < 0, to verify that the loss function LDiff can
constrain the distribution to a single mode, we calculate the
gradient of this loss function over ŷkn and ŷk+1

n respectively.
∂LDiff
∂ŷkn

∝ 2
(
y′n −

(
ŷk+1
n − ŷkn

))
> 0 (6)

∂LDiff

∂ŷk+1
n

∝ −2
(
y′n −

(
ŷk+1
n − ŷkn

))
< 0 (7)

According to Equations 6 and 7, ŷkn decreases due to its
positive gradient and ŷk+1

n increases due to its negative gradi-
ent. In addition, the magnitude of this gradient is taken from
the first-order difference of the Gaussian distribution, so the
loss function can better constrain the distribution to the shape
of the Gaussian distribution, thereby improving the quality of
the fitted distribution.

2.6. Hybrid Loss

For regression predicting age, the Lin’s Concordance Correla-
tion Coefficient (CCC) [27] is more reliable to use, denoted as
ρc. CCC is a measure of the agreement between ground-true
labels and predicted labels. If the predicted value changes,
the score is proportional to its deviation [31]. [32] provides
complete proof that CCC outperforms other common regres-
sion losses, and we will use experiments to verify that it also
holds for speech age estimation. Therefore, the loss function
Lc derived from ρc is used as a measure of regression age,

Lc (µ, µ̂) = 1− ρc = 1−
2σ2

[pt]

σ2
[p] + σ2

[t] +
(
µ[p] − µ[t]

)2 (8)

Where σ2
[pt] = cov (µ, µ̂), µ[p] = E (µ̂), µ[t] = E (µ),

σ2
[p] = var (µ̂), σ2

[t] = var (µ), w.r.t. n.



Since human voice aging is a continuous process, the pre-
dicted age should be more likely to be the ground-truth age,
and the farther away from this age, the less likely it is. Smaller
variance means lower uncertainty in age prediction. The vari-
ance loss Lv reduces the uncertainty in the estimated age dis-
tribution,

Lv (y, ŷ) =
1

N

N∑
n=1

K∑
k=1

(
ŷkn · (k − µ̂n)2

)
(9)

Due to the physiological differences between men and
women, there are distinct differences in speech characteristics
– the average formant and fundamental frequency of women’s
speech sounds higher than those of men [33, 34]. By using a
multi-task learning approach while performing gender recog-
nition tasks, gender information will be implicitly added to the
model (blue task in Figure 1). In this task, the gender classifi-
cation task is trained with a focal loss (FL) [35] with a tunable
focus parameter γ ≥ 0. The loss function Lg is defined as
follows,

Lg (g, ĝ) = FL (g, ĝ) (10)

Where ĝ and g are the predicted and the ground-truth
gender. The overall loss is that given in Equation 11, where
λ1, λ2, λ3, λ4 and λ5 are hyper-parameters.
L = λ1 · Lc + λ2 · LKL + λ3 · Lv + λ4 · LDiff + λ5 · Lg (11)

2.7. Training and Inference

During the training phase, speech activity detection (SAD)
preprocesses the audio to remove non-speech frames since
speech may contain many silent segments. In our experiments,
the rvad model [36] is used for this task. In order to make
full use of hardware resources to train models quickly, model
training can be divided into two stages.
Offline training: Since the inference speed of the WavLM
model is not fast, first convert all the data in the dataset into
speech features and save them in Numpy format, and then use
these converted data directly to speed up training.
Online training: To improve the robustness of the model,
we employ a chain-like augment: (1) Noise was added using
MUSAN. (2) The RIR reverb is added. (3) Time stretch aug-
ment [37]: time stretching doesn’t change pitch, it simulates a
person’s different speech rates.

During the inference phase, the age estimate of the utter-
ance and its uncertainty are the mean age µ̂ and variance σ̂ of
the predicted distribution. At the same time, the auxiliary task
of gender recognition will be abandoned. The speech will be
processed by SAD first, and then the whole segment will be
sent to the model for prediction.

3. EXPERIMENTS

3.1. Datasets

To demonstrate the advantages of the proposed method, we use
the same dataset and conduct experimental validation under

the same settings as [3].
NIST SRE08-10 dataset: We use 11,205 utterances (458
male and 769 female speakers) from NIST SRE08 as the train-
ing set, and 5,331 telephone-conditioned utterances (236 male
and 256 female speakers) from NIST SRE10 as the test set,
similar to [38]. The speech in the dataset contains both English
and non-English. Neither the speakers nor the recordings in
the training and test set overlap. The speech in the dataset
contains Chinese and Chinese dialects.
Real-world PA-Age Dataset: This dataset is from the finan-
cial insurance domain and contains 69,610 corpora (30,661
male and 28,386 female corpora). The test set used the same
4,000 utterances as [3]. The average duration of effective
speech is 28.125 seconds, and the standard deviation of dura-
tion is 19.114 seconds.

3.2. Metrics

To evaluate how good our age estimator is, we report regres-
sion performance in terms of mean absolute error (MAE) and
Pearson’s correlation coefficient (PCC) ρ. It is defined in
Equation 12 and 13. The lower MAE and higher PCC, the
better.

MAE =
1

N

N∑
n=1

‖µ̂n − µn‖1 (12)

ρ =
1

N − 1

N∑
n=1

((
µ̂n − µ[p]

σ[p]

)(
µn − µ[t]

σ[t]

))
(13)

To measure whether the resulting distribution is unimodal,
we introduce a unimodal coefficient ηq , representing the aver-
age number of modes within q standard deviations which can
roughly detect the number of peaks in the predicted distribu-
tion, in Equation 14. The lower the better. In order to ensure
the accuracy of the detection, it is only necessary to consider
the age within q standard deviations (q = 2 in experiment).

ηq =
1

N

N∑
n=1

 ∑
kmin<k<kmax

1 (cond (n, k))

 (14)

cond (n, k) =
(

∆
(
ŷkn

)
< 0
)
∧
(

∆
(
ŷk+1
n

)
> 0
)

(15)

kmin = max (1, µ̂n − q · σ̂n)

kmax = min (µ̂n + q · σ̂n,K − 1)
(16)

Where 1 (·) is a function that converts a boolean value to
an integer. Equation 15 is the conditional function to detect
peaks in the distribution. Equation 16 defines the age range to
be calculated.

3.3. Hyper-parameters

For speech features, the WavLM model uses the “WavLM
Base+” setting in our implementation, which has 13 trans-
former encoder layers [39], 768-dimensional hidden states,
and 8 attention heads. The channel parameter Cb for ECAPA-
TDNN in the convolutional layers for the proposed network



is 256. The bottleneck size in the SE-Block and Attention
modules is set to 128. The scale size in Res2Block is set to 8.
The tunable parameter γ in FL is 10. The maximum age label
K is set to 100.

The model is first quickly trained by offline training and
then fine-tuned by data augmentation using online training.
During the offline training phase, the SGD [40] optimizer uses
a momentum of 0.9 and weight decay of 1e-3. The mini-batch
is set to 64 and the initial learning rate is 2e-3 to train all our
models. The speech features are segmented into about 3 sec-
onds (150 WavLM frames) to avoid over-fitting and to speed
up training. The set of standard deviation candidates S are:
from 0.01 to 10 in steps of 0.1, i.e., S = {0.1, 0.2, ..., 10}2.
In the fine-tuning stage with online training mode, the speech
segment changed to 6 seconds. Due to hardware resource con-
straints, we adopted a smaller fine-tuning learning rate of 1e-5,
the weight decay becomes 4e-4, and a batch size of 128. The
values of standard deviation candidates S have become finer:
from 0.01 to 10 in steps of 0.01, i.e., S = {0.01, 0.02, ..., 10}2.

3.4. Implementation Details

To verify the effectiveness of our proposed method, we com-
pare it with our last results as a baseline method (results di-
rectly copied from [3]). The best-performing model uses the
ResNet-18 model as the backbone. The age label distribution is
optimized with the mean and variance and the KL divergence
of the distribution (denoted as MVKL in Table 1).

To demonstrate that the model based on WavLM com-
bined with ECAPA-TDNN outperforms the previous backbone
model, we only replace this part and conduct experiments with
the same parameters and methods as before based on optimiz-
ing LDL and MVKL (with a fixed variance σ = 1). To show
that the SVLDL and CCC are of great help to the age estima-
tion, let λ1 = 10, λ2 = 1, λ3 = 0.1 and λ4 = λ5 = 0 for
experiments (denoted as CVKL in Table 1). To eliminate the
multimodality of the age distribution, we give a weight to the
loss function of the KL distance of the first-order difference
distribution to eliminate this effect, let λ1, λ2, λ3, λ5 are the
same, λ4 = 0.1. In addition, by adding the auxiliary task
of gender recognition, the model can improve the discrimina-
tion of gender, thereby improving the performance of the age
recognition task, let λ5 = 0.01, rest are the same.

3.5. Evaluation Results

Ablation study results on the two datasets are reported in Table
1. When the backbone model is replaced by WavLM+ECAPA-
TDNN, the backend model is still LDL+MVKL, and the per-
formance of model regression is slightly improved. If the
backend model is replaced by CVKL, the performance of re-
gression will be greatly improved. If SVLDL is replaced, the
multimodal problem can be solved to a certain extent. This
shows that under SVLDL, different variances are adaptively as-
signed to each utterance. This results in the models not forcing

Table 1. Ablation study on our proposed system compared
with baseline model. + denotes stacking our methods.

SRE08-10 PA-Age

MAE ρ η2 MAE ρ η2

ResNet-18 [3]
+LDL+MVKL 4.62 0.87 6.23 0.82

WavLM+ECAPA-TDNN (ours)
+LDL+MVKL 4.48 0.85 1.68 6.17 0.84 1.70
+LDL+CVKL 4.19 0.90 1.59 5.95 0.85 1.67
+SVLDL+MVKL 4.50 0.84 1.32 6.15 0.83 1.41
+SVLDL+CVKL 4.16 0.93 1.34 5.91 0.86 1.43
++Diff 4.19 0.91 1.08 5.93 0.85 1.07
+++Gender 4.14 0.92 1.03 5.82 0.87 1.05

them to optimize with the same variance, which also reduces
multimodal problems. Meanwhile, under CVKL, the model
uses the CCC loss function, which can be directly optimized
for the PCC (because the CCC is the unbiased PCC [32]), and
the MAE is further reduced. When the model simultaneously
optimizes the L2 distance of the first-order difference of the
age distribution, although the regression performance drops
slightly, the multimodality problem is greatly solved. When
the auxiliary task of gender recognition is added, the model
can distinguish gender information, thereby improving the age
estimation performance. Meanwhile, the multimodal problem
is further solved. Compared to the baseline model, the model
achieves an MAE reduction of 10.39% on NIST SRE08-10
and 6.58% on the PA-Age dataset, outperforming the original
model and close to the state-of-the-art model results.
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Fig. 2. Distributions predicted by “LDL + MVKL” and
“SVLDL + CVKL + Diff + Gender” (ours). The backbone
model uses “WavLM + ECAPA-TDNN”. Example from PA-
Age dataset.

As seen from Figure 2, our prediction is optimized to be
unimodal and adaptively learned based on a specific instance,
and has higher prediction performance. That is, SVLDL adap-
tively selects variance for each instance to predict, Diff ensures



unimodal distribution, and gender recognition improves pre-
diction performance. In contrast, MVKL is optimized for
all instances with the same variance and cannot guarantee a
unimodal distribution.

Table 2. Ablation study of hyper-parameters for λ(2−5) on
PA-Age. The first row is when λ4 = λ5 = 0, and the second
row is when λ2 = 1 and λ3 = 0.1.

MAE η2 MAE η2 MAE η2 MAE η2 MAE η2

λ(2,3) (0.1, 0.01) (0.1, 0.1) (1, 0.1) (1, 1) (10, 1)
6.05 1.63 5.97 1.49 5.91 1.43 6.12 1.54 6.47 1.50

λ(4,5) (0.01, 0) (0.1, 0) (1, 0) (0.1, 0.01) (0.1, 0.1)
5.98 1.16 5.93 1.07 6.02 1.07 5.82 1.05 5.88 1.06

Table 2 shows the full path in the search for hyperpa-
rameter values of λ(s) for the loss function, in Equation 11.
The first row shows the effect of adjusting λ2 and λ3 on pre-
dicted age (in MAE) and the multimodal parameter η2 under
λ4 = λ5 = 0. When λ2 = 0.1, λ3 = 0.01, the variance of
the age distribution maybe too large, resulting in more mul-
timodal problems. Meanwhile, the prediction of age is not
very accurate. When λ3 increases to 0.1, the variance becomes
smaller, the age prediction becomes more accurate, and the
multimodal problem is slightly solved. The cases of λ2 = 1
and λ2 = 0.1 are the best-performing combination of λ2 and
λ3. But if these two hyperparameters are too large, it will
affect the performance of age estimation, and the multimodal
problem will appear again.

The second row in Table 2 is an experiment on λ4 and
λ5 based on the best results from the first row (when λ2 = 1
and λ2 = 0.1). When λ5 = 0, the larger λ4 is, the better the
multimodal problem can be solved. However, this case slightly
degrades the age estimation performance. Thus, we choose the
best-performing case of λ4 = 0.1, and adjust the value of λ5.
After adding the auxiliary task of gender recognition, the per-
formance of age estimation is further improved and achieves
state-of-the-art results. At the same time, the multimodal
problem is further solved. Therefore, the optimal hyperparam-
eter combination is λ1 = 10, λ2 = 1, λ3 = λ4 = 0.1 and
λ5 = 0.01.

Table 3. Effect of duration of test utterance on PA-age esti-
mated by our method compared to the best baseline results.
MAE Test segment lengths(s)
Model 10 15 20 full

ResNet-18+LDL+MVKL [3] 13.16 11.04 6.14 6.10
Proposed method (ours) 8.35 6.42 5.86 5.82

Table 3 compares the effects of different test utterance
durations on age estimation between the proposed method
“WavLM + ECPAP-TDNN + SVLDL + CVKL + Diff + Gen-
der” and the baseline model. Here, only the utterances longer
than 10 seconds are cut and selected as test data. Compared

to the baseline model, the proposed method achieves great
improvement on short test utterances. It may be because the
WavLM speech features are trained based on big data, and
the data augmentation method is used during training, which
improves the robustness of the model. At the same time, the
pooling layer has an attention mechanism, which will make
the model pay more attention to the information of speech and
reduce over-fitting.

20 30 40 50 6025 35 45 55 65

2

Age
σ

3 4 765

Fig. 3. The heat map to visualize the adaptively learned vari-
ances σ corresponding to different ages.

Figure 3 shows the median values of variance for adapta-
tion at different ages. It can be seen that before the age of 27,
the voice is in a young and stable state. From the age of 30
to 45, people’s vocal cords gradually age, and the degree of
aging varies from person to person, so the uncertainty is large.
After the age of 50, almost everyone’s voice becomes older,
the variance becomes smaller, and the vocal characteristics
become more recognizable.

4. CONCLUSIONS

In this paper, a selective variance labeled distribution learning
(SVLDL) method is proposed to accommodate variances of dif-
ferent age distributions. The robustness of the age regression
is enhanced by using Lin’s consistent correlation coefficient
(CCC) loss compared to the mean-variance-based loss. Since
existing methods suffer from multimodality in the age distri-
bution, the quality of the fitted distribution is improved here
by optimizing the L2 distance of the first-order difference of
the distribution, and a reasonable proof is given. The perfor-
mance is further improved by using the speech features of
WavLM and adding the auxiliary task of gender recognition.
Experiments show that the model achieves MAE reduction
and multimodal problem-solving on both the NIST SRE08-10
and real-world PA-Age datasets, outperforming the original
model to achieve state-of-the-art results.
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