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ABSTRACT

In conventional domain adaptation for speaker diarization, a
large collection of annotated conversations from the target do-
main is required. In this work, we propose a novel contin-
ual training scheme for domain adaptation of an end-to-end
speaker diarization system, which processes one conversa-
tion at a time and benefits from full self-supervision thanks
to pseudo-labels. The qualities of our method allow for au-
tonomous adaptation (e.g. of a voice assistant to a new house-
hold), while also avoiding permanent storage of possibly sen-
sitive user conversations. We experiment extensively on the
11 domains of the DIHARD III corpus and show the effec-
tiveness of our approach with respect to a pre-trained base-
line, achieving a relative 17% performance improvement. We
also find that data augmentation and a well-defined target do-
main are key factors to avoid divergence and to benefit from
transfer.

Index Terms— self-supervised learning, end-to-end
speaker diarization, continual learning, domain adaptation

1. INTRODUCTION

Speaker diarization aims at determining “who spoke when”
in a recorded conversation, partitioning the audio sequence
according to speaker identity. Recent end-to-end speaker
diarization systems [1, 2] have simplified this by training
a single neural network in a permutation-invariant manner
to ingest an audio recording and produce an overlap-aware
speaker diarization output. These systems are usually trained
to perform well on a given corpus with its own set of specific
properties (e.g. microphone quality, noise, speaker accent,
language, etc.) shared among recordings. We refer to this
set of shared properties as a domain. However, it is well
known that the performance of the same system on a different
domain is substantially worse than on the training domain, a
problem known as domain mismatch. In domain adaptation,
the goal is to fix this mismatch by fine-tuning the out-of-
domain system on the target domain in which we want to
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Fig. 1: Real example of a system input x and output m(x).
Pseudo-labels ŷ are obtained by binarizing m(x) with a fixed
threshold θ = 0.5.

obtain good performance. In particular, end-to-end train-
ing makes speaker diarization systems suitable for domain
adaptation because fine-tuning a single model is simpler than
doing so for multiple modules. Nevertheless, domain adapta-
tion remains expensive for two reasons: 1) a relatively large
number of new domain conversations needs to be collected,
and 2) they need to be manually annotated.

Pseudo-labels [3, 4] were originally designed for semi-
supervision (mixing labeled and unlabeled data) by using the
predictions of a pre-trained system as annotations in a teacher-
student training scheme. However, they are also an interest-
ing alternative to remove the need for annotated data. This
method has shown great promise in end-to-end speaker di-
arization [5], where authors experiment with an iterative and
committee-based training scheme. Another similar study on
domain adaptation for speech enhancement [6] even goes one
step further, showing that periodically updating the teacher
model while fine-tuning the student on the target domain can
significantly increase performance.

On the other hand, it is possible to eliminate the need to
“a priori” collect a large new domain corpus by relying on
continual learning [7]. This paradigm is defined by a se-
quential training scheme where new data (individual conver-
sations in our case) become available as time passes. After
sequential training on new conversations from a target do-
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main, we expect the system to perform well on both past and
future conversations of that domain. As defined in previous
works [7, 8], improvement on past conversations is usually
referred to as backward transfer, while forward transfer is
used to denote improvement on future conversations. Unfor-
tunately, continual learning is prone to catastrophic forget-
ting [9], whereby performance on past conversations sharply
drops as the model is trained on new ones (i.e. negative back-
ward transfer). A naive solution is to keep all past conversa-
tions for future training. However, storing these conversations
permanently may be problematic or even impossible in some
cases, as they are usually regarded as sensitive or personal
identifiable data.

In this work, we study continual domain adaptation for
end-to-end speaker diarization. We propose a fully self-
supervised training scheme that achieves an average 17%
relative improvement over a pre-trained baseline without a
single manually annotated conversation. Our approach also
rivals (and sometimes outperforms) non-continual variants
trained on the whole target domain at once. Furthermore,
since only a single conversation at a time is used for train-
ing, every new conversation can be discarded as soon as it is
processed, avoiding any potential unwanted access.

2. END-TO-END SPEAKER DIARIZATION

As in [1, 10], end-to-end speaker diarization is modeled as
a multi-label classification problem. In our case, a model m
is trained to ingest a 5s audio chunk x and produce speaker
activity probabilities m(x) = {s1, . . . , sF } as depicted in
Figure 1, where F is the number of output frames and sf ∈
[0, 1]Kmax , with Kmax the estimated maximum number of dif-
ferent speakers in an input (in our case Kmax = 4). Since any
permutation of speakers in the output is equivalent in terms
of diarization performance, a permutation-invariant loss [1] is
minimized:

L(y,m(x)) = min
perm∈P

LBCE(perm(y),m(x)) (1)

where y is the reference annotation (manual or pseudo-label)
for x, LBCE is the frame-wise binary cross entropy loss and P
the set of all possible speaker permutations of y.

3. PROPOSED TRAINING SCHEME

In this section, we present the different components of our
training scheme as shown in Figure 2. Specifically, given a
model pre-trained on an out-of-domain corpus, we train on
one conversation of the target domain at a time using pseudo-
labels. We first define self-supervision with pseudo-labels in
Section 3.1 and then discuss continual training in Section 3.2.
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Fig. 2: Continual training over conversations convt of domain
d using pseudo-labels ŷt. Model m0 pre-trained on an out-of-
domain corpus produces the first pseudo-labels ŷ1. From then
onwards, each model mt−1 produces pseudo-labels ŷt and is
then trained only on conversation convt, resulting in a new
model mt.

3.1. Self-supervision

Many successful works on self-supervision [11, 12, 13] rely
on auxiliary tasks that attempt to predict artificially miss-
ing or distorted parts of the input. In contrast, in pseudo-
labeling [3] a pre-trained teacher model generates labels to
train the student model. A similar idea has been applied to
speaker diarization in [5] using a committee-based method
where pseudo-labels are a combination of predictions from
multiple systems. Our work is more similar to [6], as the
trained model is both teacher and student. However, contrary
to [6], we train on a single conversation at a time instead of a
large target domain corpus.

3.1.1. Pseudo-labels

Pseudo-labels ŷ can be an exact copy of m(x) ∈ [0, 1]Kmax×F .
However, as shown in Figure 1, m(x) can be noisy and could
fail to provide a useful training signal in some input regions,
so we obtain ŷ by binarizing m(x) with a threshold θ = 0.5.
As depicted in Figure 2, model mt−1 generates pseudo-labels
ŷ from conversation convt that are used to train mt−1, re-
sulting in model mt. A risk of the model being both teacher
and student is divergence, as matching its own predictions
may progressively reinforce errors. To limit this, we rely on
data augmentation. During training we first calculate pseudo-
labels ŷ with a weak noise augmentation aug :

ŷkf =

{
1 if mt−1(aug(x))kf ≥ θ

0 otherwise
(2)

where k indexes speakers and f indexes frames. Our hypoth-
esis is that generating ŷ from a weak perturbation of x may
help to prevent divergence by providing multiple views of the
same input, acting as a form of regularization. As depicted in
Figure 2, we use Aug(x) as inputs during training to improve
robustness, where Aug is a strong augmentation adding both
noise and reverberation.



Subset Domain Recordings Duration Spk / Rec. Base
dev test dev test dev test DER

DHA

Broadcast Interview 12 12 2.1h 2.0h 3.8 3.7 4.6
Court 12 12 2.1h 2.0h 6.9 7.3 8.9

Socio Lab 16 12 2.7h 2.0h 2.0 2.0 12.9
CTS 61 61 10.2h 10.2h 2.0 2.0 20.4

Meeting 14 11 2.4h 1.9h 5.4 3.9 33.5
Restaurant 12 12 2.0h 2.1h 7.2 6.4 49.5

DHB

Audiobooks 12 12 2.0h 2.0h 1.0 1.0 5.2
Maptask 23 19 2.5h 2.1h 2.0 2.0 11.0

Socio Field 12 22 2.0h 2.3h 3.5 2.3 18.2
Clinical 48 51 4.3h 4.4h 2.0 2.0 21.6

Webvideo 30 35 1.9h 2.1h 4.0 4.1 41.8

Table 1: Description of all DIHARD III domains. The aver-
age number of speakers per recording (“Spk / Rec.”) and the
DER of the VB-HMM baseline for track 2 [15] (“Base DER”)
are evidence of domain differences in difficulty.

3.1.2. Stopping criterion

We use the area under the receiver operating characteristic
curve (AUROC) [14] as a validation metric when training
on each conversation, allowing to measure model improve-
ment. The ROC curve is calculated by relating false positives
and true positives at different decision thresholds. Taking the
example of Figure 1, this is equivalent to applying multiple
thresholds θ ∈ [0, 1] to m(x) and comparing the result to the
pseudo-labels. Notice that this metric may not approximate
actual performance correctly if pseudo-labels contain errors.

Since the model has no access to a validation set, we ex-
tract 30% of convt to form devt, which is spread over the
whole duration of the recording. We then calculate the AU-
ROC on devt after each epoch on the remaining set traint.
When the validation AUROC does not improve for a certain
number of epochs, we stop training and wait for the next con-
versation.

3.2. Continual training

As mentioned previously, continual training is prone to catas-
trophic forgetting [7, 9]. A naive solution is to train on
all conv≤t at a given step t, but this introduces two prob-
lems. First, the cost of training on convt grows linearly with
the number of conversations, that can in theory be infinite.
Second, storing conversations permanently may not be pos-
sible, as it is usually considered sensitive data that needs to
be guarded from external access. Other works in continual
learning [16, 17] show that it is possible to limit forgetting
by keeping a memory buffer with previous inputs or latent
features, partially solving the first problem but ignoring the
second. Other popular methods [18, 19] use generative mod-
els to produce synthetic data that mimics past inputs, but
generating such realistic conversations on-the-fly is costly
and generative models are difficult to train.

As depicted in Figure 2, given an initial model m0 pre-
trained on an out-of-domain corpus (in our case AMI [20]),
our goal is to improve overall performance on a single tar-

get domain d (in our case one of the 11 DIHARD III [15]
domains). Since we want to avoid storing potentially sensi-
tive data, we train on one conversation convt of d at a time.
Hence, any data from steps < t are inaccessible. We believe
the combination of augmentation and the stopping criterion
described earlier may prevent in-domain forgetting by dis-
couraging overfitting to any single conversation.

4. EXPERIMENTS

4.1. Dataset

We experiment on DIHARD III [15], which contains conver-
sations from 11 different domains shown in Table 1. These
domains differ greatly in number of speakers and difficulty
(of which diarization error rate is a good proxy). Notice that
webvideo may not in fact qualify as a domain, as it is a col-
lection of English and Mandarin audio from video sharing
platforms. Indeed, its set of shared properties among record-
ings may be rather small (e.g. differences in quality, noise,
language, etc.).

4.2. Evaluation metric

Since we want to evaluate the overall quality of a local
speaker diarization system that takes 5s inputs, instead of
calculating the usual diarization error rate (DER) of a single
hypothesis for an entire conversation, we calculate what we
name the CDER, i.e. the average 5s chunk DER using a
500ms shift. We use pyannote.audio [21] to evaluate with-
out forgiveness collar and including all overlapping speech.

4.3. Experimental protocol

We want to determine the best hyper-parameters while still
being able to obtain performance for all 11 domains. Hence,
we cross-validate hyper-parameter optimization making sure
not to leak target-domain knowledge neither in model weights
nor in hyper-parameters. We split the DIHARD III Full [15]
domains into sets DHA and DHB as shown in Table 1. Given
the differences in domain difficulty, we balance DHA and
DHB by evening the VB-HMM baseline (track 2) [15] perfor-
mance between both sets. Our goal is to progressively adapt
model m0 to a single domain, so for every hyper-parameter
configuration h and every domain d ∈ DHA, we train m0 se-
quentially on dtrain and evaluate the resulting model on dtest
to obtain its CDER pd. Performance for configuration h is
defined as:

ph =
1

|DHA|
∑

d∈DHA

pd (3)

The configuration with the lowest ph is used to sequen-
tially train m0 on each domain d ∈ DHB on dtrain and
evaluating each resulting model on its corresponding dtest.

https://github.com/pyannote/pyannote-audio
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pre-trained NA NA NA 51.4 35.9 22.0 64.8 28.3 86.8 47.5 28.2 40.9 56.8 73.0 80.9

ours1 pseudo ✓ 56.7 32.2 21.1 74.2 25.9 92.3 47.2 27.5 50.1 55.0 99.9 97.9
ours2 pseudo ✓ ✓ 42.8 30.4 21.5 39.3 25.3 46.8 44.3 25.9 34.3 33.6 69.2 99.8
ours3 pseudo w/ aug ✓ ✓ 44.3 30.7 21.9 40.8 28.1 48.2 43.8 27.6 44.5 39.0 68.3 94.9

whole1 pseudo 50.7 33.3 21.1 63.5 26.4 88.6 46.8 26.0 41.0 56.2 71.9 82.8
whole2 pseudo ✓ 45.5 29.4 21.5 48.5 23.6 78.5 42.9 24.8 39.7 36.7 69.4 85.4
whole3 pseudo w/ aug ✓ 41.7 30.5 21.9 37.7 25.1 57.6 42.9 25.6 48.3 35.8 64.6 69.1
whole4 pseudo w/ aug 48.2 34.4 24.0 44.8 27.7 82.4 47.0 28.6 52.5 44.6 70.1 74.1

sup1 true ✓ 22.4 14.6 8.2 16.6 15.1 38.7 40.7 3.2 12.5 24.0 44.3 28.6
sup2 true ✓ ✓ 22.4 9.4 8.7 17.2 15.7 41.3 40.6 4.0 13.1 22.8 44.6 29.6

topline true ✓ 20.5 9.1 7.5 14.6 14.6 38.4 38.7 3.1 12.6 21.9 39.6 25.5

Table 2: CDER of all systems on each dtest at the end of the training sequence, averaged over 10 runs to limit the effect of
randomness.

The same process is repeated inverting the roles of DHA and
DHB .

4.4. Implementation details

We use the architecture introduced in [10] (SincNet [22] train-
able feature extraction, 4 LSTM [23] and 2 fully-connected
layers) that we pre-train with true labels on the AMI cor-
pus [20] training set from Full [24], achieving a DER of 17.5
on its test set. This constitutes our initial model m0. Both
strong and weak augmentations Aug and aug apply random
noise, but only Aug has a 50% chance of applying a random
room impulse response (making it stronger than aug). Noises
are sampled from MUSAN [25] (excluding speech) and im-
pulse responses are sampled from EchoThief and [26]. We
use a separate Adam optimizer [27] for each new conversa-
tion and training on traint is stopped after 3 epochs of no im-
provement on devt. Training sequences are sorted according
to existing recording identifiers.

Optimized hyper-parameters are background noise SNR
(among ranges 0dB-5dB, 5db-10dB and 10dB-15dB), learn-
ing rates (among 10−3, 10−4 and 10−5) and batch size
(among 16, 32, 64 and 128).

5. RESULTS AND DISCUSSION

Table 2 summarizes our main results. We include supervised
(sup) systems as toplines. System ours3 corresponds to our
full version as described in Section 3. The remaining systems
constitute various ablative studies. Self-supervised training
on the whole target domain at once (whole) are non-continual
versions of our approach using m0 to generate pseudo-labels,
while ours1 and ours2 are ablations of ours3.

Continual self-supervision. System ours2 outperforms pre-
trained across all domains with a relative improvement of
17% on the average CDER, except on clinical where the
model diverges. A surprising result from Table 2 is that
ours2 closely follows our best non-continual system whole3
on average, and even outperforms it in some domains like
meeting, maptask and socio field. This suggests that the
quality of pseudo-labels may be improving in these domains
as new conversations appear, since pseudo-labels in whole
systems cannot improve because the teacher m0 is static.
Moreover, average CDER between ours2 and whole3 only
differ by an absolute 1%. Notice that clinical for whole2 (the
whole equivalent of ours2) is the only domain whose perfor-
mance deteriorates with respect to pre-trained. This leads
us to believe that divergence may be caused by poor initial
pseudo-labels that fail to provide useful information for the
model to exploit, effectively reinforcing its own errors as new
conversations appear. Finally, note that supervised continual
training also performs well, rivaling the non-continual super-
vised topline with a CDER absolute difference of 2%.

Performance evolution. Figure 3 shows the dtest CDER at
each convt for various domains. System ours2 seems to keep
improving with new conversations, except on clinical, where
it diverges, and on webvideo, where performance of all sys-
tems is rather unstable. As discussed before, we believe this
may be caused by its loose definition as a domain, suggesting
that a well-defined set of shared characteristics may be key to
benefit from transfer between conversations.

Forgetting and transfer. Figure 4 shows the train CDER on
the first and last two convt for domains meeting and clinical.
Notice that performance across conversations varies greatly,
suggesting a certain variability in difficulty even in conversa-
tions from the same domain. Despite this, forgetting seems to
be limited, as sharp increases in CDER are rare when there is
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Fig. 3: CDER on dtest as a function of training conversations convt in sequence. Curves follow the average and standard
deviation across 10 runs. Each system is referenced with its identifier from Table 2.
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Fig. 4: CDER on the first and last two training conversations. Each curve represents the CDER (averaged over 10 runs) of a
single conversation across the entire training sequence. A dot denotes the position of the given conversation within the sequence.

no divergence. Notice that overall performance tends to im-
prove with new conversations, which is interesting given that
true labels are never seen by ours2 and ours3. Overall, self-
supervised systems seem to benefit more from both forward
and backward transfer (see CDER before and after the dot
in Figure 4 respectively). We believe this may progressively
improve pseudo-labels as well as model quality estimation
for the stopping criterion. It may also explain performance
fluctuations in webvideo, as very dissimilar conversations
might limit transfer.

The role of augmentation. Our results show that augmen-
tation Aug is key in achieving good self-supervised perfor-
mance, although not so much in supervised systems. The ex-
ample of maptask in Figure 3 is particularly interesting, as
Aug makes the difference between learning and diverging.
On the other hand, aug seems to be more useful in whole sys-
tems than in continual training. Nevertheless, we believe that
aug may prevent reinforcing errors at the beginning of contin-
ual training when pseudo-label quality is low, although failing
to prevent divergence. Figure 4 is a good example of this, as
ours3 is better than ours2 in the beginning for both meeting
and clinical. Applying aug only during the first conversations
of the sequence might be a better strategy to get the best from
both variants.

6. CONCLUSION

We have proposed a training scheme for domain adaptation
in end-to-end speaker diarization. We train on the target
domain as conversations become available and in a fully self-
supervised way, removing the need for annotating data and
storing sensitive user conversations permanently. We achieve
an average 17% relative improvement over a pre-trained base-
line, even rivaling a non-continual self-supervised topline.
Moreover, our approach can run locally and autonomously
in the background with little to no human involvement (e.g.
in a home voice assistant). All our code is released as open
source1
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