
DUAL LEARNING FOR LARGE VOCABULARY ON-DEVICE ASR

Cal Peyser12, Ronny Huang2, Tara Sainath2, Rohit Prabhavalkar2, Michael Picheny1, Kyunghyun Cho1

1Center for Data Science, New York University, New York City, USA
2Google Inc., U.S.A

ABSTRACT
Dual learning is a paradigm for semi-supervised machine
learning that seeks to leverage unsupervised data by solving
two opposite tasks at once. In this scheme, each model is
used to generate pseudo-labels for unlabeled examples that
are used to train the other model. Dual learning has seen
some use in speech processing by pairing ASR and TTS as
dual tasks. However, these results mostly address only the
case of using unpaired examples to compensate for very small
supervised datasets, and mostly on large, non-streaming mod-
els. Dual learning has not yet been proven effective for using
unsupervised data to improve realistic on-device streaming
models that are already trained on large supervised cor-
pora. We provide this missing piece though an analysis of
an on-device-sized streaming conformer trained on the en-
tirety of Librispeech, showing relative WER improvements
of 10.7%/5.2% without an LM and 11.7%/16.4% with an
LM.

1. INTRODUCTION

The high cost of supervision in speech datasets has yielded a
rich literature on the use of unpaired audio and text to improve
ASR performance. The conventional setting of this problem
involves use of unpaired data to enable a working ASR sys-
tem to be trained on a small enough amount of paired data that
ASR would otherwise have been unfeasible. Work on this set-
ting of the problem dates back to long before deep neural net-
works became the dominant approach to speech processing
[1, 2, 3].

In the last several years, progress on this problem has ad-
vanced to the point where reasonably strong ASR systems
can be trained with only tens of hours of supervised data.
Methods for doing so fall broadly into two categories: gener-
ative methods that model the data distribution itself, and con-
trastive methods that model the likelihood of a sample given
some context.

Generative methods are premised originally on the au-
toencoder [4], which when applied in the speech domain has
been shown to yield strong representations [5]. “Predictive
coding” extends the autoencoder by seeking to predict a sam-
ple some number of steps in the future, and can be done au-
toregressively [6] or non-autoregressively [7]. The success of

masked language modeling in the language domain (e.g. [8])
motivated the application of masked prediction [9, 10] and
discretization [11] to generative speech pretraining, yielding
strong results.

Contrastive methods, on the other hand, are premised on
“contrastive predictive coding” (CPC) [12], in which posi-
tive examples and distractors are together used to model how
much more or less likely an audio sample is given some con-
text. In principle, this relieves the system from modeling ir-
relevant details of the data distribution. The Wav2Vec line of
papers [13, 14, 15] demonstrated the viability of CPC features
for ASR, eventually combining CPC with generative methods
to achieve strong performance on Librispeech using as little
as ten minutes of supervised audio. WavLM [16] iterated on
these ideas and demonstrated usefulness on an array of speech
tasks beyond ASR.

While these ideas have enjoyed great success, applica-
tions have strongly emphasized the low resource setting and
generally involve very large, full-context models. That is,
while we’ve seen that we can use unlabeled speech to build
an ASR model given very little supervised data, it is not yet
clear that we can use it to overcome the challenges inherent in
on-device systems on high resource languages. We offer an
alternative framing of the problem, in which a large amount
of supervised data is available, but the ASR system must op-
erate under the real-world constraints of being able to stream
results and being sufficiently small so as to fit on a smart-
phone. We ask how unsupervised audio and text may be used
to improve performance in this setting.

Dual learning is a method in semi-supervised learning in
which two opposite tasks are learned simultaneously, with
each model providing supervision for the other. This idea has
been successful in machine translation in the form of “back-
translation” [17, 18]. In the speech domain, TTS has been
used as the “dual” task to ASR and combined with audio and
text reconstruction tasks to some success [19, 20, 21, 22].
However, these results are constrained to the low-resource
setting, with non-streaming models and usually with short ut-
terance lengths. The TTS4ASR line of work [23, 24, 25] uses
an approach similar to dual learning, in which a TTS model is
used to provide supervision for unpaired audio before train-
ing. These models have been proven to work with large su-
pervised datasets; [25] in particular yields gains on top of a

978-1-6654-7189-3/22/$31.00 ©2023 IEEE

ar
X

iv
:2

30
1.

04
32

7v
1

 [
cs

.C
L

]
 1

1
Ja

n
20

23

strong Librispeech baseline. However, even these models do
not address the on-device setting, as they are very large ([25]
has 600M parameters) and are non-streaming.

In this paper, we seek to fill what we see is a missing piece
in the literature and demonstrate the viability of dual learn-
ing in the large vocabulary, on-device setting. We show con-
sistent improvements over a supervised streaming conformer
optimized for on-device inference trained on all 960 hours of
Librispeech.

The rest of this paper is organized as follows. Section
2 outlines our model and training procedure and specifies
choices that are necessary to scale the method. Section 3
details the setup of our experiments. Section 4 presents our
results and analysis and we conclude in Section 5.

2. METHODS

In this section, we describe our implementation of ASR pre-
training based on dual learning.

2.1. ARCHITECTURE

In order to perform ASR, TTS, and reconstruction in both
domains, our implementation must include encoders and de-
coders for both audio and text. Imitating [26], we imple-
ment streaming with an architecture that can emit a provi-
sional hypothesis immediately and then revise it after a short
delay. In order to improve the likelihood of success on the
two more difficult tasks (ASR and TTS), we adapt these com-
ponents from existing ASR and TTS architectures. Our au-
dio encoders and text decoder are adapted from conformer
[27, 26]. Our text encoder and audio decoder are adapted
from Tacotron 2 [28].

Fig. 1: The architecture of our dual learning model. Blue
components participate in audio reconstruction, while green
components participate in text reconstruction.

Formally, we frame our problem around three datasets.
First, S consists of paired text and audio examples (x, y),
where x = (x0, ..., xm) is an audio sample of length m and
y = (y0, ..., yn) is the corresponding text transcript of length

n. Second, UT gives unpaired text examples y, and finally
UA gives unpaired audio examples x. We then define the
components of the model as functions. We define the audio
encoders Estreaming

A , which has only left-context and Edelay
A ,

which has 900ms of right-context. We also define the text
encoder ET , the decoders DA and DT , and the linear trans-
formations TA→T which maps an audio embedding to a text
embedding and TA←T which maps a text embedding to an
audio embedding.

We may then proceed to define the model’s objectives.

2.1.1. Supervised ASR and TTS

We follow [26] to build a model capable of emitting an ASR
hypothesis in real time while streaming finalized predictions
with 900ms latency. To this end, we split ASR training into
two losses. For (x, y) ∈ S, the immediate streaming task is
given by:

Lstreaming
ASR = Lxent(y,DT ◦ Estreaming

A (x))

while the delayed task is given by:

Ldelay
ASR = Lxent(y,DT ◦ Edelay

A ◦ Estreaming
A (x))

where ◦ denotes function composition. That is, the
streaming task uses only the first, left-context encoder while
the delayed task adds a further encoder with 900ms of right-
context. Here we have defined Lxent as the cross-entropy loss
over text units.

Since this work focuses on pretraining for ASR systems,
we do not seek to stream the TTS task. Instead we define the
single full-context task:

LTTS = LMSE(x,DA ◦ ET (y))

where we have defined LMSE as the mean squared error loss
over continuous audio features.

2.1.2. Unsupervised ASR and TTS

Dual learning for speech and text involves the use of the TTS
system to provide pseudo-labels for the ASR system and visa
versa. Specifically, for an unpaired text example y ∈ UT we
derive the pseudo-label ŷ by beam search over the outputs of
the ASR model. We may then define the objectives:

Lstreaming
U-ASR = Lxent(y,DT ◦ Estreaming

A (ŷ))

and

Ldelay
U-ASR = Lxent(y,DT ◦ Edelay

A ◦ Estreaming
A (ŷ))

Similarly, for an unpaired audio example x ∈ UA we may

derive the pseudo-label x̂ by performing inference in the TTS
system. We may then define the objective:

LU-TTS = LMSE(x,DA ◦ ET (x̂))

2.1.3. Reconstruction

To perform text reconstruction, we must pass representations
from the ASR encoder to the TTS decoder and visa versa. We
find that when initializing using pre-trained ASR and TTS
systems, the components struggle to adapt to each-other and
the model fails to converge. We find that this problem is alle-
viated simply by placing a single linear transformation TA→T

between the audio encoder and audio decoder, and another
transformation TA←T between the text encoder and text de-
coder. With this in mind, we define the text reconstruction
task:

LText Recon = LMSE(y,DT ◦ TA←T ◦ ET)(y)

for (x, y) ∈ S, with LU-Text Recon defined analogously for x ∈
UT . We similarly define the audio reconstruction task:

LAudio Recon = Lxent(x,DA ◦ TA→T ∗ Edelay
A ◦ Estreaming

A (x))

for (x, y) ∈ S, with LU-Audio Recon defined analogously for
x ∈ UA.

2.2. Training

We might naively seek to train the above tasks together by
alternating tasks across sequences of batches. We find that
such a training scheme fails to achieve convergence, as each
task is forgotten during the training of the others. Instead, we
combine all the above tasks in a single batch. Each batch is
split in thirds, the first coming from S, the second from UA,
and the last from UT . For the first third, we jointly optimize
the supervised tasks:

LS =
Lstreaming

ASR + Ldelay
ASR

2
+ LTTS + LText Recon + LAudio Recon

for the second third, we optimize the unsupervised audio
tasks:

LA = LU-TTS + LU-Audio Recon

for the last third, we optimize the unsupervised text tasks:

LS =
Lstreaming

U-ASR + Ldelay
U-ASR

2
+ LU-Text Recon

We find that this method achieves convergence, so long as
we initialize the model’s components from an ASR and TTS
system trained on S. Otherwise, the model generates incor-
rect pseudo-labels early in training, preventing progress.

2.3. Language Modeling

Since dual learning involves the incorporation of unpaired
text at training time, we naturally want to compare our method
to the incorporation of unpaired text at inference time. To this
end we evaluate our models with shallow fusion [29] with a
pretrained LM. We also use a Hybrid Autoregressive Trans-
ducer (HAT) [30] text decoder, which permits the factoriza-
tion of our models’ internal LM. Ultimately, at inference time
for audio sample x we seek:

y∗ = argmax
y

logP (y|x) + αPELM (y)− βPILM (y)

where P (y|x) gives our acoustic model posterior, PELM (y)
gives the likelihood of a transcript in the external LM,
PILM (y) gives the likelihood of the transcript in the internal
LM (as formulated in HAT), and α and β are hyperparame-
ters.

3. EXPERIMENTAL SETUP

In this section, we give the details of our experimental setup.

3.1. Model

The ASR branch of our model is a cascading conformer
adapted from [26], specifically sized to be realistic for an on-
device streaming application. The streaming encoder is small
to ensure fast inference. It consists first of 3 convolutional
layers followed by 7 conformer layers with a 512-dimensional
representation for a total of 56M parameters. The delayed en-
coder is larger, and is parameterized by 10 conformer layers
with a 640-dimensional representation for a total of 99M
parameters. Following [31], the HAT decoder consists of an
embedding network and joint network, contributing another
9M parameters.

The TTS branch of our model is adapted from Tacotron
2 [28]. The text encoder first maps wordpieces into a 512-
dimensional embedding space, followed by three convolu-
tional layers and a single bidirectional LSTM layer, totalling
8M parameters. The audio decoder consumes the audio sam-
ple autoregressively through a “pre-net”, which consists of
two fully-connected layers with 50% dropout at each layer.
We find that this aggressive dropout is critical to convergence,
since during multi-task training with teacher forcing the TTS
decoder has a strong tendency to rely entirely on the autore-
gressive signal instead of the encoder representation. This
yields poor performance at inference, which in turn creates
poor pseudo-labels for unpaired text. Scheduled sampling
[32] was investigated as an alternative, but was found to be
less effective than simple dropout. The audio sample is then
passed to two LSTM layers, which also consume the encoder
representation via cross-attention. After the LSTM has gener-
ated an audio prediction, that result is further processed by a

Model Baseline Shallow
Fusion

Internal
LM

BASELINE 8.4 6.3 5.8
E-ALL 7.5 5.6 5.5
E-DL 8.1 6.2 6
E-RECON 10.3 7.4 7.2

(a) Test Clean

Model Baseline Shallow
Fusion

Internal
LM

BASELINE 22.9 19.5 18.3
E-ALL 20.4 16.3 16.2
E-DL 21.9 18.3 17.9
E-RECON 27 22.5 21.9

(b) Test Other

Table 1: WER percentage results on the Librispeech test sets. Baseline evals include no language model. Shallow Fusion
evaluations include LM interpolation with α = 0.2. Internal LM evaluations further subtract out the internal LM with β = 0.1.

full-context “post-net” consisting of five convolutional layers.
In total, the TTS decoder has about 26M parameters.

3.2. Data

We use 960 hours of supervised audio from Librispeech as S,
60k hours of unsupervised audio from Librilight [33] as UA,
and 80M transcripts from the Librispeech LM set as UT . We
process the audio into a 128-dimensional log-mel feature per
10ms of audio. We stack every third such feature with the
three features before it, yielding 512-dimensional features at
30ms intervals. We then apply SpecAugment [34] with mask
parameter F = 27 and ten time masks, as in [27]. This forms
the inputs to the audio encoder.

3.3. Evaluation

We evaluate our models using a beam search with a beam size
of 8. For fusion experiments, we use an external language
model trained on UT . The LM is a causal transformer [35]
with 8 layers, 16 attention heads, and a model dimension of
1024, totaling about 100M parameters.

4. RESULTS

We evaluate our model relative to a baseline ASR system
trained on 960 hours of Librispeech (BASELINE). The dif-
ference between our baseline WER and those reported in full-
context works like [16] reflect the added difficulty of stream-
ing results as well as the reduced model size. We contrast
this with a model trained on all tasks defined above (E-ALL).
We perform ablations by also training a model on only the su-
pervised and dual learning tasks (E-DL, excluding LText Recon,
LU-Text Recon, LAudio Recon, and LU-Audio Recon) and another only
on the supervised and reconstruction tasks (E-RECON, ex-
cluding Lstreaming

U-ASR , Ldelay
U-ASR, and LU-TTS). Results are given in

Table 1.
We find our method to improve performance on the test-

clean/test-other test sets by 10.7%/5.2% without an LM and
11.1%/16.4% with an LM included via shallow fusion. In-
terestingly, we find that while dual learning alone (E-DL)
yields improvements, reconstruction alone (E-RECON) does

not. Nevertheless, the combination of dual learning and re-
construction (E-ALL) yields better results than either alone.
This suggests that reconstruction itself distracts from the ASR
tasks but synergizes with dual learning. This may reflect the
fact that on the multi-speaker, long utterances of Librispeech,
a joint model benefits from extra exposure to the unsupervised
training data in order to produce strong pseduo-labels for dual
learning.

4.1. Effect of the Language Model

We note with interest that while the application of shallow fu-
sion preserves the gains yielded by our method, further sub-
tracting out the internal language model via HAT only par-
tially preserves those gains. That is, subtracting out the in-
ternal language model substantially closes the gap between
the baseline and our method. Figure 2 illustrates this effect
by plotting WER for a parameter sweep of external LM in-
terpolation (shallow fusion) weights and internal LM inter-
polation (HAT) weights. Quantitatively, subtracting out the
internal LM with a factor of β = 0.1 from a model with shal-
low fusion improves BASELINE by 7.9%/6.2% while only
improving E-ALL by 1.2%/0.6%.

This result suggests that our method largely benefits the
internal language representation of the ASR system’s de-
coder. This explanation is consistent with other methods of
incorporating unsupervised text into a model at training time
such as deep fusion [36] and cold fusion [37], but without
adding any additional parameters to the ASR model at in-
ference time. That is, unlike conventional language model
fusion, our method bakes knowledge of that data into the
parameters of the decoder, providing much the same effect as
combining the ASR system with a pretrained language model
with no modifications to the architecture.

This result also suggests that the improvements due to
our method come mostly, but not entirely, from the unsuper-
vised text data, as opposed to the unsupervised audio. This is
consistent with our design; unsupervised text yields pseudo-
labeled examples for the ASR task, while unsupervised audio
yields pseudo-labeled examples for the TTS task.

(a) Baseline, Test Clean (b) Baseline, Test Other (c) Baseline, LM Only

(d) Dual Learning, Test Clean (e) Dual Learning, Test Other (f) Dual Learning, LM Only

Fig. 2: The effects of external LM (ELM) and internal LM (ILM) interpolation at inference time.

4.2. Tail Analysis

Since unsupervised data is often used to address parts of the
data distribution that are absent from the supervised training
set, we seek to understand the effect of our method on “tail”
words, which we define as words that are underrepresented
in the training data relative to their frequency in the language
as a whole. To this end, we draw inspiration from [38] and
generate a test set of examples containing words that are not
represented in S but are represented in UT . Specifically, for
some parameter 0 < τ < 1 we sample transcripts from UT
containing at least one unigram that occurs with frequency
less than τ in S but greater than τ in UT . We set τ = 0.00001
and generate a test set of 10k transcripts. We then synthe-
size audio transcripts using a Tacotron TTS system as in [28].
Results on this tail test set are given in Table 1, and measure-
ments of internal and external LM integration are included in
Figure 2.

Model Baseline Shallow
Fusion

Internal
LM

BASELINE 16.1 13.8 12.9
E-ALL 15.3 12.6 12.4
E-DL 15.5 13.1 12.8
E-RECON 17.4 14.5 14.2

Table 2: WER percentage results on the synthesized Tail test
set.

As above, we find that our method yields improvements
across the board. However, we note that the improvements
are smaller than they are on Librispeech test sets. In particu-
lar, without an LM we improve by 5.0%, with shallow fusion

we improve by 8.7%, and with internal language model sub-
traction we improve by 3.9%.

5. CONCLUSION

In this paper, we demonstrate that dual learning is an effective
method for pretraining an on-device, streaming ASR model
using both unsupervised audio and text data. We provide an
analysis that suggests that the majority of improvements due
to the method are attributable to a refinement of the ASR de-
coder’s internal language representation. We believe that this
work motivates exploration in how proven methods for mod-
eling unsupervised audio such as discretization and masked
language modeling could further improve these results.

6. REFERENCES

[1] Long Nguyen and Bing Xiang, “Light supervision in
acoustic model training,” in 2004 IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing.

[2] Lori Lamel, Jean-Luc Gauvain, and Gilles Adda,
“Lightly supervised and unsupervised acoustic model
training,” .

[3] Jeff Ma and Richard Schwartz, “Unsupervised versus
supervised training of acoustic models.,” in Interspeech,
2008.

[4] Lukasz Kaiser and Samy Bengio, “Discrete autoen-
coders for sequence models,” in International Confer-
ence on Learning Representations (ICLR), 2018.

[5] Jan Chorowski, Ron J. Weiss, Samy Bengio, and Aäron
van den Oord, “Unsupervised speech representation
learning using wavenet autoencoders,” in IEEE Trans-
actions on Audio, Speech, and Language Processing,
2019.

[6] Yu-An Chung, Hao Tang, and James Glass, “Vector-
quantized autoregressive predictive coding,” in Inter-
speech, 2020.

[7] Alexander H. Liu, Yu-An Chung, and James R.
Glass, “Non-autoregressive predictive coding for learn-
ing speech representations from local dependencies,” in
Interspeech, 2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova, “BERT: pre-training of deep
bidirectional transformers for language understanding,”
in Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), 2018.

[9] Dongwei Jiang, Xiaoning Lei, Wubo Li, Ne Luo, Yux-
uan Hu, Wei Zou, and Xiangang Li, “Improving
transformer-based speech recognition using unsuper-
vised pre-training,” in Interspeech, 2020.

[10] Andy T. Liu, Shu wen Yang, Po-Han Chi, Po chun Hsu,
and Hung yi Lee, “Mockingjay: Unsupervised speech
representation learning with deep bidirectional trans-
former encoders,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2020.

[11] Alexei Baevski, Michael Auli, and Abdelrahman Mo-
hamed, “Effectiveness of self-supervised pre-training
for speech recognition,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2020.

[12] Aäron van den Oord, Yazhe Li, and Oriol Vinyals, “Rep-
resentation learning with contrastive predictive coding,”
in Advancements in Neural Information Processing Sys-
tems (NeurIPS), 2018.

[13] Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli, “wav2vec: Unsupervised pre-training
for speech recognition,” 2019.

[14] Alexei Baevski, Steffen Schneider, and Michael Auli,
“vq-wav2vec: Self-supervised learning of discrete
speech representations,” 2020.

[15] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” 2020.

[16] Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long
Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu,
Michael Zeng, and Furu Wei, “Wavlm: Large-scale
self-supervised pre-training for full stack speech pro-
cessing,” 2022.

[17] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma, “Dual learning for ma-
chine translation,” in Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[18] Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haf-
fari, and Trevor Cohn, “Iterative back-translation for
neural machine translation,” in Proceedings of the 2nd
Workshop on Neural Machine Translation and Genera-
tion, 2018.

[19] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura,
“Listening while speaking: Speech chain by deep learn-
ing,” in IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), 2017.

[20] Yi Ren, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and
Tie-Yan Liu, “Almost unsupervised text to speech and
automatic speech recognition,” in International Confer-
ence on Machine Learning (ICML), 2019.

[21] Jin Xu, Xu Tan, Yi Ren, Tao Qin, Jian Li, Sheng Zhao,
and Tie-Yan Liu, “Lrspeech: Extremely low-resource
speech synthesis and recognition,” in Knowledge Dis-
covery and Data Mining (KDD), 2020.

[22] Takaaki Hori, Ramón Fernandez Astudillo, Tomoki
Hayashi, Yu Zhang, Shinji Watanabe, and Jonathan Le
Roux, “Cycle-consistency training for end-to-end
speech recognition,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2019.

[23] Gary Wang, Andrew Rosenberg, Zhehuai Chen,
Yu Zhang, Bhuvana Ramabhadran, Yonghui Wu, and
Pedro Moreno, “Improving speech recognition using
consistent predictions on synthesized speech,” in IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2020.

[24] Zhehuai Chen, Yu Zhang, Andrew Rosenberg, Bhuvana
Ramabhadran, Gary Wang, and Pedro Moreno, “In-
jecting text in self-supervised speech pretraining,” in
IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), 2021.

[25] Zhehuai Chen, Yu Zhang, Andrew Rosenberg, Bhu-
vana Ramabhadran, Pedro Moreno, and Gary Wang,
“Tts4pretrain 2.0: Advancing the use of text and speech

in asr pretraining with consistency and contrastive
losses,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022.

[26] Arun Narayanan, Tara N. Sainath, Ruoming Pang, Ji-
ahui Yu, Chung-Cheng Chiu, Rohit Prabhavalkar, Ehsan
Variani, and Trevor Strohman, “Cascaded encoders for
unifying streaming and non-streaming asr,” 2021.

[27] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang,
“Conformer: Convolution-augmented transformer for
speech recognition,” in Interspeech, 2020.

[28] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, R. J. Skerry-Ryan,
Rif A. Saurous, Yannis Agiomyrgiannakis, and Yonghui
Wu, “Natural TTS synthesis by conditioning wavenet
on mel spectrogram predictions,” in IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018.

[29] Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio, “On using monolin-
gual corpora in neural machine translation,” CoRR, vol.
abs/1503.03535, 2015.

[30] Ehsan Variani, David Rybach, Cyril Allauzen, and
Michael Riley, “Hybrid autoregressive transducer (hat),”
in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020.

[31] Rami Botros, Tara N. Sainath, Robert David, Emmanuel
Guzman, Wei Li, and Yanzhang He, “Tied & reduced
RNN-T decoder,” in Interspeech, 2021.

[32] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer, “Scheduled sampling for sequence prediction
with recurrent neural networks,” in Advances in Neural
Information Processing Systems, 2015.

[33] Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny
Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré,
Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert,
Christian Fuegen, Tatiana Likhomanenko, Gabriel Syn-
naeve, Armand Joulin, Abdelrahman Mohamed, and
Emmanuel Dupoux, “Libri-light: A benchmark for ASR
with limited or no supervision,” in IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020.

[34] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le,
“SpecAugment: A simple data augmentation method for
automatic speech recognition,” in Interspeech, 2019.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in Advancements in Neural Information Processing Sys-
tems (NeurIPS), 2017.

[36] Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio, “On using monolin-
gual corpora in neural machine translation,” ArXiv, vol.
abs/1503.03535, 2015.

[37] Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and
Adam Coates, “Cold fusion: Training seq2seq models
together with language models,” in Interspeech, 2018.

[38] Cal Peyser, Sepand Mavandadi, Tara N. Sainath, James
Apfel, Ruoming Pang, and Shankar Kumar, “Improving
tail performance of a deliberation e2e asr model using a
large text corpus,” in Interspeech, 2020.

	1 INTRODUCTION
	2 METHODS
	2.1 ARCHITECTURE
	2.1.1 Supervised ASR and TTS
	2.1.2 Unsupervised ASR and TTS
	2.1.3 Reconstruction

	2.2 Training
	2.3 Language Modeling

	3 EXPERIMENTAL SETUP
	3.1 Model
	3.2 Data
	3.3 Evaluation

	4 RESULTS
	4.1 Effect of the Language Model
	4.2 Tail Analysis

	5 CONCLUSION
	6 References

