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ABSTRACT

Text-to-SQL task maps natural language utterances to struc-
tured queries that can be issued to a database. State-of-the-
art (SOTA) systems rely on finetuning large, pre-trained lan-
guage models in conjunction with constrained decoding ap-
plying a SQL parser. On the well established Spider dataset,
we begin with Oracle studies: specifically, choosing an Or-
acle hypothesis from a SOTA model’s 10-best list, yields a
7.7% absolute improvement in both exact match (EM) and
execution (EX) accuracy, showing significant potential im-
provements with reranking. Identifying coherence and cor-
rectness as reranking approaches, we design a model gener-
ating a query plan and propose a heuristic schema linking
algorithm. Combining both approaches, with T5-Large, we
obtain a consistent 1% improvement in EM accuracy, and a
2.5% improvement in EX, establishing a new SOTA for this
task. Our comprehensive error studies on DEV data show the
underlying difficulty in making progress on this task.

Index Terms— Text-To-SQL, Semantic parsing

1. INTRODUCTION

Large language models (LM) are widely used for natural
language generation [1, 2, 3]. Recently, the use of large
LMs has extended to semantic parsing tasks such as code
generation. For general-purpose code generation, large LMs
such as Codex [4] are trained on massive, paired codebases
(code, NL). For domain-specific code generation tasks, such
as Text-to-SQL that aims to convert natural language in-
structions to SQL queries, multiple public domain datasets
are available (with associated leaderboards), including Spi-
der [5], CoSQL [6] and SParC [7]. However, the amount of
training data in these datasets is much smaller than the natu-
ral language and code pairs mined from the internet. In such
cases, instead of training a new model from scratch, the pre-
train/finetune strategy with publicly available LMs has been
shown to be more accurate. For example, in UnifiedSKG [8],
the T5 model [1] is finetuned for various semantic parsing
tasks (including Text-to-SQL), achieving SOTA performance.
Besides the amount of the training data, another challenge
with SQL generation is that the generated code is underspec-

ified without the corresponding schema 1. To handle this
challenge, implicit or explicit schema linking becomes an
important sub-task for SQL code generation [9, 10, 11].

In this paper, we focus on complex, cross-domain, SQL
generation using Spider [5] a large-scale, Text-to-SQL dataset
consisting of 200 complex databases covering 138 domains.
Spider is a well established dataset with nearly 70 entries on
the leaderboard, demonstrating the difficulty of the task. The
data is split into training, development (DEV), and test sets
without overlaps in databases across these sets, as the aim of
this task is to learn models that can issue queries from natural
language text to previously unseen databases in the training
set. Furthermore, SQL queries in this dataset contain nested
sub-queries, requiring the model to understand compositional
structures. The model performance is based on two metrics,
exact-set-match accuracy (EM) and execution accuracy (EX);
the former compares individual query components between
the predicted and groundtruth SQL queries, while the latter
compares their execution output.

Similar to general-purpose code generation, the output of
Text-to-SQL models is constrained to follow SQL grammar.
Previous solutions have employed encoder/decoder models,
with the decoder being constrained to produce well-formed
outputs [12, 13]. An approach that is more compatible with
large pretrained LMs is to remove the constraints on de-
coder: [14, 15] prune the finalized hypotheses from beam
search to those that are syntactically correct. Meanwhile,
PICARD [16], a top entry on the Spider leaderboard 2, in
addition to finetuning the pretrained T5 model, also imposes
SQL syntax constraints during beam search (via constrained
decoding). It achieves an EM of 74.8% and an EX of 79.2%
on the Spider DEV set. Natural ways to potentially improve
these metrics include increasing the model size or collecting
and/or synthesizing additional training data [17].

In this paper, we take a different approach: we first
perform an Oracle analysis on n-best lists obtained from PI-
CARD and observe significant improvements (7.7% absolute
improvement in EM and EX) even at small beam sizes (such
as 10). The gap in performance between 1-best and Oracle
motivates reranking approaches. We propose 2 reranking

1For Text-to-SQL, in addition to SQL grammar constraints, there are
schema constraints.

2https://yale-lily.github.io/spider
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approaches that are motivated by the issues with the current,
large pretrained LMs: coherence [18] and correctness. To im-
prove coherence, we explore n-best reranking using a query
plan produced by an independent model. Next, to improve
correctness, we propose a heuristic algorithm performing
schema linking on n-best lists – imposing constraints that
are missing in PICARD. The combined reranking approaches
consistently yield improvements across all T5 model sizes,
obtaining a 1.0% absolute improvement in EM and a 2.5%
absolute improvement on EX. Lastly, to analyze persistent
gap with Oracle results, we performed a detailed analysis
of errors and metrics. Our studies show that annotation and
metrics issues can be significant factors to improving models
and evaluation on Spider.
Contributions. The contributions of this paper are: a) Using
Oracle analysis and rerankers on n-best lists, we outperform
SOTA performance on a competitive Spider task; b) Analysis
of errors on Spider DEV data, showing much work remains
to be done on metrics and annotation.

2. RELATED WORK

We review related work in 4 categories: a) reranking ap-
proaches; b) coherence in LMs; c) schema linking for text-to-
SQL; d) noise in Spider.
Rerankers. N-best list reranking has a long history in speech
recognition, machine translation, and semantic parsing com-
munities [19, 20, 21, 22, 23, 24, 25]. These are performed
with a much larger 2nd-stage model [26, 27] or using ad-
ditional knowledge sources not available during the first
pass [28, 29]. On Spider, a larger 2nd-stage reranker was
successfully used in [30]. Some reranking methods combine
outputs from multiple systems [31] or use improved output
confidence [32]. Imposing task specific constraints [14, 15]
to remove invalid options can be a helpful strategy to improve
reranking. In our work, in addition to the output target being
structured queries (instead of natural language), the 1st-stage
model is large (T5 family), and the baseline model imposes
additional knowledge during beam search in the form of SQL
parsing. Our proposed methods are designed for this setting.
Coherence with query plan. Coherence issues with LMs [33]
are associated with hallucination phenomenon [34, 35].
While these are well-known problems in unstructured text
generation with LMs [36, 37, 38, 39], coherence issues with
structured text generation is somewhat less unexplored: [40]
uses semantic coherence for data augmentation, while [41]
uses a reconstruction model for reranking semantic parses,
and [14, 15, 16] use parsers to improve coherence with
SQL grammar. Our reranker is designed to improve seman-
tic coherence, and it is distinct from [41] in that, our query
plan model predicts the structure of a query (from natural
language), and orders the n-best list for consistency.
Correctness with schema linking. Historically, schema
linking (SL) has been explored for Text-to-SQL. Schema has
been encoded in model input for small encoder/decoder mod-

Fig. 1. PICARD explained by an example. The prediction
pattern is “〈Database name〉 | 〈pred SQL〉”.

els [15, 42, 43] and large pretrained LMs [8, 16]. More work
has been done on modeling schema linking [9], where the role
of SL in Text-to-SQL is recognized. RAT-SQL [12], a system
that had been influential in text-to-SQL, proposed a frame-
work to encode relational structure in the database schema
and simultaneously address schema linking. In contrast, we
use schema linking as a post-processor and a reranker on the
output of large LMs.
Noise in Spider. Spider dataset [5] has been well-explored in
Text-to-SQL, and it’s corpus noise are documented in related
work [9, 12, 44]. One type of corpus noise comes from anno-
tation errors in groundtruth SQL queries and typos in natural
language queries [9]. Another source of the noise is in the
pairing of only one groundtruth SQL query to each natural
language query, which results in a large portion of predicted
queries being incorrectly marked as “mispredicted” [12, 44].

3. TEXT-TO-SQL USING PRE-TRAINED LMS

We use PICARD as our baseline system, and use it to produce
the n-best hypotheses in this paper. It uses finetuned T5 mod-
els, and implements incremental SQL parsing to constrain
decoding during beam search. Input to the T5 model includes
natural language query, database name, and database schema
(table name : col1 , ... , coln). PICARD
employs a post-processor during beam search, and to save
computing time it only checks the next top-k tokens for va-
lidity. Figure 1 shows how predictions are generated when
PICARD is enabled, using k = 2 and beam size of 3. Shad-
owed box means that the result is not expanded or explored
for the next time stamp; blue (solid) boxes show valid SQL
query prefixes, while orange (dashed) boxes show sequences
that violate SQL syntax.

The incremental parser not only filters out hypotheses
that violate the SQL grammar, but also imposes rudimen-
tary schema checks. Fig. 1 gives two examples of filter-
ing hypotheses, the first one is due to a syntax error (e.g.,
count()) and the other one is due to schema error (e.g.,



table name vocal does not exist in the database).

4. RERANKING APPROACHES

In this section, we discuss our two reranking approaches over
n-best hypotheses.

4.1. Improving Coherence with Query Plan

Text generation is a challenging topic, and large LMs tend
to lose coherence [18, 39]. This is compounded in text-to-
SQL with such models: apart from conforming to syntactic
structures, models have to perform semantic mapping from
natural language to SQL over long spans in complex ques-
tions involving compositionality, grouping/ordering/count-
ing. Furthermore, nested queries are likely to appear with
WHERE, EXCEPT, UNION, and INTERSECT clauses,
while grouping/ordering/counting tend to occur with GROUP
BY, HAVING, ORDER BY, LIMIT.

We build a model that focuses specifically on this aspect:
a multi-label classification model that generates a query plan
predicting whether a SQL query contains the aforementioned
8 clauses. The output of this model is then used as a co-
herence check reranker against the n-best hypotheses from
the baseline model. We finetune a RoBERTa-Large using
the classification head with binary cross entropy (BCE) loss.
The model is trained using the training partition of Spider
dataset. Input of the model consists of a natural language
query and a database schema, while the labels are obtained
from groundtruth SQL queries.

4.2. Improving Correctness with Schema Linking

The motivation for this approach comes from the fact that cer-
tain aspects of schema linking (values, columns, and tables)
from natural language query (on the input side of the model)
to a SQL query (on the output side of the model) can be hard
for the model to learn to map: this is because these mappings
tend to be irregular, and a relatively small training dataset may
not cover a large fraction of the irregularities. For example, a
primary key field on “student identifcation” could be named
in several ways as a column such as “stud id”, “sid”, “s id”
etc. Similarly, values that are strings can be arbitrarily repre-
sented, such as “True” vs “T” vs “Yes”.

We implement an algorithm to perform value linking in
WHERE clauses. For each predicted SQL query in the n-best
list, we follow three steps:
1. Extract slot names and their respective values from the

conditions in the WHERE clause; then check if the slot
value exists in any of the referenced tables in the FROM
clause of the query;

2. Obtain a list of candidate slot names and values, which are
exact or partial occurrences of the column/table names and
string values in the question with name-based and value-
based linking described in RAT-SQL [12];

3. Perform prefix and abbreviation matches on slot values
with categorical types in a table schema definition (such
as matching “left” to “L”).

5. EXPERIMENTS

This section presents the experimental setup, baselines, Ora-
cle analysis, and the main results.

5.1. Dataset and Metrics

We briefly describe the dataset and metrics used in this paper.
More details can be found in [5].

5.1.1. Dataset

Spider is a large-scale, cross-domain paired text-to-SQL
dataset: it contains 10,181 questions and 5,693 unique com-
plex SQL queries on 200 databases (covering 138 domains),
each with multiple tables. The standard protocol splits this
into 8,659 examples on 146 databases for training, and 1034
examples on 20 databases are used for development (DEV);
the test set that includes 2,147 examples from 34 databases
are held back. The split is done without overlaps of databases
across these sets.
Task difficulty levels. Spider categorizes the SQL query
complexity into 4 difficulty levels: easy, medium, hard, and
extra hard. Queries that contain more SQL keywords (GROUP
BY, ORDER BY, INTERSECT), nested subqueries, column
selections and aggregators are considered harder.

5.1.2. Metrics

On Spider, Text-to-SQL model performance is evaluated
based on two metrics: exact-set-match accuracy (EM) and
execution accuracy (EX). Note that all our results are on the
Spider DEV set.
Exact-set-match accuracy (EM). EM compares each clause3

between a prediction and its corresponding groundtruth SQL
query. The predicted SQL query is correct only if all of the
components match. This metric does not take values into
account. EM can lead to false positives and false negatives.
Execution Accuracy (EX). EX compares the execution
output of the predicted SQL query and its corresponding
groundtruth SQL queries. However, it is important to note
that EX can also lead to false positives and false negatives.

5.2. Models
We use PICARD [16] as our baseline model in this paper. We
finetune on three T5 model sizes, T5-Base4, T5-Large4, and
T5-3B on p3dn.24xlarge instances (8 NVIDIA Tesla V100
GPUs) and employ DeepSpeed to save memory5. The in-
put to the models contain several segments separated by |,

3Note that EM implemented by Spider ignores table join conditions.
4Note that the models are LM adapted, initialized from T5 model and

trained for additional 100K steps on the LM objective discussed in [1]
5https://github.com/microsoft/DeepSpeed



including natural language query, database name, serialized
database schema. We take the serialization scheme mentioned
in [45] and enable database content by appending database
values to the column names [15]. All the T5 models are fine-
tuned with teacher forcing and cross-entropy (CE) loss for up
to 3000 epochs using a batch size of 2000 and a learning rate
of 1e−4. During inference, an incremental SQL parser is in-
tegrated into beam search, with a beam size of 4.

To improve coherence, we finetune a RoBERTa-Large
model with a sequence classification head on p3.2xlarge
instances (1 NVIDIA Tesla V100 GPU) for query plan pre-
diction. We reuse the input from the baseline model. The
output is one-hot encoding label extracted from groundtruth
queries based on existence of WHERE, GROUP BY, HAVING,
ORDER BY, LIMIT, EXCEPT, UNION, and INTERSECT
clauses. The RoBERTa model is finetuned with binary cross
entropy (BCE) loss for up to 100 epochs using a batch size of
5 and a learning rate of 1e−5.

5.3. Oracle Analysis
We open the beam up and perform Oracle analysis on n-best
hypotheses. Specifically, we conducted these experiments
over a set of beam sizes (and correspondingly n-best hypothe-
ses), 10, 15, 20, and 25; also a few selected T5 model sizes,
T5-Base4, T5-Large4, and T5-3B.

Table 1. 1-best accuracies as beam size is changed.
Beam T5-Base T5-Large T5-3B
size EM% EX% EM% EX% EM% EX%

4 66.6 68.3 74.8 79.2 75.5 79.3
10 67.1 68.4 75.1 79.4 75.6 79.3
15 67.1 68.5 74.7 79.2 75.5 79.2
20 67.3 68.7 74.8 79.2 75.5 79.2
25 67.3 68.7 74.7 79.1 75.6 79.2

Search errors. Table 1 presents the analysis by increasing
the beam size (and choosing the 1-best hypothesis): opening
up the beam, improves the accuracy by a small amount ini-
tially (going from 4 to 10) for all models. However, the per-
formance on EM and EX saturate after that, suggesting that
search errors contribute a small proportion of overall errors.

Table 2. Oracle accuracies as beam size is changed.
Beam T5-Base T5-Large T5-3B Note
size EM% EX% EM% EX% EM% EX%
10 67.1 68.3 75.1 79.4 75.6 79.3 1-best
10 74.7 75.5 82.8 87.1 85.2 87.3

Oracle15 75.4 76.6 82.9 87.6 86.2 87.9
20 76.1 77.6 83.5 88.0 86.3 88.0
25 76.5 78.3 83.8 88.0 86.8 88.8

Model errors. In Table 2, the first row is the 1-best obtained
from baseline, while the other rows show Oracle accuracies
for the three models sizes over different beams. As can be ob-
served, both EM and EX improve significantly: for example,

the T5-Large model achieves 7.7%, 7.8%, 8.4% and 8.7% ab-
solute improvements for EM; similarly 7.7%, 8.2%, 8.6% and
8.6% absolute improvements for EX.

Table 3. T5-large: 1-best and Oracle over difficulty levels.
Difficulty count 1-best Oracle

EM% EX% EM% EX%
Easy 248 89.1 91.9 93.1 96.0

Medium 446 80.9 84.8 88.6 92.6
Hard 174 65.5 71.3 74.7 79.3
Extra 166 48.8 54.8 60.2 67.5
Total 1034 75.1 79.4 82.8 87.1

Difficulty levels. Table 3 compares the 1-best with Oracle
using baseline (with T5-Large) over different difficulty lev-
els. It can be observed that the Oracle results are consistently
higher over both metrics (EM and EX) at all difficulty levels.
The biggest improvement occurs on extra hard queries, with
absolute improvements of more than 10% for both metrics.
Overall, these results suggest that significant improvements
can be obtained using reranking approaches over n-best lists.

5.4. Results
5.4.1. Improving Coherence with Query Plan Modeling

Table 4 lists reranking results using query plan (QP) coher-
ence on the 10-best hypotheses obtained from the baseline
using a T5-Large model. It can be seen that using struc-
tural consistency with QP can help both EM and EX, obtain-
ing 0.7% and 0.5% absolute improvements respectively. We
present an example improved by QP. A query plan that com-
bines GROUPBY and HAVING clauses is presented below.

Table 4. Reranking with query plan (QP) coherence checks
on 10-best hypotheses from baseline using T5-Large.

Method T5-Large
EM% EX%

Baseline 75.1 79.4
QP 75.8 79.9

To understand the QP model better, we present its per-
formance on each of the clauses in Table 5 in terms of F-
1 score, precision and recall. While the model performs
well on WHERE, GROUP BY, HAVING, ORDER BY,
LIMIT, INTERSECT, it does not perform as well on



EXCEPT and UNION. We conjecture low training data counts
for these clauses as a potential reason. The macro F-1 score
for this model is 0.89.

Table 5. QP model performance per clause.

Clause F1 R P
where 0.97 0.97 0.98

groupBy 0.96 0.96 0.96
having 0.97 0.95 0.99

orderBy 0.96 0.97 0.95
limit 0.95 0.96 0.94

except 0.73 0.76 0.71
union 0.62 0.44 0.99

intersect 0.96 0.97 0.95

5.4.2. Improving Correctness with Schema Linking

Table 6 shows the reranking performance with schema link-
ing over 10-best hypotheses obtained from a baseline model
with T5-Large. With this approach, we see an absolute im-
provement in EX of 1.9%.

Table 6. Reranking with schema linking (SL) on 10-best hy-
potheses obtained from baseline using T5-Large.

Method T5-Large
EM% EX%

Baseline 75.1 79.4
SL 75.4 81.3

Below, we present 2 examples of schema linking errors
(one of column name; and another of cell value) which are
fixed by the proposed method.

In Ex 1, the question asks for the abbreviation of Airline “Jet-
Blue Airways”, where “JetBlue Airways” is a slot value for
a slot name “airline”. The model gets misled by an avail-
able column name that matches the query word “abbrevia-
tion”. In Ex 2, we need a SQL query for the total population
of “Gelderland” district. The expected slot value is “Gelder-
land”, the predicted SQL obtained a cell value of “Geeland”.

Syntax Checks with a Full Parser. Since incremental pars-
ing can still allow syntactically incorrect full hypotheses,

we investigated the errors from the baseline model. Around
2% of the hypotheses are indeed syntactically incorrect.
For example, intermediate SQL queries from Fig. 1 such as
select count(*) from, which are invalid queries but
valid prefixes, are allowed by the incremental parser as out-
puts. We run a full SQL parser, filtering invalid hypotheses,
and selecting the hypothesis with the highest remaining score.
Analysis. Results from our experiments showed that the full
parser does not improve performance. We investigated the er-
rors for the 23 examples with syntactically incorrect 1-best
predictions: for 16 of them all other hypotheses are incom-
plete SQL queries, while the other 7 do not have any hypothe-
ses that improves either EM or EX. These are errors that can-
not be improved even with an Oracle selection, meaning that
these are residual search errors.

5.4.3. Combined Results

We examine if the gains from SL and QP are additive, and if
they carryover to different model sizes. We then combine SL
and QP in order, presenting the results in Table 7.

Table 7. Performance of rerankers (QP, SL, SL + QP) on
10-best lists obtained from different T5 model sizes.

Method T5-Base T5-Large T5-3B
EM% EX% EM% EX% EM% EX%

Baseline 67.1 68.3 75.1 79.4 75.6 79.3
QP 67.8 68.9 75.8 79.9 75.9 79.6
SL 67.2 70.0 75.4 81.3 76.1 80.4
SL + QP 67.9 70.4 76.1 81.9 76.4 80.6

From the table, it can be seen that the performance of the
different rerankers are consistent across model sizes: the SL
approach yields a consistent gain of between 1.1% to 1.9% in
EX. Similarly, QP yields a consistent gain as well. Overall
the gains combining the approaches are additive on both EM
and EX across model sizes. Based on the one-sided t-tests,
improvements on T5-base and T5-large are significant at α =
0.1, while the gain on T5-3B is significant at α = 0.15.

5.4.4. Analysis of gains across difficulty levels

Table 8 shows that the gains from the proposed approach
(combining SL and QP) consistently carry over all the pre-
defined difficulty levels. Furthermore, the gains are bigger on
harder examples, considering both EM and EX.

6. DISCUSSION ON ERRORS

Given that proposed reranker still has a gap with Oracle, we
analyze errors with metrics computation and annotation.

6.1. Metrics Errors

PK/FK Swaps. EM implementation by Spider is done by re-
placing foreign keys with primary keys. This is problematic



Table 8. T5-large model: Performance of rerankers (combin-
ing SL and QP) on 10-best lists

Diff count Baseline SL + QP
EM% EX% EM% EX%

Easy 248 89.1 91.9 89.5 94.8
Med 446 80.9 84.8 81.6 87.9
Hard 174 65.5 71.3 68.4 73.6
Extra 166 48.8 54.8 49.4 55.4
Total 1034 75.1 79.4 76.1 81.9

and may lead to false positives. The following example con-
tains a prediction that is marked as exact match incorrectly.

We fixed the EM implementation and obtained the revised
EM∗ in Table 9. Generally there is a 3-4% absolute gap be-
tween the original and revised EM implementation.

Table 9. Revised EM implementation.

Method T5-large LM T5-3b
EM% EM∗% EM% EM∗%

PICARD 75.1 72.1 75.6 71.9
SL + QP 76.1 72.9 76.4 72.5

Query rewrite errors. Since SQL queries can sometimes be
rewritten in multiple ways, EM can yield false negatives. We
conducted error analysis over hypotheses selected after our
combined reranking system (SL + QP) using finetuned T5-
large model with PICARD. We found that 7.9% of predictions
are correct using EX, but incorrect with EM; also, 4.8% of
hypotheses are correct SQL but different to the corresponding
groundtruth SQL. In such examples with SQL rewrites, EX
serves as a complementary metric to EM.

Content-only match errors. As described in [5], it is pos-
sible to obtain a predicted SQL that returns the same result
as the groundtruth SQL but semantically different. We found
that 4.4% of the hypotheses on DEV data generated from T5-
Large model using PICARD are false positives of this type.

Redundant column errors. We found that some predicted
or groundtruth SQL queries contain redundant columns. The
columns repeat information or do not need to be included,
however retaining such column won’t affect the semantics of
the query, but can result in EX errors.

6.2. Annotation Errors

We found 5 unique groundtruth SQL queries with annotation
errors in DEV set. In Spider, some natural language queries
are presented multiple times; consequently, the 5 unique
groundtruth SQL queries are assigned to 7 DEV examples.
We show an example with annotation error whose natural
language query has been written in two different ways below.
The annotation error is at least 0.7%.

6.3. Summary and Outlook on Errors

As we have seen, 0.7% of the DEV examples have incorrect
groundtruth SQL queries. We also identified issues with EM
implementation in Spider – foreign keys are automatically re-
placed with the corresponding primary keys, resulting in 3-
4% of the predictions on DEV examples being incorrectly
marked as exact matches (false positives). Also, each exam-
ple in Spider is annotated with only one groundtruth SQL –
leading to about 4.8% of the predictions on DEV examples
being false negatives. Using EX, results in 4.4% of the pre-
dictions on DEV being false positive, while another 0.8% of
the predictions are false negative. Our studies show that met-
rics and annotation need further research attention on Spider.

7. CONCLUSIONS

We began with Oracle studies, showing large gains can be
obtained with n-best hypotheses reranking for a SOTA Text-
to-SQL system. Motivated by correctness and coherence is-
sues in text generation using large PLMs, we proposed two
reranking approaches: a) schema linking; b) query plan mod-
eling. On a competitive Spider dataset, applying our pro-
posed reranking methods to 10-best hypotheses obtained from
a SOTA system (PICARD), we achieve improvements of 1%
in EM and 2.5% in EX. We analyzed errors in metrics com-
putation and annotation – showing these can be significant
factors to improving models and evaluation on Spider.
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Khadivi, Evgeny Matusov, Jia Xu, Yuqi Zhang, and Her-
mann Ney, “The rwth phrase-based statistical machine
translation system,” in Proc. of IWSLT, 2005.



[22] Ngoc-Quang Luong, Laurent Besacier, and Benjamin
Lecouteux, “Word confidence estimation for smt n-best
list re-ranking,” in Proc. of the Workshop on HaCaT
during EACL, 2014.

[23] Michael Collins and Terry Koo, “Discriminative rerank-
ing for natural language parsing,” Computational Lin-
guistics, vol. 31, no. 1, pp. 25–70, 2005.

[24] Ruifang Ge and Raymond Mooney, “Discriminative
reranking for semantic parsing,” in Proc. of COL-
ING/ACL, 2006, pp. 263–270.

[25] Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei Zhu,
and Xiaodan Zhu, “Dynamic hybrid relation exploration
network for cross-domain context-dependent semantic
parsing,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2021, vol. 35, pp. 13116–13124.

[26] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin,
“Document ranking with a pretrained sequence-to-
sequence model,” arXiv preprint arXiv:2003.06713,
2020.

[27] Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing
Xiang, “Retrieval, re-ranking and multi-task learning
for knowledge-base question answering,” in Proc. of
the European Chapter of ACL: Main Volume, 2021, pp.
347–357.

[28] Manny Rayner, David Carter, Vassilios Digalakis, and
Patti Price, “Combining knowledge sources to reorder
n-best speech hypothesis lists,” arXiv preprint cmp-
lg/9407010, 1994.

[29] Rebecca Jonson, “Dialogue context-based re-ranking of
asr hypotheses,” in SLT. IEEE, 2006, pp. 174–177.

[30] Amol Kelkar, Rohan Relan, Vaishali Bhardwaj, Saurabh
Vaichal, Chandra Khatri, and Peter Relan, “Bertrand-dr:
Improving text-to-sql using a discriminative re-ranker,”
arXiv preprint arXiv:2002.00557, 2020.

[31] Antti-Veikko Rosti, Necip Fazil Ayan, Bing Xiang, Spy-
ros Matsoukas, Richard Schwartz, and Bonnie Dorr,
“Combining outputs from multiple machine translation
systems,” in HLT 2007: The Conference of NAACL;
Proc. of the Main Conference, 2007, pp. 228–235.

[32] Nguyen Bach, Fei Huang, and Yaser Al-Onaizan,
“Goodness: A method for measuring machine transla-
tion confidence,” in Proc. of the 49th Annual Meeting of
ACL: HLT, 2011, pp. 211–219.

[33] Robert Porzel and Iryna Gurevych, “Contextual coher-
ence in natural language processing,” in International
and Interdisciplinary Conference on Modeling and Us-
ing Context. Springer, 2003, pp. 272–285.

[34] Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt, “The curious case of hallucinations in neural
machine translation,” arXiv preprint arXiv:2104.06683,
2021.

[35] Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-
njiang, and David Sussillo, “Hallucinations in neural
machine translation,” 2018.

[36] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald, “On faithfulness and factual-
ity in abstractive summarization,” arXiv preprint
arXiv:2005.00661, 2020.

[37] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi, “The curious case of neural text degenera-
tion,” arXiv preprint arXiv:1904.09751, 2019.

[38] Clara Meister and Ryan Cotterell, “Language
model evaluation beyond perplexity,” arXiv preprint
arXiv:2106.00085, 2021.

[39] Nikolay Malkin, Zhen Wang, and Nebojsa Jojic, “Co-
herence boosting: When your pretrained language
model is not paying enough attention,” in Proc. of the
60th Annual Meeting of ACL (Volume 1: Long Papers),
2022, pp. 8214–8236.

[40] Ning Li, Bethany Keller, Mark Butler, and Daniel
Cer, “Seqgensql–a robust sequence generation model
for structured query language,” arXiv preprint
arXiv:2011.03836, 2020.

[41] Pengcheng Yin and Graham Neubig, “Reranking for
neural semantic parsing,” in Proc. of the 57th Annual
Meeting of ACL, 2019.

[42] Ben Bogin, Matt Gardner, and Jonathan Berant, “Repre-
senting schema structure with graph neural networks for
text-to-sql parsing,” arXiv preprint arXiv:1905.06241,
2019.

[43] Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zihan
Xu, Su Zhu, and Kai Yu, “Shadowgnn: Graph projection
neural network for text-to-sql parser,” arXiv preprint
arXiv:2104.04689, 2021.

[44] DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin, “Ryansql: Recursively apply-
ing sketch-based slot fillings for complex text-to-sql in
cross-domain databases,” Computational Linguistics,
vol. 47, no. 2, pp. 309–332, 2021.

[45] Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova, “Compositional generalization and
natural language variation: Can a semantic parsing ap-
proach handle both?,” arXiv preprint arXiv:2010.12725,
2020.


	1  Introduction
	2  Related Work
	3  Text-to-SQL Using Pre-trained LMs
	4  Reranking Approaches
	4.1  Improving Coherence with Query Plan
	4.2  Improving Correctness with Schema Linking

	5  Experiments
	5.1  Dataset and Metrics
	5.1.1  Dataset
	5.1.2  Metrics

	5.2  Models
	5.3  Oracle Analysis
	5.4  Results
	5.4.1  Improving Coherence with Query Plan Modeling
	5.4.2  Improving Correctness with Schema Linking
	5.4.3  Combined Results
	5.4.4  Analysis of gains across difficulty levels


	6  Discussion on Errors
	6.1  Metrics Errors
	6.2  Annotation Errors
	6.3  Summary and Outlook on Errors

	7  Conclusions
	8  References

