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Abstract— This paper addresses the automated parameter 
extraction of Random Telegraph Noise (RTN) models in nanoscale 
field-effect transistors. Unlike conventional approaches based on 
complex extraction of current levels and timing of trapping/de-
trapping events from individual defects in current traces, the 
proposed approach performs a simple processing of current 
traces. A smart optimization problem formulation allows to get 
distribution functions of the amplitude of the current shifts and of 
the number of active defects vs. time. 
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I. INTRODUCTION 

Random Telegraph Noise (RTN) has become a subject of 
increasing concern in deeply-scaled CMOS technologies [1], 
due to its role as a source of time-dependent transistor 
variability and the resulting impact on circuit performances [2], 
[3]. At device level, RTN is observed as discrete jumps of the 
drain current, which are caused by threshold voltage shifts that 
are associated to sudden and stochastic charge trapping/de-
trapping events in/from device defects [4]. The stochastic 
parameters that characterize the RTN phenomenon are the 
number of defects in the transistor, the amplitude of the current 
shifts (or, analogously, the amplitude of the threshold voltage 
shifts) associated to each of these defects, and their time 
constants, which may depend on the bias and temperature 
conditions. These time constants are the capture time (τ ), i.e., 
the average time that an empty defect takes to capture a charge 
carrier, and the emission time (τ ), i.e., the average time that an 
occupied defect takes to emit the charge carrier. It is therefore 
crucial to characterize this phenomenon and extract information 
about the statistical distributions of its main parameters.  

The extraction of the number of RTN defects traditionally 
relies on the detailed analysis of individual current traces 
containing RTN [5]-[7]. This analysis either detects the number 
of transitions with a distinct amplitude, each of which would 
correspond to a different defect, or the total number of current 
levels. From this value, the number of defects can be easily 
calculated. However, these conventional approaches are 
convoluted and error-prone, being even unable to correctly 
extract the number of defects if the trace is very complex (i.e., 
with a large number of distinct transitions, often with similar 
amplitudes), or if some of the defects produce current shifts 
with an amplitude below the noise level. 

To overcome the limitations of these approaches, the 
Maximum Current Fluctuation (MCF) metric has been 
introduced [8]. The MCF can be related to the number of active 
defects, i.e., the defects that have experienced at least one 
trapping/de-trapping event in a given time interval, and the 
current shift amplitude of each of those defects. An advantage 
of this metric is that it is extremely easy to compute and is not 
subject to the limitations of conventional approaches. 
Moreover, this approach is able to accurately account for small-
amplitude defects. 

However, no systematic procedure has been reported yet to 
determine the distribution parameters of the current shift 
amplitudes and the temporal evolution of the number of active 
defects. In this paper, a global optimization procedure is 
proposed to address their systematic determination. Several 
alternatives are discussed to arrive at a final approach with 
optimal efficiency and effectiveness. The MCF approach is 
described in Section II. The optimization strategy to extract 
parameter models is introduced in Section III and experimental 
results are shown in Section IV. 

II. THE MCF APPROACH TO RTN PARAMETER FITTING 

A. Maximum current fluctuation 

To introduce the MCF concept Fig. 1a shows the current 
trace measured in a PMOS device of W/L=80nm/60nm, 
fabricated in a 65-nm CMOS technology [9]. The current trace 
was obtained when biasing with |𝑉 | 1.2V and |𝑉 | 0.1V 
using the experimental setup in [10]. In such a trace, the 
trapping and de-trapping event of several RTN defects can be 
observed. 

We define the MCF at any time instant 𝑡  of a measurement 
window as the difference between the cumulative maximum 
current, i.e. the maximum current within the time interval 0
𝑡 𝑡′, and the cumulative minimum current, i.e. the minimum 
current within the time interval 0 𝑡 𝑡′: 

𝑀𝐶𝐹 𝑡 max
∀ ∈ ,

𝐼 𝑡 min
∀ ∈ ,

𝐼 𝑡  (1) 

 The number of defects, their time constants and associated 
amplitude shifts are all stochastic variables. Then, it becomes 
obvious that each device will show a different MCF trace. Fig. 
1b shows the evolution of MCF as a function of time for 20 
PMOS transistors. 
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B. Relationship to defect parameter distributions 

The MCF at any time instant 𝑡  can be approximated by the 
additive contribution of current shift amplitudes of all defects 
and the background noise: 

𝑀𝐶𝐹 𝑡′ 𝑀𝐶𝐹 𝑡′ 𝑀𝐶𝐹 𝑡′

 ∆𝐼 𝑀𝐶𝐹 𝑡′  
(2) 

where 𝑀𝐶𝐹  represents the MCF component induced by 
RTN and 𝑀𝐶𝐹  corresponds to the MCF component 
induced by the background noise. 𝑁 𝑡  represents the number 
of active defects at time 𝑡 , i.e., the number of defects that have 
captured or emitted a charge since the beginning of the 
measurement window up to time 𝑡 . ∆𝐼  represents the current 
shift amplitude associated to the trapping/de-trapping event of 
the i-th defect. 𝑀𝐶𝐹 𝑡′  accounts for the contribution of the 
background noise to the MCF. 

The number of defects in a transistor has usually been 
modeled as a Poisson distribution [11]. The probability of 
detecting N defects in a certain transistor is given by 

P 𝑁
〈𝑁〉 𝑒 〈 〉

𝑁!
 (3) 

where 〈𝑁〉 is the mean number of active defects per device 

during a given time window. 
A two-lognormal has been proposed for the current shifts ∆𝐼 
[8]: 

𝑓 ∆𝐼

𝐾

∆𝐼√2𝜋𝜎
𝑒

∆ 1 𝐾

∆𝐼√2𝜋𝜎
𝑒

 ∆  (4) 

where 𝜇 , 𝜇 , 𝜎  and 𝜎  are the mean and standard deviation of 
the lower and upper lognormals and 𝐾 accounts for the relative 
amplitude of both distributions. 

The background noise can be properly approximated by a 
normal distribution: 

𝑓 𝐼
1

√2𝜋𝜎
𝑒  (5) 

and its contribution to the MCF can be formulated as 

𝑀𝐶𝐹 𝑡 max
∀ ∈ ,

𝐼 𝑡 min
∀ ∈ ,

𝐼 𝑡  (6) 

In summary, the current amplitude shift distribution is 
characterized by five parameters (𝐾, 𝜇 , 𝜇 , 𝜎  and 𝜎 ), the 
Poisson distribution of the number of defects is characterized 
by just one parameter (the mean number of defects 〈𝑁〉) and the 
background noise is characterized by its standard deviation 𝜎 . 
Then, in total, there are seven fitting parameters.  

The goal is to find the parameter values governing the 
statistical distributions of the RTN defects that match the 
experimental MCF cumulative distribution functions (cdf), like 
those shown in Fig. 1c. The fundamental idea is to compare the 
experimental MCF values to MCF values generated assuming 
certain parameters for the distributions corresponding to the 
RTN activity and the background noise.  

C. Generation of MCF values 

The procedure to generate the term of the MCF associated to 
RTN defects, 𝑀𝐶𝐹 , is illustrated in Fig 2. First, a Poisson 
distribution with mean value 〈𝑁〉 is sampled. The resulting 
sampled value 𝑁 corresponds to the number of active defects in 
that device during the time window, i.e., till 𝑡 . Fig. 2a shows 
an example in which according to the Poisson distribution a 
device with four defects has been assumed. Then, a current shift 
amplitude ∆𝐼  is assigned to each one of these defects by 
sampling a two lognormal distribution such as the one described 
in (4) and illustrated in Fig. 2b. Then, the sum of the amplitudes 
of the 𝑁 defects yields the RTN-induced component of the 
MCF for that device. In the example represented in Fig. 2b, this 
would be: 

𝑀𝐶𝐹 ∆𝐼  (7) 

To generate the component of the MCF associated to the 

 

 
 
Fig. 1. a) Experimental RTN trace and current bounds from which the MCF is 
computed. The arrow indicates MCF at t=78s. b) MCF(t) obtained from 20 
RTN traces. c) The cumulative distribution functions (cdf) of the MCFs for 
t=10s and t=100s for a set of 400 transistors. 



background noise, 𝑀𝐶𝐹 , a Gaussian background noise 
with zero mean is assumed, which is a very good approximation 
to the one observed in the experiments. For the sake of 
illustration, one can consider a current trace consisting of 
npoints points of measured background noise. This means that 
both the mean current level and the RTN transitions have been 
removed so that the trace consists only of the background noise. 
Then, each of these points would correspond to a sample of the 
Gaussian noise distribution, and the MCF noise component up 
to a given time instant t would be the difference between the 
maximum value and the minimum value of those samples. 
These maximum and minimum values are time dependent, 
since longer measurement windows translate into higher values 
of npoints, and therefore a larger number of samples of the 
Gaussian distribution, which may lead to a larger noise-induced 
MCF. During the parameter fitting process, different time 
instants will be considered and it must be analyzed how the 
values that the maximum and minimum current can take depend 
on npoints. Additionally, notice that even if the background 
noise of two different devices follows the same statistical 
distribution, their associated noise-induced MCF at any given 
instant may actually be different, since the points of the noise 
traces are stochastic samples of that distribution. 

III. OPTIMIZATION PROBLEM FORMULATION FOR RTN 

PARAMETER FITTING 

The fundamental idea towards an automated optimization-
based parameter fitting is to compare the experimental 
cumulative distribution functions of the MCF values to those 
generated according to the procedure presented in the Section 
II. The cdfs are compared at 1,000 points of the MCF axis (see 
Fig. 1c), and the absolute differences are added. Then, the sum 
of those differences is the fitness function to minimize. The 

distribution parameters that lead to the minimization of such a 
fitness function are retrieved through an optimization 
procedure. The optimization method used has been Particle 
Swarm Optimization (PSO) [12], which makes use of a 
population of candidate solutions, called particles, which move 
across a search space along a number of iterations. PSO is an 
efficient global optimization algorithm that does not require any 
initial estimate of parameter values for proper convergence. 

However, it must be taken into account that the MCF is a 
function of time, and for each time instant, a cdf like those in 
Fig. 1c can be obtained. It can be reasonably assumed that (i) 
the standard deviation of background noise is the same for any 
time instant, and (ii) the distribution of current shift amplitudes 
is the same independently of the time instant in which the MCF 
is considered, but 〈𝑁〉 is a time-dependent variable, since the 
number of active defects is a monotonic non-decreasing 
function of time. Let us assume that matching the experimental 
and simulated cdfs is considered at 𝑀 different time instants. 
The alternatives to formulate an optimization problem that 
potentially can get the desired parameters are the following. 

A first direct approach would be to formulate 𝑀 
optimization problems consisting in the minimization of the 
difference of the 𝑀 cdfs. The search space for each these 𝑀 
optimization problems is formed by the seven fitting parameters 
discussed in Section II. A major obstacle is that all seven 
parameters but one (〈𝑁〉) should be the same for the 𝑀 
optimization problems. There is not a simple solution to this 
problem beyond a semi-empirical iterative procedure among 
the 𝑀 optimization problems.  

A second approach is to formulate a single optimization 
problem, involving the fitting parameters of the current shift 
amplitudes and the background noise, and an optimization 
variable corresponding to the mean number of defects for each 
of the 𝑀 time instants. Hence, the total number of optimization 
variables is 𝑀 6 . This avoids the problems of the previous 
approach but a major problems arises: the search space grows 
exponentially with the number of time instants, 𝑀. Such a high 
dimensional search space makes the optimization process much 
more difficult and prone to stuck at local optima. 

To overcome the problems above, we have considered a 
third approach. Since it has been observed that the evolution of 
〈𝑁〉  agrees well with the cdf of a lognormal function of time 
[8], the parameters that characterize such a distribution are used 
as optimization variables. The expression for the lognormal 
cumulative distribution function of 〈𝑁〉 along time is: 

〈𝑁〉 t
𝑁
2

1 𝑒𝑟𝑓
log 𝑡 𝜇

𝜎 √2
 (8) 

where 𝑒𝑟𝑓 is the error function and 𝑁 , 𝜎𝑁, and 𝜇  its fitting 
parameters. Notice that, with this formulation, the total number 
of optimization variables amounts to nine, independently of the 
number of time instants at which the cdf is calculated.  

 

 
Fig. 2.  Examples of (a) Poisson distribution for certain mean number of 
defects 〈𝑁〉; (b) Four samples of the current shift amplitude distribution for a 
given set of 𝐾, 𝜇 , 𝜇 , 𝜎  and 𝜎  values. 



IV. EXPERIMENTAL RESULTS 

To obtain the experimental data, three groups of 400 PMOS 
devices have been measured for 100s at |𝑉 | 0.1𝑉 and 
different gate biases |𝑉 | 0.6𝑉, 0.9𝑉 and 1.2𝑉. Then, the 
cumulative distribution functions of their MCF values have 
been evaluated at 𝑀 =22 time instants. On the other hand, MCF 
values at those same 22 time instants have been generated 
through the procedure discussed above for each iteration of the 
optimization procedure, while the differences between the 
experimental and the generated cdfs have been minimized. 

Fig. 3 displays the experimental and generated cumulative 
distribution functions at 3 out of the 22 time instants for the 
three different bias conditions. The parameters found by PSO 
with 50 particles and 200 iterations for the three considered gate 
voltages are displayed in Table I. Fig. 4 shows how the number 
of active defects increases with the gate bias. 

V. CONCLUSIONS 

A systematic optimization-based methodology based on 
Maximum Current Fluctuation has been developed to extract 
some of the main parameters that characterize RTN, in 
particular, those related to the amplitude associated to the RTN 
defects, and the number of active RTN defects and its evolution 
with time. The same methodology can be applied in case 
different distribution functions are proposed for the number of 
defects or amplitude shift distribution. The main advantages of 
this methodology are that it does not require any complex 
processing, and that it is able to account for defects with a small 
associated amplitude. 
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Fig. 3.  Experimental and simulated cdfs for three different gate voltages and 
three time instants out of the 22 used for the parameter extraction. 

Fig. 4.  Temporal evolution of the mean number of active defects. 

TABLE I.  PARAMETERS EXTRACTED FOR THE 𝛿𝐼 DISTRIBUTION OF RTN DEFECTS AND THE TIME EVOLUTION OF <N> 

𝑉  𝐾 𝜇  𝜎  𝜇  𝜎  𝑁  𝜇  𝜎  𝜎  

0.6V 0.915 -8.485 0.426 -7.240 0.250 14.67 5.26 3.72 0.6nA 
0.8V 0.793 -8.076 0.448 -7.216 0.221 14.93 4.15 3.33 0.9nA 
1.2V 0.755 -8.147 0.494 -7.325 0.150 13.60 2.09 2.70 1.1nA 


