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Abstract— In this paper, several machine learning modeling 
methodologies are applied to accurately and efficiently model 
transformers, which are still a bottleneck in millimeter-wave 
circuit design. In order to compare the models, a statistical 
validation is performed against electromagnetic simulations 
using hundreds of passive structures. The presented models 
using machine learning techniques have proven to be accurate, 
efficient, and useful for a wide range of frequencies from 
(around) DC up to the millimeter-wave range (around 100GHz). 
As an application example, the models are used as a 
performance evaluator in a synthesis procedure to optimize a 
transformer and a balun. 
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I. INTRODUCTION 
Nowadays, there is a massive demand for high data rate 

communications. Therefore, the need for millimeter-wave 
(mm-Wave) circuits operating in the high gigahertz range 
increases [1]. However, the design of transformers, used in 
mm-Wave circuits for many applications, is still a significant 
bottleneck [2]-[4]. Most foundries do not provide a 
transformer model in their process design kits (PDKs), and 
therefore the design of such passive components is still highly 
dependent on electromagnetic (EM) simulators. This lack of 
readily available models is highly inefficient because the 
designers must usually perform a considerable number of 
iterative EM simulations to reach a satisfactory design. In 
order to overcome the costly EM simulations, lumped-element 
analytical models were proposed [5]-[10]. However, most of 
these models are based on analytical equations, which fail to 
accurately model the transformer behavior in the mm-Wave 
range (i.e., more than ~20GHz).  

In the past few years, machine learning approaches have 
been proposed to model passive structures that were 
historically difficult to model and costly to simulate [11][12]. 
In this work, different machine learning techniques for 
modeling transformers are studied, in order to evaluate which 
modeling approach presents the best trade-offs between 
accuracy and model creation time. The objective is to model 
the transformer’s S-parameters instead of the transformer 
parameters (e.g., inductance and quality factor). Therefore, the 
transformer can be used in any configuration (i.e., single-
ended or differential). Furthermore, the S-parameters can be 
easily incorporated in electrical simulators using adequate 
SPICE devices (e.g., nport in Cadence SpectreRF). 

The remainder of this paper is organized as follows. 
Section II briefly presents the main transformer design 
parameters and performances. Section III presents the basics 
of the machine learning approaches used and compares their 
accuracy for a 65-nm CMOS technology test case. In Section 

IV, the model’s suitability to the design of transformers and 
baluns is demonstrated, and, finally, in Section V, conclusions 
are drawn. 

II. TRANSFORMER DESIGN PARAMETERS AND 
PERFORMANCES 

Transformers are devices composed of a primary and a 
secondary coil. In the mm-Wave range, these components are 
usually formed using one-turn coils built with the two 
uppermost metal layers with an intermediate dielectric layer.  

A. Design Parameters 
Fig. 1 shows an octagonal symmetrical transformer. Six 

geometric parameters define the geometry of this transformer: 
the number of turns of the primary (NP) and secondary (NS) 
coils, their inner diameters (DinP and DinS), and their turn 
widths (wP and wS).  

B. Performances  
Some of the most relevant transformer performances are 

the inductance of the primary and secondary coils, LP and LS, 
respectively, and the quality factor of the primary and 
secondary coils, QP and QS, respectively. Also, a critical 
performance of the transformer is the mutual inductance (M) 
and the coupling factor (k). In this work, the transformers are 
modeled via the S-parameters, but the previously discussed 
performances can be calculated applying an S- to Z-parameter 
transformation [13] and applying the formulas as follows: 
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Fig. 1. Example of transformer with center taps (top-view of the 
layout). 
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where Z11 is the input impedance of the transformer (viewed 
from the primary), Z22 is the output impedance of the 
secondary, and ƒ is the frequency. 

III. MACHINE LEARNING APPROACHES 
This section introduces how machine learning models are 

created and briefly presents the different techniques used to 
model the transformer. In the end, accuracies and efficiencies 
of approaches are compared. 

A. Modeling using Machine Learning Approaches 
The objective of a machine learning model is to mimic the 

output response of a given system based on some inputs [14]. 
In our case, the inputs are the geometric parameters of the 
transformer, and the outputs are its S-parameters. To create 
the model, it must first learn how the system behaves from a 
set of input samples (known as the training samples or training 
set); then, it will be able to predict the behavior of new 
samples. Thus, in order to create a machine learning model, 
three steps must be performed: design of experiments, model 
creation, and model validation. 

First, in the design of experiments, the design space is 
sampled using effective techniques to create the training set 
from which the model is going to learn. Ideally, machine 
learning models should learn from the most accurate 
evaluation possible. In our work, these accurate evaluations 
are EM simulations performed with ADS Momentum. 
Second, the model is created with a given approach (i.e., 
Gaussian process, Radial Basis Function, etc.) and, in the end, 
in the third step, we validate the model using a test set 
(different samples from the ones used for its training). 

To perform the design of experiments, the range for each 
input variable must be defined. In this work, the design space 
for the model creation was DinP, DinS Î [20, 200] µm, wP, wS Î 
[3, 15] µm and only transformers with one turn were 
considered (nevertheless, the technique can be extended to any 
NP:NS transformer topology). This design space was sampled 
using a Quasi-Monte-Carlo technique [15] and is considered 
sufficiently large to cover design applications above 20GHz. 
Although transformers and baluns have similar layouts, their 
behavior is extremely different because baluns are stacked 
transformers with much higher magnetic interaction between 
primary and secondary. Therefore, in this work, transformers 
and baluns are considered as two different topologies, and two 
different models will be created. 

In order to create these models, 1500 training samples are 
used to build the transformer model, and 200 training samples 
are used to build the balun model. Fewer samples are used to 
train the balun model because these structures are stacked 
transformers and, therefore, DinP = DinS and wP = wS, a fact that 
considerably decreases the diversity of their design space. For 
the statistical validation of the models, a test set was generated 
with new samples of the same design space: 100 samples for 
the transformers and 50 samples for the baluns.  

Regarding the outputs of the models, independent models 
will be created for each S-parameter’s real and imaginary part 
at each frequency point. However, in order to ease the model 
comparison, the models will be compared in inductance, 
quality factor and coupling factor instead of S-Parameters. 
The translation between S-Parameter and inductance, quality 

factor and coupling factor will be performed as discussed in 
Section II.  

B. Gaussian Process Regression (GPR) 
GPR has been successfully applied to modeling 

transformers in [12]. GPR is a near parameterless tool that 
takes a Bayesian approach to fit a distribution of functions 
using the data to reduce uncertainty. A detailed description 
can be found in [16]. The results shown in this work were 
obtained considering the radial kernel shown in Eq. (7), where 
a and b are scale factors, α is scale mixture, and l is the length 
scale. 
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C. Radial Basis Function (RBF) interpolation 
Interpolation with RBFs is done by the weighted sum of 

RBFs of (8), where the weights and the reference points are 
computed from the data [17]:  

 𝑓(𝑥) = ∑ 𝑤5𝜑(‖𝑥 − 𝑟5‖)-
567   (8) 

Any radial Basis Function 𝜑, i.e., a function whose value 
depends only on the distance between the x and a reference 
point 𝑟5, can be used. For this model, we considered the linear 
RBF in the form of 𝜑 (‖𝑥 − 𝑟5‖ )=	 ‖𝑥 − 𝑟5‖  and added a 
polynomial of degree 4 on x leading to the overall interpolator 
in (9), where 𝒘! is a column vector of the coefficients of the 
polynomial regression, and p(x) is a row vector with the 
monomials of x that span the polynomial of degree 4. 

 𝑟𝑏𝑓(𝑥) = 𝑓(𝑥) + 𝒘!𝒑(𝑥)   (9) 

D. Nearest Neighbors (NN) interpolation 
The NN interpolation uses only the value of the nearest 

data point for each prediction, resulting in a piecewise-
constant interpolation. NN interpolation is the simplest way to 
use the sample point to estimate a new transformer’s 
performance and provide a baseline for comparing the other 
two approaches. 

E. Accuracy and Efficiency Comparison of the Modeling 
Approaches 
All models were created using the exact same training set, 

with the same conditions, and validated with the same test set. 
The accuracy in the test set of all previously discussed 
approaches for the transformers and baluns are reported in 
Tables I and II, respectively. The time reported in such Tables 
refers to model creation time. The results are shown for the 

TABLE I 
STATISTICAL STUDY FOR THE DIFFERENT MODELING APPROACHES AT 

28GHZ FOR 100 TRANSFORMERS (TEST SET) 

Model Approach 
Mean Square Error (%) Time 

(s) 𝑳𝑷 𝑸𝑷 𝑳𝑺 𝑸𝑺 𝒌 
GPR 0.14 1.54 0.11 1.93 0.17 217 
RBF 0.15 2.09 0.12 1.57 0.26 0.3 
NN 2.85 4.18 4.58 8.95 7.76 0.7 

 
TABLE II 

STATISTICAL STUDY FOR THE DIFFERENT MODELING APPROACHES AT 
28GHZ FOR 50 BALUNS (TEST SET) 

Model Approach 
Mean Square Error (%) Time 

(s) 𝑳𝑷 𝑸𝑷 𝑳𝑺 𝑸𝑺 𝒌 
GPR 0.24 1.87 0.26 1.62 0.07 0.9 
RBF 0.17 2.89 0.20 2.06 0.08 0.2 
NN 3.74 3.99 3.54 5.05 1.43 0.5 

 



central frequency point of the 5G 26.5-30.5GHz band 
(28GHz), however, any other value may have been chosen. It 
is possible to conclude that in terms of accuracy results the 
GPR and the RBF achieve very similar results, with most of 
the mean square errors (MSE) below 2% for both transformers 
and baluns. However, the RBF accuracy is slightly lower 
when compared to GPR for the baluns. This indicates that for 
smaller training sets (as it is the case for baluns) RBF has 
lower accuracy than GPR models. When the number of 
training samples is higher (i.e., transformers) the accuracy is 
similar. In both cases (baluns and transformers), as expected, 
the NN behaves the worst of all approaches.  

Regarding efficiency, GPR is the worst approach. GPR 
fitting optimizes the kernel hyperparameters, significantly 
reducing the need for hyperparameter tuning, but that comes 
with an execution cost. This internal optimization time 
exponentially increases with the number of training samples, 
which can be observable if we compare the execution time 
between transformers and baluns (i.e., 217 versus 0.9 
seconds). However, since the model is only created once, the 
model creation times of a couple of minutes are perfectly 
acceptable for our application. 

IV. TRANSFORMER AND BALUN SYNTHESIS 
Transformers/baluns are typically very difficult to design 

because they have multiple design parameters that influence 
their performance. In transformers, the designer is usually 
interested in a given LP, LS and k, with the maximum Q 
possible. However, optimizing the transformer (i.e., obtaining 
a high Q) is usually exceptionally difficult given the design 
space and amount of different sizing possibilities. Therefore, 
in this work, the developed GPR transformer model was 
integrated into a single objective optimization algorithm 
(Selection-Based Differential Evolution algorithm [18]) as the 
performance evaluator, allowing for the possibility of 
designing transformers/baluns with optimal performances. 
The choice of the GPR model over the others is related to the 
fact that it was the one achieving best accuracy for both the 
transformers and the baluns. 

A. Transformer 
The first optimization was formulated as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑄8	𝑎𝑛𝑑	𝑄,	@28𝐺𝐻𝑧	

𝑆𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	 M

𝐿! 	= 	300𝑝𝐻	 ± 	10𝑝𝐻	@	28𝐺𝐻𝑧
𝐿, 	= 	200𝑝𝐻	 ± 	10𝑝𝐻	@	28𝐺𝐻𝑧

𝑘	 = 	−0.3 ± 0.1	@	28𝐺𝐻𝑧
𝑆𝑅𝐹!	and		𝑆𝑅𝐹, > 	38𝐺𝐻𝑧

 (10) 

where SRFP and SRFS are the self resonance frequency of the 
primary and secondary coil respectively. The optimization 
was performed with 50 individuals and 200 generations and 
took approximately 274 seconds, and the obtained transformer 
had the following design parameters: DinP=110µm, 
DinP=68µm, wS=3µm and wS=7µm. The layout of the 
transformer can be seen in Fig. 2, and the comparisons 
between the model and the EM simulation of the same 
transformer are shown in Fig. 3 for all the performances of 
interest (inductance, quality factor, and coupling factor). The 
shaded region marks frequencies above 38GHz (the limit for 
the SRF objectives in the synthesis procedure).  

B. Balun  
The second optimization, to achieve an optimal balun, was 

formulated as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑄8	𝑎𝑛𝑑	𝑄,	@28𝐺𝐻𝑧	

𝑆𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	 M

𝐿! 	= 	330𝑝𝐻	 ± 	20𝑝𝐻	@	28𝐺𝐻𝑧
𝐿, 	= 	330𝑝𝐻	 ± 	10𝑝𝐻	@	28𝐺𝐻𝑧

𝑘	 = 	−0.8 ± 0.1	@	28𝐺𝐻𝑧
𝑆𝑅𝐹!	and		𝑆𝑅𝐹, > 	38𝐺𝐻𝑧

 (11) 

This optimization aims not only at maximizing the quality 
factor of both the primary and secondary coils but also at 
minimizing the insertion loss of the balun. The optimization 

 
Fig. 2. Layout of the transformer with DinP=110µm, DinP=68µm, 
wS=3µm and wS=7µm. 

 
a) 

 
b) 

 
c) 

Fig. 3. Performance comparison between the model and EM simulation 
of the transformer with DinP=110µm, DinP=68µm, wS=3µm and wS=7µm. a) 
Primary and secondary coil inductance. b) Primary and secondary coil 
quality factor. c) k-factor. 



was performed with 50 individuals and 200 generations and 
took approximately 260 seconds, and the obtained balun had 
the following design parameters: DinP= DinS =97µm, and wP 
=wS=9.5µm. The layout of the balun can be seen in Fig. 4, and 
the comparisons between the model and the EM simulation of 
the same balun can be seen in Fig. 5 for all the performances 
of interest (inductance, quality factor, and coupling factor).  

V. CONCLUSIONS 
This paper presents a comparison between different 

machine learning approaches for the modeling of transformers 
up to mm-Wave frequencies. It was shown that GPR models 
present the best accuracy to model both baluns and 
transformers, at the cost of some training time. The GPR 
model was integrated into a single-objective optimization 
algorithm to perform both balun and transformer synthesis to 
design optimal structures, which were then compared to EM 
simulations to show the validity of the model. 
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Fig. 4. Layout of the balun with DinP=DinP=97 µm, wS= wS=9.5. 

 
a) 

 
b) 

 
c) 

Fig. 5. Performances comparison between the model and EM 
simulation of the balun with DinP=97µm, DinP=97µm, wS=9.5µm and 
wS=9.5µm a) Primary and secondary coil inductance. b) Primary and 
secondary coil quality factor. c) k-factor. 


