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Abstract

Characteristics in the user model can be acquired and
maintained in several ways, namely by means of implicit or
explicit feedback, observation of user’s actions, log analy-
sis, etc. We use analysis of the content that is presented to
a user. We assume that comparing documents and analyzing
their common and different aspects can lead to information
about user’s interests. We work in the Semantic Web envi-
ronment where ontologies are used as a mean for content
representation. We proposed a recursive method to evalu-
ate similarity of ontological concepts. But computed simi-
larities do not take into account user’s individuality, i.e. the
same results are computed for each user. User’s perception
of the similarity measure is subjective. Therefore, we extend
the method to compute similarity with regard to the user.

1 Introduction

Personalization is usually based on the user model hold-
ing significant information about each user stored as charac-
teristics. The more information about the user is available
the more accurate personalization can be provided. Since
user characteristics are changing as the user works with an
application, the user model should always reflect the real
user. Therefore, user’s characteristics need to be maintained
or new ones acquired if necessary.

Approaches to user characteristics (e.g., implicit or ex-
plicit feedback, observation of user’s actions) differ in how
intrusive towards the user they are and how confident infor-
mation about the user acquire. We use an analysis of the
presented content. In combination with explicit feedback,
which is considered as the most confident source of infor-
mation, user characteristics can be acquired. We assume
that comparing documents, analyzing common and differ-
ent aspects can lead to information about user’s interests.

Let us consider two job offers that are in all properties
identical but differ in the job location. Let us locate the first

one in Washington, D.C. and another in London. Figure 1
illustrates this example in the user interface of our person-
alized faceted browser Factic [14].

Figure 1. Offers with different job location.

From different ratings given to the offers we can deduce
values of particular user characteristics. Higher value as-
signed to the offer in Washington, D.C. could reveal the job
location as important for the user. On the other hand, the
same ratings given to different contents could reveal that the
job location is unimportant since it had no influence on the
interest. This simple example illustrates the importance of
content analysis but sophisticated heuristics can be used to
discover more information about the user (i.e., preferences).

Existing approaches compute the same results for each
user and do not take into account user’s individuality. In
our experiment a user estimated similarity of job offer pairs
on a scale from 0 (nothing in common) to 7 (equivalent).
Some of pairs appeared twice as a check sample in the
set. These pairs were not evaluated identically but with ac-
ceptable close values, which shows that the user does not
necessarily evaluate the same content the same way if an
adequately large scale is provided and specially if there is
a time delay between evaluations (i.e., user’s interests might



have changed). That supports our assumption that similarity
estimation should be personalized.

The paper is structured as follows. In Section 2 we give
on overview of the related work. Section 3 presents our
method for comparing instances of ontological concepts.
In Section 4 we describe an extension to the comparing
method to consider also user’s individuality. In Section 5
an experimental evaluation of the method is described. At
last, in Section 6 we present our concluding remarks.

2 Related Work

The Semantic Web applications typically use ontologies
as a base for metadata representation and reasoning. Mainly
for the purpose of ontology management several approaches
to comparison of ontology concepts or their instances were
developed. There are several overviews aimed mostly at on-
tology matching and related fields [6, 7]. We focus mainly
on approaches that primarily consider ontology instances
and deal with their similarity.

The approach aimed at the identification of changes in
ontology versions on the level of the ontology schema and
instances using various heuristics is described in [13]. The
approach described in [12] deals with synonyms first to en-
sure that synonyms refer to the same objects. Then, seman-
tics is incorporated and at last semantic relations (e.g., is-a
relation) are used to find out whether connected entities are
related to the same set of entity classes. The distance be-
tween concepts is measured by the shortest path. Similar-
ity evaluation in [8] includes similarity of labels, instances,
structures and previous mapping results verified by the ap-
plication.

A method that compares instances of tourism ontology
concepts in two phases is described in [5]. First, two graphs
are built, i.e. the inheritance graph that organizes ontologi-
cal concepts according to a generalization hierarchy and the
similarity graph in which nodes relate to concepts and edges
have assigned similarity degree. Similarity estimation con-
sists of structural properties and hierarchical structure. The
final similarity measure is computed as a result of combina-
tion of previous steps. The main drawback is that a similar-
ity ontology holding similarity relations between properties
and instances’ names from domain ontology must be pro-
vided for the similarity graph.

PROMPT is an algorithm for ontology merging and
alignment [10] that provides a user with a guidance. It starts
with creating an initial list of matches based on class names
where linguistic similarity metrics are employed. The user
either selects one of provided suggestions or uses the editing
environment to perform changes in the ontology. The next
step consists of automatic operations according to the previ-
ous choice and is repeated in cycles. When a conflict occurs,
a list of solutions is provided. PROMPT performs merging

concepts, properties, relations between concepts and prop-
erties, and copies parts of a hierarchy (e.g., classes including
their parents). We consider name matching as a drawback,
i.e. names do not have to carry meaning when automatic
approaches are used to build or populate an ontology.

A commonality for mentioned approaches is that they
do not take into account a user nor investigate causes of the
similarity. The results of the approach described in [3] say
that automated similarity estimation mimics to human sim-
ilarity measure if different strategies are used according to
the clusters of users. Here, users gave reasons of their as-
sessments which are basis for machine learning algorithm
that assigns users to a cluster. However, personalizing simi-
larity to a group is still not the personalization as commonly
understood – adapting to a particular user.

In [4] there is described an application recommending
restaurants. Similarity between the restaurants is computed
according to the independent properties that reflect user’s
perception or interest, such as “niceness”. A local similarity
metric is defined for each property what allows determining
the similarity of two restaurants with regard to that property.
A combination of the metrics creates a retrieval strategy.
The advantage of this approach is comparing at the property
level. However, only defined criteria are considered and
it is a one time use application where user profiles are not
retained.

The comparison with an ideal instance related to a partic-
ular domain (here job offers) to recommend similar ones is
used in a method for searching based on user’s criteria [11].
The method also allows searching for the offers that do not
entirely fulfill criteria of the ideal offer. Similarity of par-
ticular properties of the offer is computed as a distance be-
tween their values. The computed distances are afterwards
converted to a degree of the similarity taking into account
the biggest possible distance. To distinguish importance of
the particular properties for a user, a precision is introduced
that reflects the user’s subjective tolerance. The user is al-
lowed to specify for each criteria, whether it has to be ful-
filled and its importance.

3 Recursive Method of Computing Similarity

We proposed a method that computes similarity between
instances of ontological concepts based on recursive evalu-
ation of the properties two instances consist of. The main
idea of the method is based on looking for common pairs of
properties in both instances and their sequential processing.
Detailed description of the method is provided in [1].

In our work we use the OWL Web Ontology Language1

for the ontology representation and particularly its DL sub-
language. Datatype and object properties are used to as-

1OWL Web Ontology Language, http://www.w3.org/2004/OWL/



sert specific facts about instances. Datatype properties ex-
press relations between concept instances and RDF literals
and XML Schema datatypes. Object properties express re-
lations between two instances. The rough principle of the
method illustrating comparison of two instances instanceA
and instanceB is shown in Algorithm 1.

Algorithm 1 Recursive method basics
function GETSIMILARITY(instanceA, instanceB)

set similarity to 0.0
set counter to 0
store properties for instanceA and instanceB

to properties

foreach property in properties do
increment counter
if property is in both instances then

store connected elements
to elementX and elementY

add COMPUTESIMILARITY(elementX, elementY )
to similarity

else
add 0.0 to similarity

end if
end foreach

return similarity/counter
end function

function COMPUTESIMILARITY(elementX, elementY )
if property is datatype then

return GETDATASIMILARITY(elementX, elementY )
else

set similarity to 0.0
add GETOBJECTSIMILARITY(elementX, elementY )

to similarity
add GETSIMILARITY(elementX, elementY )

to similarity
return mean value of similarity

end if
end function

The process of the comparison begins with acquiring all
properties from both instances. The following occurrences
of a property are possible: single in both instances, multiple
in both instances, single/multiple in one instance only.

When the property has a single occurrence in both in-
stances (e.g., the hasStartDate), then the similarity of re-
lated elements (instances if object, or literals if datatype
properties) is evaluated using different similarity metrics.
The comparison of datatype properties ends after a metric is
used to compute the similarity measure between the related
literals. For object properties a metric for related instances
is computed (e.g., taxonomy distance) and further compari-
son is performed recursively on the respective instances un-
til literals are reached or until there are no properties left.

Multiple occurrences of properties (e.g., hasPrerequisite
property) in an instance are the most complex case we have
to address. In this case, two sets are constructed which con-
tain elements which are connected to the examined prop-

erty in the first and second instance respectively. These
two sets can have different cardinalities – the problem is
to identify (i.e., to match) similar elements between these
two sets. We use our similarity measure to identify such
element pairs, which are then compared and the computed
similarity contributes to the total similarity between the two
instances. However, the identified pairs do not provide sat-
isfactory results in some cases. For example, if in the first
instance the hasPrerequisite property has the value “Java or
C programming” and in the second instance multiple values
“Java programming” and “C programming” consistent re-
sults are difficult to achieve. In our approach a pair with
higher similarity according to the used similarity metric is
selected, but more complex heuristics can be proposed and
employed to identify a 1 : n mapping.

If single or multiple occurrence of a property occurs only
in one instance, we estimate the similarity of the elements
attached to the property as equal zero. It is based on the sim-
ilarity definition, i.e. the similarity equals zero if two objects
are entirely different. Here, we assume that instances are
entirely different in the property, since a value is assigned
to the property in one instance only.

Variety of comparison metrics can be employed to com-
pute similarity. We proposed two groups of metrics accord-
ing to the property’s type since they must be treated differ-
ently due to their different nature. The description of the
metrics is beyond the scope of this paper.

We compute the total similarity of two instances as the
mean value of the similarities computed between the ele-
ments connected to particular properties. Let us compare
two instances InstA and InstB . Let PropertySM be a sim-
ilarity measure (SM) that is computed for elements con-
nected to a common property. The similarity measure for
two instances sim (InstA, InstB) is computed as follows:

∑|A∩B|
i=0

PropertySMi (elementA, elementB)

|A ∪B| , (1)

where elementA and elementB are the elements (instances
or literals) connected to the i -th property. Since there can be
datatype or object properties, we introduce the General sim-
ilarity measure that encapsulates all the similarity measures
that are available. It is computed for the elements connected
to a property (e.g., PropertySM used in the Equation 1 is its
special case). The General similarity measure fulfills the
same conditions as defined for the similarity and it gets val-
ues from the range 〈0, 1〉.

The General Similarity Measure is computed with regard
to the type of property. In the case of datatype property
a metric is used according to the type of literal. For object
properties the similarity measure for the related instances is
computed as the aggregation of the following partial simi-
larity measures:



• Label-based SM is computed employing string metrics
if labels holding meaningful information are present
(if instances were acquired automatically meaningful
labels are usually not present),

• Property-based SM is computed if instances have ad-
ditional properties that are used to invoke a recursive
computation of the General similarity measure,

• Taxonomy Distance SM computes a distance between
instances in a taxonomy.

4 Personalized similarity and characteristics

The aggregate of the partial similarities is always the
same no matter what the context is. To improve the ac-
curacy of our similarity evaluation method with respect
to individual users’ preferences (if a user model is avail-
able), we introduce weights that personalize the similarity
estimation which allows us to compute personalized sim-
ilarity for individual users. Similarity of two instances
sim(InstA, InstB) is computed as:

|A∩B|∑
i=0

weighti × PropertySMi (elementA, elementB)∑
weighti

, (2)

where semantics of variables is the same as in Equation 1.
The weight variable has values in the range 〈1, w〉 based on
the match between the property and the value of the corre-
sponding characteristic in the user model.

Since we assume that the user’s likes should have greater
influence on the total similarity, we increase the weights
of properties for which corresponding characteristics are
present in the respective user model and their values match
with the compared instances. The exact increase of individ-
ual weights is the subject of experiments for any particular
domain. The meaning of proposed weights reflects possible
cases that may occur:

• 1 – if there is no correlation between a property of the
instance and a characteristic in the user model; this
weight solves also the problem when the user model
is not present and it does not have influence on com-
puting personalized similarity with regard to the user.

• w – if there is mach not only between a property of
the instance and a characteristic but also there is mach
between their values.

• a value between the previous two values means that
there is a match between the examined property of the
instance and the user model, but the related value is not
identical, e.g. a city belongs to the same region as the
city preferred by the user but it is not that city.

We use an ontology-based overlay user model2 that was
built by LogAnalyzer [2]. It contains characteristics and
preferences. A preference indicates that the related prop-
erty is important for the user but there is no specific value
assigned to it. For the preference we consider weight equal
half of the the upper bound employed in the computation
of the personalized similarity (weight = w/2). In the case,
when a property occurs in the user model as a characteristic
and also as a preference, the weight is computed as their
sum, i.e. weight = w + w/2.

From the user’s evaluation given to content we can de-
duce user’s likes or dislikes (investigate causes). We assume
that if the instance includes a property which value the user
likes it will likely influence his or her rating towards higher
values. On the other hand, the properties with the values
that the user dislikes will influence the rating towards lower
values. Therefore, we introduce two threshold values that
divide properties into three sets according to their similarity
values. Since we are interested in the properties that signifi-
cantly influence user’s evaluation and this way also the total
similarity, we give up splitting intervals into equal parts. If
the similarity computed for a property is greater than the
positive threshold than the property is assigned to the posi-
tive set, if the computed similarity is lower than the negative
threshold the property is assigned to the negative set.

Properties classified by this method can be further trans-
formed into user characteristics and used for populating or
updating existing characteristics in the user model.

5 Experimental evaluation

The evaluation was carried on the job offer ontology de-
veloped in the course of the project NAZOU3 [9]. The
smallest dataset contains 100 job offers mostly from the IT
field. To evaluate our method we implemented a software
tool Concept Comparer (ConCom). It works in two modes,
i.e. the total similarity is computed for all properties and if
a property occurs in one instance only, then 0 is aggregated.
In the second mode, only common properties are consid-
ered and the other ones are omitted with no influence on the
total similarity.

The aim of the first experiment was to compare results
computed in two ways and to specify thresholds. Results
for a randomly selected sample of 600 pairs is depicted in
the Figure 2. The thresholds were specified experimentally
for the job offer domain. We evaluated similarity for 55 000
properties. The properties with similarity equal to 0.0 or
1.0 were not considered to eliminate identities and proper-

2Ontology-based User Model,
http://nazou.fiit.stuba.sk/home/files/nazou um.pdf

3NAZOU – Tools for acquisition, organization and maintenance of
knowledge in an environment of heterogeneous information resources,
http://nazou.fiit.stuba.sk
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Figure 2. Similarity computed by ConCom considering all/common properties.
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Figure 3. Similarity estimated by a human and by ConCom for common properties.

ties with no occurrence in both instances. The rest of the
properties was ordered according to the similarity measure
and Pareto principle was applied. We split the most influ-
encing 20% in half to select 10% of the highest and 10%
of the lowest values. The positive threshold was set to 0.65
and the negative threshold to 0.25. Domain dependence is
the subject of the further experiments. Using only com-
mon properties resulted in narrow range of similarity values
(89% of the computed similarities went from the range 0.30
to 0.75) what exceeds proposed negative thresholds and nar-
rows the range for the positive set. Therefore, the similarity
computed for all properties must be used to acquire proper-
ties based on thresholds.

Next, a user was involved. A sample of 300 job offer
pairs was used where 30 randomly selected pairs appeared
twice as a check sample. A user assessed the similarity
value on a scale from 0 to 7 and the acquired values were
normalized to the similarity interval. The result for a set of
40 pairs is depicted in the Figure 3. We used the similarity
computed for common properties to compare with human’s
evaluation since its values mimic better values from evalu-
ation given by a human. It might have been caused by the
fact that a user can more easily evaluate lower amount of
(common) properties. We have not found significant differ-
ences in control sample evaluation, i.e. in 70% of the cases

were the pairs assigned identical values and only in 3.33%
of cases was difference three points on the scale. Obviously
another user would evaluate the same sample differently.

For further experiments involving the user model we
used the similarity computed only for common properties.
The used user model consisted of one characteristic only.
The job offers that were used in the experiment contained
hasDutyLocation property and its value was the same as in
the user model. The experiment was aimed at figuring the
upper weight bound to be used in the personalized simi-
larity computation. A change of the similarity depends on
the number of properties that are considered in the compar-
ison. The job offers used in the experiment had an average
of 16 properties. The personalized similarities computed
for 12 job offers pairs with w = 2.0 resulted in the sim-
ilarity values increased about 0.06 to 0.9 (and about 0.15
to 0.26 if w = 4.0) what is significant difference. There-
fore, using doubled weights in the personalized similarity is
reasonable.

The last experiment was aimed at investigating how
user model impacts the similarity enumeration. A user
model with three characteristics was employed and doubled
weights used. Changes of the similarity caused by employ-
ing the user model for 200 pairs are shown in the Figure 4.
The user model influences the computed similarity in two
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Figure 4. Change in similarity estimation caused by the employed user model.

ways. If compared properties are similar (high values of
similarity measure) the personalized similarity increases to-
wards higher values (a positive change in the figure). On
the other hand, the similarity decreases to lower values.

6 Conclusions

We present a method for comparing instances of ontolog-
ical concepts based on the recursive traversing of instance’s
structure. The final similarity is a result of mean aggrega-
tion of the similarities computed for particular properties.
The introduction of similarity computed for properties al-
lows us to take advantage of semantics provided by onto-
logical representation and allowed us to extend similarity
with personalized weights reflecting users’ individuality.

We developed a software tool ConCom that realizes the
proposed method. The experiments showed that the similar-
ity where only common properties are considered is more
suitable if the user model is involved and considering all
properties is better to investigate properties that influenced
user’s evaluation (e.g., interest). We introduce two thresh-
olds that were set experimentally for the job offers applica-
tion domain – the positive to 0.65 and the negative to 0.25.

The evaluated similarity can be also useful as a sup-
port for clustering algorithms, semantic annotation tools or
repository maintenance tools. The aim here is to improve
semantic search using the method for personalized naviga-
tion within ontology instances that represent metadata of
large information space. We further plan to focus on rela-
tionships between the weights and the number of properties
that are present in the compared instances and to investigate
domain independence of the proposed method and carry on
experiments in the domain of scientific publications.
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