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Abstract—CAPTCHAs exploit the gap in the ability between a 
human and a machine to understand the semantics of specific 
multimedia content, with vast applications in computer security. 
In this paper we compare two techniques in automated 
CAPTCHA solving for text-based CAPTCHA schemes, i.e., 
classification based on the Vector Space Model (VSM) versus a 
popular Optical Character Recognition (OCR) engine. For each 
technique, we build a CAPTCHA solver and give it specific sets 
of text-based challenges to break. From our results we draw 
conclusions whether it is efficient to create a CAPTCHA solver 
by applying parts of the VSM theory and implementing a Vector 
Space Image Recognizer (VSIR). 

      Keywords—CAPTCHA; Image recognition; Semantic context 
extraction; VSM; OCR 

I. INTRODUCTION  
A Completely Automated Public Turing Test to Tell 

Computers and Humans Apart (CAPTCHA) is a program that 
can generate visual or audio content challenges that a human is 
able to pass most of the times, while a computer program is 
not, with non-negligible probability [1, 2]. This semantic gap 
[3], in recognizing multimedia content, between a human and a 
program has shown to have many applications in computer and 
network security: Mainly, to ensure integrity in online polls, 
prevent/deter worms, spam, dictionary attacks, search engine 
bots, denial of service (DoS) attacks, etc. [4]. 

Among the various types of CAPTCHA architectures [5, 
6], text-based schemes are the most widely used and highly 
acceptable CAPTCHA form. Such schemes use a visual image 
containing alphabets and numbers in a text string that the user 
must identify and type in a text box provided near the 
CAPTCHA image. Typically, the challenge-image is of low 
quality with different forms of noise and strong degradation 
applied to it. 

Since the creation of CAPTCHA there has been a 
continuous arms race between CAPTCHA designers and 
CAPTCHA solvers, paving the way for research into new 
improved and safer designs imperative. Essentially all 
commercial text-based CAPTCHAs have been defeated, using 
object-recognition techniques, with high percentages of 
accuracy, e.g., [7, 8, 9, 10]. 

Semantics-driven indexing and retrieval of multimedia 
content is an integral part of the automated CAPTCHA solving 

process. It generally involves the use of a semantic cue as a 
basis for the creation of a training set, the classification of the 
input and the acquisition of the desired information [11, 12]. In 
our case the use of semantic-indexing is attained by having a 
Vector Space Image Recognizer (VSIR) associate the input 
with possible related content in its corpus, construct an output 
and then provide a correlation between the input and the 
expected outcome using a number representation, e.g., 0 may 
denote no correlation, whereas 1 may denote that we have an 
output, which reflects correctly the human choice. 

Our Contribution. In this paper, we argue whether it is 
efficient to create an image recognizer based on the Vector 
Space Model (VSM) that is able to solve specific text-based 
CAPTCHA challenges. This was determined by having a VSIR 
compete against an already well-established technique in 
automated CAPTCHA solving, namely an Optical Character 
Recognition (OCR) engine. In contrast with the current state-
of-the-art strategies in CAPTCHA solving our VSM-based 
approach takes advantage of the structured information that an 
image presents at its core. Consequently the VSIR achieves to 
extract the semantic context and to solve the text-based 
CAPTCHA challenge with success. This fundamental flaw, 
which the VSM uses as a basis for its functionality and can be 
identified in every OCR-based CAPTCHA scheme, stresses the 
importance of our research towards gaining a more complete 
understanding of the security vulnerabilities presented in 
current CAPTCHAs.   

The remaining text of this paper is organized as follows: 
Section 2 presents a brief review of existing strategies and 
techniques in CAPTCHA solving. Section 3 provides a 
technical assessment of the engines that were used and 
illustrates the steps that were followed to compare the two 
suggested techniques. In Section 4 we summarize the results 
and lessons that were obtained from the analysis, declare 
certain necessary assumptions that were made during the 
development and the comparison phases, and suggest 
improvements and possible alterations that can be applied to 
the VSIR. Section 5 concludes the paper. 

II. RELATED WORK 
Solving the text-based challenge by devising an OCR-
strategy. A popular strategy in the research literature is the one 
followed by [19, 20, 21, 14, 18], where authors attempt to 
solve specific text-based challenges by introducing a 
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combination of techniques for the transformation of the image, 
character extraction and recognition for each deployed 
CAPTCHA scheme. Besides the noise removal and 
segmentation techniques, which are depended on the text-based 
challenge, the main difference between the aforementioned 
strategies is the classification method being used. In [19, 20, 
21], authors create a custom recognizer with the use of Support 
Vector Machine (SVM). In [14, 18] an already existing OCR 
engine is being used instead. Among those two, the first 
category provides better success rates, mainly because of the 
depth of specialization that a SVM can offer in the 
classification part for a specific CAPTCHA, against a generic 
OCR engine that is able to recognize a larger number of text-
based CAPTCHAs but with less accuracy. For example in [20] 
the SVM was able to recognize characters with greater than 
96% accuracy. Furthermore, in [14, 18] the authors 
acknowledge that the accuracy of generic OCR engines can 
reach high success rates only with additional training. 

Taking advantage of critical design flaws. On the other hand, 
authors in [22, 23, 8] carry out a systematic study of popular 
text-based CAPTCHAs. By exploiting critical design errors in 
each CAPTCHA scheme, they create simple but novel attacks 
that have a high success rate. Based on their observations, 
authors emphasize a series of recommendations against 
creating flawed CAPTCHA designs. Characteristically, in [8] 
Yan and Ahmad managed to achieve a higher than 90% 
success against a scheme that was designed to be 
segmentation-resistant without the use of OCR techniques, by 
performing a simple yet efficient, in terms of computational 
power and success rate, attack, and declaring that this could 
lead to a complete crack with a greater than 60% rate. 

III. TECHNIQUES COMPARISON 

A. Building Blocks 
The main tools that were used in this research were the 

Tesseract engine [13] and our own VSIR implementation, 
along with a provision of a corpus that contained samples of all 
possible characters that the decoded CAPTCHA used. 
Tesseract is an open-source Google-owned OCR engine that 
was developed at HP between 1984 and 1994. It is widely 
considered as one of the most accurate open-source OCR 
engines available [14, 13]. A VSIR is essentially an application 
of the VSM, where the stored entities are compared with each 
other or with incoming search requests. This is achieved by 
modelling the various information retrieval objects as elements 
of a vector space and by employing matrix analysis techniques 
to find the relations and key features in the entities [15]. 

B. Technical Assessment 
Tesseract, through the use of multiple algorithms is able to 

detect proportional and non-proportional words, chop joined 
characters and associate broken characters without any external 
guidance. In addition, it uses two character classifiers, a static 
and a dynamic, which increases the accuracy when 
distinguishing upper and lower letters. One major disadvantage 
is that it cannot be trained against a custom dataset that 
contains CAPTCHA images that differ, which renders this 
particular OCR engine inefficient against CAPTCHAs that use 
multiple fonts [13].  

A distinctive attribute that the VSIR possess is that it 
cannot become over-trained. This of course can work as a 
double-edged sword because increasing the corpus size can 
augment the accuracy but can also take a heavy toll on the 
classification performance, thus requiring a significant amount 
of processor time [24]. The VSIR cannot adapt to changes in 
real time. Each time a different CAPTCHA image is being 
added as a new element in the vector space, all existing images 
must be re-indexed and additional training for the new 
CAPTCHA is required [25]. Unlike neural networks, the VSIR 
needs a standard way to deal with a problem and it cannot 
come up with a new solution on its own. 

C. Basis for Comparison 
The images used for the comparison were created by the 

ASP.NET Security Image Generator, a CAPTCHA-generating 
library freely available on the Web1. The important 
characteristics to note concerning all the images that had been 
generated are the following: a) The individual characters are 
placed in equally-sized subdivisions of the image; b) The 
characters have a standard font; c) Background noise has been 
generated by placing random drawn lines across the image 
(Fig. 1). The first collection of CAPTCHA images contained 
only numbers, the second only upper-case letters and finally 
the last one had both upper-case letters and numbers. This was 
done in order to examine the efficiency of both the VSIR and 
Tesseract through different quantities of possible characters 
that they had to recognize. The first and third collections of 
CAPTCHAs were 6 characters long while the second, which 
contained only letters, did not have a specific character length 
due to the fact that the generator gave the option to produce 
only random words and not letters.  

D. Noise Removal 
Noise removal was crucial in order for both solvers to be 

able to conduct segmentation and character classification. Also 
it is important to note that during testing it was observed that 
any significant presence of noise in the picture dropped the 
accuracy to low levels especially for the OCR engine. The 
removal of the noise along with the segmentation technique, 
were mainly based on the steps presented in [16, 9]. The 
implemented algorithm initially converted the image to black 
and white pixels. Then it checked for multiple non-white pixels 
in a row and changed those pixels if their sum was less than or 
equal to a chopping factor that was predetermined through 
testing for optimal performance (Fig. 2). 

 
Fig. 1. Image of text-based CAPTCHA produced by the ASP.NET Generator 

E. Segmentation 
Segmentation of characters was an important procedure for 

the creation of an effective training set for the VSIR. This 
technique was not applied in Tesseract, because it uses a 
dictionary to identify whole set of words, as opposed to 
individual characters. For that matter, feeding Tesseract with 
individual characters would negatively impact its accuracy 

                                                           
1 http://aspsig.sourceforge.net/ 
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[13]. The CAPTCHAs that were used did not have merged 
characters, so none of them were joined with each other before 
noise was added. This enabled the process of taking horizontal 
slices of the image so as to test where each character started 
and finished, leading to the extraction of the characters into 
separate images (Fig. 3). Analytical accuracy rates are depicted 
in Table I. 

 
Fig. 2. Successful noise removal (before and after) 

TABLE I. SEGMENTATION PERFOMANCE 

Number of images 
(per CAPTCHA variation) 

Percentage of failed 
segmentations 

            420 (numbers only) 7.85% 

            574 (letters only) 4.87% 

            418 (numbers and letters) 5.74% 

F. Corpus Construction 
A training set is an essential part of the VSIR that has a 

crucial influence on its efficiency. The VSIR was trained by 
breaking 70 different images that were created for each 
CAPTCHA collection into separate characters. After that, 
many variations of each character were organized into a corpus 
in order for the VSIR to be able to efficiently recognize the 
possible outcome of characters that the CAPTCHA contains. 
The first training set had an average of 64.4 character 
variations. The second set had 18.1 variations per character and 
finally the last one had 16.3 variations for each character. 

IV. RESULTS AND LESSONS LEARNED 

A. Success Rates 
The results of the first CAPTCHA set that contained only 

numbers were in favour of the VSIR. Out of 50 images the 
VSIR was able to break correctly 31. On the other hand 
Tesseract was able to guess correctly 28. Again, in the second 
wave of testing, the VSIR achieved better results with 24 
correct guesses versus 8 correct for Tesseract. Only in the final 
CAPTCHA set, Tesseract managed to achieve better results 
with 12 correct against 9 for the VSIR. Information 
considering the performance can be seen in Table II.         

B. Attack Speed 
Both solvers were implemented in Python and tested on a 

desktop computer with 2.26 GHz Intel Core 2 Duo and 4 GB 
RAM. The figures in Table III show that even though Tesseract 
was faster than the VSIR both times can be considered 
efficient. It is also important to note, that the VSIR performed 
significantly better when it had a smaller data set. 

 
Fig. 3. Successful segmentation after noise removal 

C. Assumptions 
The algorithm that was constructed for this paper removes 

the noise and segments the characters for a specific variation of 
text-based CAPTCHA. However because both the VSIR and 
the Tesseract take as input images that do not have any 
background noise we can assert that as long as there is a 
common technique that removes correctly the noise and 
segments the characters with success and the VSIR has a 
proper training set, the results will always give VSIR the lead 
for any given text-based CAPTCHA. It is also important to 
note that even though the segmentation technique managed in 
average to segment the characters with 89.39% accuracy, the 
images that were included in the test sample were checked to 
ensure that they had been successfully segmented in order to 
prevent interference with the final results. 

TABLE II. SUCCESS RATES 

Size of possible  
CAPTCHA characters OCR accuracy VSIR accuracy 

       10 (only numbers) 56.0% 62.0% 

       26 (only letters) 16.0% 48.0% 

36 (both numbers and letters) 24.0% 18.0 % 

D. Lessons Learned and Possible Improvements 
Both solvers achieved to break the CAPTCHAs 

successfully, considering that the reCAPTCHA developers ask 
that computers can solve at most 5% of the generated puzzles, 
or else the CAPTCHA system should be considered broken 
[17]. Furthermore, even with low success rates the attack can 
still be considered effective in the case that the attacker 
augments his computational power, e.g., with the use of botnets 
[18]. Also it is important to stress that even though the VSIR 
had a relatively small sample as a training set, it had overall 
better results against an experienced OCR engine such as 
Tesseract. 

Important optimizations for consideration are firstly the 
automation of the process of creating a training corpus for the 
VSIR and secondly the creation of a more independent 
environment for the VSIR in terms of the type of image that it 
can take as input, through the creation of a more efficient and 
universal noise removal and segmentation technique. In future 
work, we intend to research on finding possible correlations 
concerning the VSIR recognition rate and time performance 
when the corpus has different size values and contains different 
samples, as well as on examining possible applications of the 
VSM in other CAPTCHA variations such as the image-based 
scheme. 

TABLE III. TIME PERFORMANCE (SECONDS PER CAPTCHA SET) 

CAPTCHA variation Tesseract VSIR 

       Numbers 13.62 34.35 

       Letters 13.50 30.80 

       Numbers and Letters 13.15 18.59 
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V. CONCLUSIONS 
In this position paper, we attempted to conduct a first brief 

investigation of current state-of-the-art techniques regarding 
automated CAPTCHA solving, focusing on the application of 
the VSM theory towards the implementation of an efficient 
Vector Space Image Recognizer (VSIR). In this manner, it was 
demonstrated herein that the VSIR can be considered as an 
effective way to break CAPTCHAs. Our intention was to 
assess the proposed techniques in a way that sheds some light 
on the work in the field. As a result, this research aimed mainly 
in the improvement of text-based CAPTCHAs through the 
examination of solving techniques that can be implemented 
with the intention of defeating them. Among our future work is 
the extension of this applied technique to other CAPTCHA 
application domains.  
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